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Abstract. We obtain a sufficient condition to ensure that weighted backward
shift operators on Köthe sequence spaces λp(A) admit an invariant distribu-
tionally ε-scrambled subset for any 0 < ε < diamλp(A). In particular, every
Devaney chaotic weighted backward shift operator on λp(A) supports such a
subset.

1. Introduction and preliminaries

Sharkovsky’s amazing discovery (see [16]), as well as Li and Yorke’s famous
work which introduced the mathematical concept of “chaos” (see [7]), have pro-
voked the recent rapid advancement of discrete chaos theory. An essential feature
of chaos is the impossibility of predicting its long-term dynamics due to the expo-
nential separation of any two nearby orbits.

A generalization of the concept of Li–Yorke chaos is distributional chaos, intro-
duced by Schweizer and Smı́tal [15]. Let (X,T ) be a dynamical system. For
any pair of points x, y ∈ X, define lower and upper distributional functions,
R −→ [0, 1] generated by T , x and y, as follows:

Fx,y(t, T ) = lim inf
n→+∞

1

n

n∑
j=1

χ[0,t)

(
d
(
T j(x)T j(y)

))
,
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and

F ∗
x,y(t, T ) = lim sup

n→+∞

1

n

n∑
j=1

χ[0,t)

(
d
(
T j(x), T j(y)

))
,

respectively, where χA(·) denotes the characteristic function of set A. Clearly,
both functions Fx,y and F ∗

x,y are nondecreasing. A dynamical system (X,T ) is
distributionally ε-chaotic for a given ε > 0 if there exists an uncountable subset
D ⊂ X such that for any pair of distinct points x, y ∈ D, one has F ∗

x,y(t, T ) = 1
for all t > 0 and Fx,y(ε, T ) = 0. The set D is a distributionally ε-scrambled set
and the pair (x, y) a distributionally ε-chaotic pair. If (X,T ) is distributionally
ε-chaotic for any given 0 < ε < diamX, then (X,T ) is said to exhibit maximal
distributional chaos.

Let (X, d) be a complete metric space, and let T : X −→ X be continuous. For
the space X, define another metric d1 as

d1(x, y) =
d(x, y)

1 + d(x, y)
,

for any x, y ∈ X. Clearly, the topologies generated by these two metrics are
the same. It is easy to see that if d1(x, y) ≥ ε holds for some 0 < ε < 1, then
d(x, y) ≥ ε/(1− ε). Combining this with the definition of distributional ε-chaos,
we have the following result.

Proposition 1.1.

(1) If the dynamical system (X,T ) is distributionally ε-chaotic for some 0 <
ε < 1 under the metric d1, then (X,T ) is distributionally ε/(1−ε)-chaotic
under the metric d.

(2) If the dynamical system (X,T ) is distributionally ε-chaotic for some 0 <
ε < 1 under the metric d, then (X,T ) is distributionally ε/2-chaotic under
the metric d1.

During the last ten years, many research works were devoted to the “chaotic
behavior” of backward shift operators on Köthe sequence spaces, and more gen-
erally, Banach or Fréchet spaces (see, e.g., [1], [2], [5], [6], [8]–[11], [13], [17], [18]).
One of the most significant features is hypercyclicity ; that is, the existence of a
vector x ∈ X whose orbit orb(T, x) := {x, T (x), T 2(x), . . .}, under a continuous
and linear operator T : X −→ X acting on a topological vector space X, is
dense in X. The study of hypercyclic operators on sequence spaces started in
1969 when Rolewicz [13] showed that the weighted backward shift λB : lp −→ lp,
(x1, x2, . . .) 7−→ (λx2, λx3, . . .), is hypercyclic if |λ| > 1. Salas [14] extended the
study of backward shift operators on l2 to weighted backward shift and bilat-
eral weighted shift operators. Grosse-Erdmann [5] gave an excellent survey on
hypercyclic operators in 2003. Characterizations for hypercyclicity and Devaney
chaos under backward shift operators on Köthe sequence spaces can be found
in [11]. Mart́ınez-Giménez [8] obtained some sufficient conditions for the opera-
tor f(Bw) to be chaotic in the sense of Devaney. Equivalent conditions for Li–
Yorke chaotic operators and distributionally chaotic operators on Banach spaces
(more generally, Fréchet spaces) were obtained by Bernardes et al. in [1], [2]. In
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2009, Mart́ınez-Giménez, Oprocha, and Peris [9] provided sufficient conditions for
uniform distributional chaos under backward shift operators on Köthe sequence
spaces. In [17], the current authors provided a set of characterizations for uni-
form Li–Yorke chaos and a sufficient condition for maximal distributional chaos
under backward shift operators on Köthe sequence spaces, and we proved in [18]
that the annihilation operator of a quantum harmonic oscillator which is a spe-
cific weighted backward shift operator on the Köthe sequence space λ2(A) with
aj,k = (j+1)k/2 exhibits maximal distributional chaos. Very recently, it was shown
in [10] that the mixing property is not sufficient for distributional chaos under a
linear operator. For more recent results on linear chaos, we refer the reader to [6]
and the references therein.

Concerning the invariance of chaos, Du [4] proved that an interval map is
turbulent if and only if there is an invariant scrambled set. Later, Oprocha [12]
extended this result and proved that exactly the same characterization is valid
for distributional chaos. In 2013, Doleželová [3] showed that a compact system
with a weak specification property, fixed point, and infinitely many mutually
distinct periods has a dense Mycielski invariant distributionally scrambled set.
Very recently, for the full shift (Σ2, σ) on two symbols, the present authors in [19]
constructed an invariant distributionally ε-scrambled set for any 0 < ε < diamΣ2,
in which each point is transitive but is not weakly almost periodic.

Inspired by the above work on the chaoticity and invariant scrambled subsets
of various operators and by methods and results developed in [9], [12], [17], [18],
and [19], we aim here to study conditions under which a dynamical system
(λp(A), Bw) admits an invariant distributionally ε- scrambled subset for any
0 < ε < diamλp(A).

2. Backward shift on the Köthe sequence space

Now, we give a detailed description of a dynamical system (λp(A), Bw). An
infinite matrix A = (aj,k)j,k∈N is called a Köthe matrix if, for each j ∈ N, there
exists some k ∈ N with aj,k > 0 and 0 ≤ aj,k ≤ aj,k+1 for all j, k ∈ N.

Consider the unilateral backward shift, also called the one-sided left shift,

B(x1, x2, x3, . . .) := (x2, x3, x4, . . .),

on the Köthe sequence space λp(A) which is determined by a Köthe matrix A,
where, for 1 ≤ p < +∞,

λp(A) :=
{
x ∈ KN : ‖x‖k :=

(+∞∑
j=1

|xjaj,k|p
)1/p

< +∞,∀k ∈ N
}
,

and for p = 0,

λ0(A) :=
{
x ∈ KN : lim

j→+∞
xjaj,k = 0, ‖x‖k := sup

j∈N
|xjaj,k|,∀k ∈ N

}
.
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It is possible to define a complete metric on λp(A) which is invariant by transla-
tion:

d(x, y) =
+∞∑
n=1

1

2n
‖x− y‖n

1 + ‖x− y‖n
.

The operator B : λp(A) −→ λp(A) is continuous and well defined if and only if
the following condition on the matrix A is satisfied:

∀n ∈ N, ∃m > n such that sup
j∈N

∣∣∣ aj,n
aj+1,m

∣∣∣ < +∞, (2.1)

where in the case of aj+1,m = 0, we have aj,n = 0; therefore, we consider 0
0
as 1.

Here, we give a brief description of the Köthe sequence space. Given a sequence
{wi}i≥2 of strictly positive scalars, we may consider its associated weighted back-
ward shift Bw : λp(A) −→ λp(A),

Bw(x1, x2, . . .) := (w2x2, w3x3, . . .).

According to (2.1), the operator Bw is continuous if and only if

∀n ∈ N, ∃m > n such that sup
j∈N

∣∣∣wj+1
aj,n
aj+1,m

∣∣∣ < +∞. (2.2)

Set

W1 = 1, Wi =
1

w2 · · ·wi

, W k
i = wi · · ·wi−k+1, i > 1, k < i.

Then it is easy to see that, for any k ∈ N and any x = (x1, x2, . . .) ∈ λp(A), we
have

Bk
w(x) = (W k

k+1xk+1,W
k
k+2xk+2, . . .).

We recall that the upper density D(A) of a set A ⊂ N is defined by

D(A) = lim sup
n→+∞

|A ∩ [1, n]|
n

,

where | · | means the cardinality of a set.

3. Main results

Theorem 3.1. Let A be a Köthe matrix, let {wi}i≥2 be a weight sequence satisfy-
ing (2.2) above, and let 1 ≤ p < +∞ (or p = 0). If there exists an increas-
ing sequence E ⊂ N such that for any n ∈ N,

∑
j∈E |Wjaj,n|p < +∞ (or

limE3j→+∞ |Wjaj,n| = 0) and D(E) = 1, then Bw : λp(A) −→ λp(A) has an
invariant distributionally ε-scrambled subset for any 0 < ε < diamλp(A).

Proof. Suppose that 1 ≤ p < +∞. The proof for the case in which p = 0 is
basically the same using the corresponding sup norm. By hypothesis, there exists
an increasing sequence {mn}n∈N ⊂ N such that

1 = D(E) = lim
n→+∞

|E ∩ [1,mn]|
mn

.
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Combining this with ν := (ν1, ν2, . . .) =
∑

j∈E Wjej ∈ λp(A), where ej = (x1, x2,

x3, . . .) with

xi =

{
0 i 6= j,

1 i = j,

it follows that there exists a subsequence {Mn}n∈N of {mn}n∈N such that, for any
n ∈ N,

∑+∞
j=Mn

|νjaj,n|p < 1/2n, and Mn+1 −Mn ≥ 4Mn . Take ν̃ = (ν̃1, ν̃2, . . .) to
be

ν̃j =

{
kνj Mk ≤ j < Mk+1, k ∈ N,

νj 1 ≤ j < M1.

Because

+∞∑
j=Mk

|ν̃jaj,k|p =
∑
l≥k

Ml+1−1∑
j=Ml

|ν̃jaj,k|p =
∑
l≥k

Ml+1−1∑
j=Ml

lp|νjaj,k|p

≤
∑
l≥k

Ml+1−1∑
j=Ml

lp|νjaj,l|p ≤
∑
l≥k

lp

2l
< +∞,

we have ν̃ ∈ λp(A).
For any k, n ∈ N, denote

ν̃[k] = Bk
w(ν̃) = (W k

k+1ν̃k+1,W
k
k+2ν̃k+2, . . .)

and

ν̃[k, n] = (0, 0, . . . , 0︸ ︷︷ ︸
n

,W k
k+n+1ν̃k+n+1,W

k
k+n+2ν̃k+n+2, . . .).

Since limn→+∞ d(0, ν̃[k, n]) = 0, it follows that, for any k, n, q ∈ N, there exists
ζ(k, n, q) ∈ N such that, for all m ≥ ζ(k, n, q) and all 1 ≤ j ≤ n, we have that
d(0, ν̃[k + j,m]) < 1/q.

Applying mathematical induction, it is easy to show that there exists a subse-

quence {M̂n}n∈N of {Mn}n∈N such that, for any n ∈ N,

(i) M̂1 =M1,

(ii) M̂2n = min{M2i :M2i ≥ M̂2n−1 + 2M̂2n−1 + 2ζ(M̂2n−1, 2
M̂2n−1 , 2n), i ∈ N},

(iii) M̂2n+1 = min{M2i+1 :M2i+1 > M̂2n, i ∈ N}.
Arrange all odd prime numbers by the natural order <, and denote them as

P1,P2, . . . . For any n, l ∈ N, set

B0
n,l =

{
j ∈ N : M̂Pl

n+1 + (2u)l ≤ j < M̂Pl
n+1 + (2u+ 1)l,

0 ≤ 2u ≤
[M̂Pl

n+2 − M̂Pl
n+1

l

]
− 3

}
,

B1
n,l =

{
j ∈ N : M̂Pl

n+1 + (2u+ 1)l ≤ j < M̂Pl
n+1 + (2u+ 2)l,

1 ≤ 2u+ 1 ≤
[M̂Pl

n+2 − M̂Pl
n+1

l

]
− 3

}
,
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Bn,l = B0
n,l ∪ B1

n,l

=
{
j ∈ N : M̂Pl

n+1 ≤ j < M̂Pl
n+1 + l

([M̂Pl
n+2 − M̂Pl

n+1

l

]
− 2

)}
,

and

Cn = {j ∈ N : M̂16n ≤ j < M̂16n+1}.

It is not difficult to check that, for any n, l ∈ N, there exists Ξn,l ∈ {0, 1} such
that

|E ∩ B
Ξn,l

n,l | ≥ 1

2

∣∣E ∩ (B0
n,l ∪ B1

n,l)
∣∣ = 1

2
|E ∩ Bn,l|

and

lim
n→+∞

|E ∩ Cn|
M̂16n+1

= lim
n→+∞

|E ∩ Bn,l|
M̂Pl

n+2

= D(E) = 1.

Take ν = (ν1, ν2, . . .) with

νj =


ν̃j j ∈ Cn, n ∈ N,

ν̃j j ∈ B
Ξn,l

n,l , n, l ∈ N,

0 otherwise,

and set

D =
+∞⋃
n=0

Bn
w

({
αν : α ∈ (0, 1)

})
.

Clearly, Bw(D) ⊂ D and D is uncountable. Given any two fixed points a, b ∈ D,
with a 6= b, there exist α, β ∈ (0, 1) and p, q ∈ Z+ such that a = Bp(αν) and
b = Bq(βν). Assume that p ≤ q. Set D = {k ∈ N : aj,k = 0,∀j ∈ N}. Without
loss of generality, assume that D = ∅. This implies that there exists j0 ∈ N such
that aj0,1 > 0. According to the definition of Köthe matrix, it is easy to see that,
for each k ∈ N,

aj0,k ≥ aj0,1 > 0. (3.1)

Now, we assert that (a, b) is a distributionally ε-chaotic pair for any 0 < ε <
diamλp(A).

First, observing that for any M̂2n−1 ≤ j < M̂2n−1 + 2M̂2n−1 − q, the first

ζ(M̂2n−1, 2
M̂2n−1 , 2n) symbols of Bj+p

w (ν̃) and Bj+p
w (ν̃) are all equal to zero, we

have

d
(
Bj

w(a), B
j
w(b)

)
≤ d

(
0, Bj

w(a)
)
+ d

(
0, Bj

w(b)
)

= d
(
0, Bj+p

w (αν)
)
+ d

(
0, Bj+q

w (βν)
)

≤ d
(
0, Bj+p

w (ν̃)
)
+ d

(
0, Bj+q

w (ν̃)
)

≤ 1

2n
+

1

2n
=

1

n
.
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This implies that for any t > 0 there exists N ∈ N such that, for any n ≥ N and

any M̂2n−1 ≤ j < M̂2n−1+2M̂2n−1−q, we have d(Bj
w(a), B

j
w(b)) < t. Consequently,

F ∗
a,b(t, Bw) = lim sup

n→+∞

1

n

n∑
j=1

χ[0,t)

(
d
(
Bj

w(a), B
j
w(b)

))

≥ lim sup
n→+∞

1

M̂2n−1 + 2M̂2n−1

M̂2n−1+2M̂2n−1∑
j=1

χ[0,t)

(
d
(
Bj

w(a), B
j
w(b)

))
≥ lim sup

n→+∞

2M̂2n−1 − q

M̂2n−1 + 2M̂2n−1

= 1.

Second, given any fixed 0 < ε < diamλp(A), there exists M ∈ N such that

+∞∑
n=1

1

2n
M

1 +M
≥ ε. (3.2)

To prove that Fa,b(ε,Bw) = 0, consider the two following cases.
Case 1: p = q and a 6= β. For any j > j0, denote

Bj−j0
w (ν) = (ξ

(j)
1 , ξ

(j)
2 , . . .).

Observe that, for any n > j0 and any j ∈ E ∩ Cn,

|ξ(j)j0
| = |W j−j0

j νj| ≥
∣∣∣ 16n

w2 · · ·wj0

∣∣∣.
Combining this with (3.1), it follows that, for any k ∈ N,∥∥Bj−j0

w

(
(α− β)ν

)∥∥
k

=
(+∞∑

i=1

∣∣(α− β)ξ
(j)
i ai,k

∣∣p)1/p

≥
∣∣(α− β)ξ

(j)
j0
aj0,k

∣∣
≥

∣∣∣(α− β)
16n

w2 . . . wj0

aj0,1

∣∣∣ −→ +∞ (n −→ +∞).

This with (3.2) leads to the fact that there exists some N ′ > j0 such that, for any
n ≥ N ′ and any j ∈ E ∩ Cn,

d
(
Bj−j0−q

w (a), Bj−j0−q
w (b)

)
= d

(
0, Bj−j0

w

(
(α− β)ν

))
=

+∞∑
k=1

1

2k
‖Bj−j0

w ((α− β)ν)‖k
1 + ‖Bj−j0

w ((α− β)ν)‖k
≥ ε.
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Then

1 ≥ lim sup
n→+∞

1

n

n∑
j=1

χ[ε,+∞)

(
d
(
Bj

w(a), B
j
w(b)

))

≥ lim sup
n→+∞

1

M̂16n+1

M̂16n+1∑
j=1

χ[ε,+∞)

(
d
(
Bj

w(a), B
j
w(b)

))
≥ lim

n→+∞

|E ∩ Cn|
M̂16n+1

= 1. (3.3)

Case 2: p < q. Note that, for any n > j0 and any j ∈ E ∩ B
Ξn,q−p

n,q−p ,

|ξ(j)j0
| = |W j−j0

j νj| ≥
∣∣∣ Pq−p

n + 1

w2 · · ·wj0

∣∣∣,
and

ξ
(j+(q−p))
j0

= W j−j0+(q−p)
j+(q−p) νj+(q−p) = 0.

This together with (3.1) leads to the fact that, for any k ∈ N,∥∥Bj−j0−p
w (a− b)

∥∥
k
=

∥∥Bj−j0
w (αν)−Bj−j0+(q−p)

w (βν)
∥∥
k

≥
∣∣(αξ(j)j0

− βξ
(j+(q−p))
j0

)aj0,k
∣∣

≥
∣∣∣α Pq−p

n + 1

w2 · · ·wj0

aj0,1

∣∣∣ −→ +∞ (n −→ +∞). (3.4)

Take

En =
{
j ∈ Bn,q−p : j + (q − p) ∈ E ∩ B

Ξn,q−p

n,q−p

}
.

It is easy to verify that, for any n > j0 and any j ∈ En,

ξ
(j)
j0

= W j−j0
j νj = 0

and

|ξ(j+(q−p))
j0

| = |W j−j0+(q−p)
j+(q−p) νj+(q−p)| ≥

∣∣∣ Pq−p
n + 1

w2 · · ·wj0

∣∣∣.
Combining this with (3.1), in a similar way as in the proof of (3.4), it follows that
for any j ∈ En and any k ∈ N,∥∥Bj−j0−p

w (a− b)
∥∥
k
≥

∣∣∣β Pq−p
n + 1

w2 · · ·wj0

aj0,1

∣∣∣. (3.5)

Applying (3.2), (3.4), and (3.5), we have that there exists N ′′ > j0 such that for

any n ≥ N ′′ and any j ∈ En ∪ (E ∩ B
Ξn,q−p

n,q−p ),

d
(
Bj−j0−p

w (a), Bj−j0−p
w (b)

)
≥ ε.
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Noting that En ∩ (E ∩ B
Ξn,q−p

n,q−p ) = ∅, we have

1 ≥ lim sup
n→+∞

1

n

n∑
j=1

χ[ε,+∞)

(
d
(
Bj

w(a), B
j
w(b)

))

≥ lim sup
n→+∞

1

M̂Pq−p
n +2

M̂
P
q−p
n +2∑
j=1

χ[ε,+∞)

(
d
(
Bj

w(a), B
j
w(b)

))
≥ lim sup

n→+∞

|En|+ |E ∩ B
Ξn,q−p

n,q−p |
M̂Pq−p

n +2

≥ lim sup
n→+∞

2|E ∩ B
Ξn,q−p

n,q−p | − (q − p)

M̂Pq−p
n +2

≥ lim sup
n→+∞

|E ∩ Bn,q−p| − (q − p)

M̂Pq−p
n +2

= 1. (3.6)

Summing up (3.3) and (3.6), we obtain

Fa,b(ε,Bw) = 1− lim sup
n→+∞

1

n

n∑
j=1

χ[ε,+∞)

(
d
(
Bj

w(a), B
j
w(b)

))
= 0.

Hence, D is an invariant distributionally ε-scrambled set for any 0 < ε <
diamλp(A). �

Remark 3.2.

(1) It is remarkable that [1, Corollary 27] proved that for a Fréchet sequence
space, the same hypothesis of Theorem 3.1 ensures the existence of a dense
uniformly distributionally scrambled submanifold.

(2) A stronger condition given in [11, Corollary 3.4] characterizing chaos in
the sense of Devaney was

+∞∑
j=1

|Wjaj,n|p < +∞.

This condition implies the existence of invariant distributionally ε-scram-
bled sets for any 0 < ε < diamλp(A), since the hypothesis of Theorem 3.1
above is satisfied for E = N.

Let Bw be a weighted backward shift operator defined on a weighted lp-space
lp({aj}j∈N) formed by a sequence of strictly positive weights {aj}j∈N, where, for
1 ≤ p < +∞,

lp
(
{aj}j∈N

)
=

{
x = (x1, x2, . . .) : ‖x‖ =

(+∞∑
j=1

|ajxj|p
)1/p

< +∞
}

and

l0
(
{aj}j∈N

)
=

{
x = (x1, x2, . . .) : lim

j→+∞
ajxj = 0, ‖x‖ = sup

j∈N
|ajxj|

}
.
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Combining Proposition 1.1 with Theorem 3.1 yields the following result.

Corollary 3.3. If there exists an increasing sequence E ⊂ N such that D(E) = 1
and

∑
j∈E |Wjaj|p < +∞ (or limE3j→+∞ |Wjaj| = 0), then Bw : lp({aj}j∈N) −→

lp({aj}j∈N) has an invariant distributionally ε-scrambled subset for any 0 < ε <
diam lp({aj}j∈N).

Example 3.4. Consider the subspace of H = L2(−∞,+∞)

H1 :=
{
φ ∈ H : φ =

+∞∑
n=0

cnψn,
+∞∑
n=0

|cn|2(n+ 1)r < +∞,∀r > 0
}
,

where

ψn(x) =
e−x2/2√√
π2nn!

(−1)nex
2 dn

dxn
e−x2

, n = 0, 1, . . . .

Here, H1 is an infinite-dimensional Fréchet space with topology defined by the
system of seminorms pr(·) of the form

pr(φ) = pr

(+∞∑
n=0

cnψn

)
=

(+∞∑
n=0

|cn|2(n+ 1)r
)1/2

.

This topology on H1 can be equivalently introduced by the metric

ρ(φ, ψ) =
+∞∑
m=0

1

2m
pm(φ− ψ)

1 + pm(φ− ψ)
.

According to the basic properties of Hermite polynomials, the annihilation oper-
ator for a quantum harmonic oscillator â = 1√

2
(x + d

dx
) : H1 −→ H1 is given

by

â(ψn) =
1√
2

(
x+

d

dx

)
ψn =

√
nψn−1.

It is not difficult to check that the system (H1, â) can also be represented as the
weighted backward shift operator

Bw(x1, x2, . . .) := (
√
2x2,

√
3x3, . . .)

defined on the Köthe sequence space λ2(A) with aj,k = (j + 1)k/2. From Theo-
rem 3.1, it follows that â has an invariant distributionally ε-scrambled set for any
0 < ε < 2 under the metric ρ. This shows that the main results in [18] follow
naturally.
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