Ann. Funct. Anal. 7 (2016), no. 4, 686-690
http://dx.doi.org/10.1215/20088752-3661242
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

DENSE BANACH SUBALGEBRAS OF THE NULL SEQUENCE ALGEBRA WHICH DO NOT SATISFY A DIFFERENTIAL SEMINORM CONDITION

LARRY B. SCHWEITZER
Communicated by M. de Jeu

Abstract

We construct dense Banach subalgebras A of the null sequence algebra c_{0} which are spectral-invariant but do not satisfy the D_{1}-condition $\|a b\|_{A} \leq K\left(\|a\|_{\infty}\|b\|_{A}+\|a\|_{A}\|b\|_{\infty}\right)$ for all $a, b \in A$. The sequences in A vanish in a skewed manner with respect to an unbounded function $\sigma: \mathbb{N} \rightarrow[1, \infty)$.

1. Introduction

We say that A is a dense Banach subalgebra of a C^{\star}-algebra B if A is a dense subalgebra of B, and A is a Banach algebra in some norm $\|\cdot\|_{A}$, which is stronger than the restriction to A of the norm on B. We say that A is spectral-invariant in B if the quasi-invertible elements of A are precisely those elements of A which are quasi-invertible in B. Recall that for $a, b \in A, a \circ b=a+b-a b$, and b is a quasi-inverse for a if and only if $a \circ b=b \circ a=0$ (see [4, Definition 2.1.1]). Dense subalgebras of a C^{\star}-algebra which are spectral-invariant or which satisfy a differential seminorm condition such as D_{1} are used to give differential structure to the C^{\star}-algebra, and they also have applications in noncommutative differential geometry (see [1], [2]).

Let c_{0} be the C^{\star}-algebra of complex-valued vanishing sequences, or null sequences, on the natural numbers $\mathbb{N}=\{0,1,2, \ldots\}$, with pointwise multiplication and involution. For $n \in \mathbb{N}$, let $e_{n}: \mathbb{N} \rightarrow\{0,1\}$ be the unit step function at n, where

[^0]Note that $\Delta=\operatorname{det}\left(T_{r, \sigma}\right)=\sigma\left(1+r^{2}\right)>0$, so $T_{r, \sigma}$ is invertible, and $\|\cdot\|_{r, \sigma}$ is a norm on \mathbb{C}^{2}.

We want to find the smallest constant $D>0$ which satisfies $\|\vec{v}\|_{\max } \leq D\|\vec{v}\|_{r, \sigma}$ for all $\vec{v} \in \mathbb{C}^{2}$. Then D is the norm of

$$
T_{r, \sigma}^{-1}=\frac{1}{\Delta}\left(\begin{array}{cc}
\sigma & -r \\
\sigma r & 1
\end{array}\right)
$$

as an operator on \mathbb{C}^{2} with max-norm,

$$
\begin{align*}
D & =\left\|T_{r, \sigma}^{-1}\right\|_{\mathrm{op}}=\max \left\{\|(\sigma,-r)\|_{1},\|(\sigma r, 1)\|_{1}\right\} / \Delta \\
& =\frac{1}{\sigma\left(1+r^{2}\right)} \max \{\sigma+|r|, \sigma|r|+1\} \\
& =\frac{1}{1+r^{2}} \max \{1+|r| / \sigma,|r|+1 / \sigma\} \tag{2.3}\\
& \leq \frac{1}{1+r^{2}} \max \{1+|r|,|r|+1\} \quad \text { since } \sigma \geq 1 \\
& =\frac{1+|r|}{1+r^{2}}
\end{align*}
$$

since the dual of the max-norm is the ℓ^{1}-norm. As r ranges over all real numbers, the last expression in (2.3) is bounded by 1.21 .

Next we want to find a constant $C>0$ satisfying $\left\|\vec{v}_{1} * \vec{v}_{2}\right\|_{r, \sigma} \leq C\left\|\vec{v}_{1}\right\|_{r, \sigma}\left\|\vec{v}_{2}\right\|_{r, \sigma}$, for all $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{C}^{2}$, where $\vec{v}_{1} * \vec{v}_{2}$ denotes pointwise multiplication. This is equivalent to finding the norm of the operator $\vec{u}_{1} \otimes \vec{u}_{2} \mapsto T_{r, \sigma}\left(T_{r, \sigma}^{-1} \vec{u}_{1} * T_{r, \sigma}^{-1} \vec{u}_{2}\right)$ from $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ to \mathbb{C}^{2}. The operator is $\frac{1}{\Delta^{2}}$ times

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & r \\
-\sigma r & \sigma
\end{array}\right)\left(\left(\begin{array}{cc}
\sigma & -r \\
\sigma r & 1
\end{array}\right)\binom{u_{11}}{u_{12}} *\left(\begin{array}{cc}
\sigma & -r \\
\sigma r & 1
\end{array}\right)\binom{u_{21}}{u_{22}}\right) \\
& =\left(\begin{array}{cc}
1 & r \\
-\sigma r & \sigma
\end{array}\right)\binom{\left(\sigma u_{11}-r u_{12}\right)\left(\sigma u_{21}-r u_{22}\right)}{\left(\sigma r u_{11}+u_{12}\right)\left(\sigma r u_{21}+u_{22}\right)} \\
& =\left(\begin{array}{cc}
1 & r \\
-\sigma r & \sigma
\end{array}\right)\left(\begin{array}{cccc}
\sigma^{2} & -r \sigma & -r \sigma & r^{2} \\
\sigma^{2} r^{2} & \sigma r & \sigma r & 1
\end{array}\right)\left(\begin{array}{l}
u_{11} u_{21} \\
u_{11} u_{22} \\
u_{12} u_{21} \\
u_{12} u_{22}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sigma^{2}\left(1+r^{3}\right) & \sigma\left(r^{2}-r\right) & \sigma\left(r^{2}-r\right) & r^{2}+r \\
\sigma^{3}\left(r^{2}-r\right) & \sigma^{2}\left(r^{2}+r\right) & \sigma^{2}\left(r^{2}+r\right) & \sigma\left(1-r^{3}\right)
\end{array}\right)\left(\begin{array}{l}
u_{11} u_{21} \\
u_{11} u_{22} \\
u_{12} u_{21} \\
u_{12} u_{22}
\end{array}\right)
\end{aligned}
$$

So the constant C is

$$
\begin{align*}
C= & \max \left\{\left\|\left(\sigma^{2}\left(1+r^{3}\right), \sigma\left(r^{2}-r\right), \sigma\left(r^{2}-r\right), r^{2}+r\right)\right\|_{1},\right. \\
& \left.\left\|\left(\sigma^{3}\left(r^{2}-r\right), \sigma^{2}\left(r^{2}+r\right), \sigma^{2}\left(r^{2}+r\right), \sigma\left(1-r^{3}\right)\right)\right\|_{1}\right\} / \Delta^{2} \tag{2.4}\\
= & \frac{\sigma \max \left\{\frac{\left|1+r^{3}\right|}{\sigma}+\frac{2\left|r^{2}-r\right|}{\sigma^{2}}+\frac{\left|r^{2}+r\right|}{\sigma^{3}},\left|r^{2}-r\right|+\frac{2\left|r^{2}+r\right|}{\sigma}+\frac{\left|1-r^{3}\right|}{\sigma^{2}}\right\}}{\left(1+r^{2}\right)^{2}}
\end{align*}
$$

$$
\leq \frac{\sigma \max \left\{\left|1+r^{3}\right|+2\left|r^{2}-r\right|+\left|r^{2}+r\right|,\left|r^{2}-r\right|+2\left|r^{2}+r\right|+\left|1-r^{3}\right|\right\}}{\left(1+r^{2}\right)^{2}}
$$

where the first step used the fact that the dual of the max-norm is the ℓ^{1}-norm, and the last step used that $\sigma \geq 1$. As r ranges over all real numbers, the last expression in (2.4) is bounded by 2σ.

It follows that $2 \sigma\left\|\vec{v}_{1} * \vec{v}_{2}\right\|_{r, \sigma} \leq\left(2 \sigma\left\|\vec{v}_{1}\right\|_{r, \sigma}\right)\left(2 \sigma\left\|\vec{v}_{2}\right\|_{r, \sigma}\right)$, for $\vec{v}_{1}, \vec{v}_{2} \in \mathbb{C}^{2}$. By the preceding paragraph, $\|\vec{v}\|_{\max } \leq D\|\vec{v}\|_{r, \sigma}<2\|\vec{v}\|_{r, \sigma}=\frac{1}{\sigma}\left(2 \sigma\|\vec{v}\|_{r, \sigma}\right)$, for $\vec{v} \in \mathbb{C}^{2}$.

3. The Banach algebras $A_{r, \sigma}$

In this section, we pass from the case of a single copy of \mathbb{C}^{2} (see Section 2) to infinitely many copies of \mathbb{C}^{2}. Let $r \in \mathbb{R}$, and let σ be any unbounded function from \mathbb{N} to $[1, \infty)$. Define an infinite matrix $S_{r, \sigma}$ as the direct sum of (2×2)-matrices,

$$
S_{r, \sigma}=\bigoplus_{n=0}^{\infty} 2 \sigma(n) T_{r, \sigma(n)},
$$

where each $T_{r, \sigma(n)}$ is defined as in (2.2). Let $A_{r, \sigma}=\left\{f \in c_{0} \mid S_{r, \sigma} \theta f \in c_{0}\left(\mathbb{N}, \mathbb{C}^{2}\right)\right\}$, where θ was defined in the Introduction (see (1.2)). By [5, Theorem 4.3.1], $A_{r, \sigma}$ is complete in the norm

$$
\begin{equation*}
\|f\|_{r, \sigma}=\left\|S_{r, \sigma} \theta f\right\|_{c_{0}\left(\mathbb{N}, \mathbb{C}^{2}\right)}=\sup _{n=0}^{\infty}\left\{2 \sigma(n)\|(f(2 n), f(2 n+1))\|_{r, \sigma(n)}\right\} \tag{3.1}
\end{equation*}
$$

where each $\|\cdot\|_{r, \sigma(n)}$ is defined as in (2.1), and where by the final remarks of Section 2, $\|f g\|_{r, \sigma} \leq\|f\|_{r, \sigma}\|g\|_{r, \sigma}$ and $\|f\|_{\infty} \leq\|f\|_{r, \sigma}$, for $f, g \in A_{r, \sigma}$. Since $S_{r, \sigma} \theta f \in c_{0}\left(\mathbb{N}, \mathbb{C}^{2}\right)$ for $f \in A_{r, \sigma}$, then

$$
0=\lim _{n \rightarrow \infty}\left\|\left(S_{r, \sigma} \theta f\right)(n)\right\|_{\mathbb{C}^{2}}=\lim _{n \rightarrow \infty} 2 \sigma(n)\|(f(2 n), f(2 n+1))\|_{r, \sigma(n)}
$$

For $\epsilon>0$, let N_{ϵ} be large enough so that the argument of the limit is smaller than ϵ if $n>N_{\epsilon}$. Then for $n \geq N_{\epsilon}$,

$$
\begin{aligned}
\|f-(f(0), \ldots, f(2 n+1), 0,0, \ldots)\|_{r, \sigma} & =\|(\underbrace{0, \ldots, 0}_{2 n+2 \text { zeros }}, f(2 n+2), \ldots)\|_{r, \sigma} \\
& =\sup _{k>n} 2 \sigma(k)\|(f(2 k), f(2 k+1))\|_{r, \sigma(k)} \\
& <\epsilon,
\end{aligned}
$$

using the definition of $\|\cdot\|_{r, \sigma}$ (3.1). It follows that c_{f} is dense in $A_{r, \sigma}$, and we can apply Theorem 1.1 to see that $A_{r, \sigma}$ is spectral-invariant in c_{0}.
Theorem 3.1. The dense Banach subalgebra $A_{r, \sigma}$ of c_{0} is not a D_{1}-subalgebra of c_{0} for $r \in \mathbb{R} \backslash\{0,1\}$.

Proof. For $n \in \mathbb{N}$, define $a_{n} \in A_{r, \sigma}$ by

$$
a_{n}=(\underbrace{0,0, \ldots, 0,0}_{2 n \text { zeros }}, 1, r, 0,0, \ldots),
$$

where $a_{n}(2 n)=1$ and $a_{n}(2 n+1)=r$ are the only nonzero components. Then

$$
\begin{aligned}
\left\|a_{n}\right\|_{r, \sigma} & =2 \sigma(n)\left(1+r^{2}\right) \\
\left\|a_{n}^{2}\right\|_{r, \sigma} & =2 \sigma(n) \max \left(\left|1+r^{3}\right|, \sigma(n)\left|r^{2}-r\right|\right) \\
\left\|a_{n}\right\|_{\infty} & =\max (1,|r|)
\end{aligned}
$$

If $K>0$ were a constant satisfying the D_{1}-condition (1.1) for $A_{r, \sigma}$ in c_{0}, then

$$
\begin{aligned}
K & \geq \frac{\left\|a_{n}^{2}\right\|_{r, \sigma}}{2\left\|a_{n}\right\|_{\infty}\left\|a_{n}\right\|_{r, \sigma}}=\frac{\max \left(\left|1+r^{3}\right|, \sigma(n)\left|r^{2}-r\right|\right)}{2\left(1+r^{2}\right) \max (1,|r|)} \\
& \geq \frac{\sigma(n)\left|r^{2}-r\right|}{2\left(1+r^{2}\right) \max (1,|r|)}
\end{aligned}
$$

must hold for each n for which $\sigma(n)\left|r^{2}-r\right| \geq\left|1+r^{3}\right|$. No such constant K can exist if $r \neq 1$ or 0 , since σ is unbounded.

Remark 3.2. Note that $A_{r, \sigma}$ is a Banach \star-algebra. The norms defined on \mathbb{C}^{2} (2.1) and the norm on $A_{r, \sigma}$ (3.1) are both left unchanged by the \star-operation of pointwise complex conjugation.

Remark 3.3. In the cases $r=0$ and $r=1$, it can be shown that $A_{r, \sigma}$ is a D_{1}-subalgebra of c_{0}. Further, $A_{r, \sigma}$ is a dense Banach ideal in c_{0} if $r=0$, but not if $r=1$.

References

1. S. J. Bhatt, Smooth Fréchet subalgebras of C^{\star}-algebras defined by first order differential seminorms, Proc. Indian Acad. Sci. Math. Sci. 126 (2016), no. 1, 125-141. Zbl 06563136. MR3470819. DOI 10.1007/s12044-016-0265-8. 686
2. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. Zbl 0818.46076. MR1303779. 686
3. E. Kissin and V. S. Shulman, Differential properties of some dense subalgebras of C^{\star}-algebras, Proc. Edinb. Math. Soc. (2) 37 (1994), no. 3, 399-422. Zbl 0808.46066. MR1297311. DOI 10.1017/S0013091500018873. 687
4. T. W. Palmer, Banach Algebras and the General Theory of \star-algebras, I: Algebras and Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, 1994. Zbl 0809.46052. MR1270014. DOI 10.1017/CBO9781107325777. 686
5. A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85, North-Holland, Amsterdam, 1984. Zbl 0531.40008. MR0738632. 689

Department of Statistics and Biostatistics, California State University East Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA. E-mail address: lschweitzer@horizon.csueastbay.edu; 1sch@svpal.org

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received May 12, 2016; Accepted Jul. 20, 2016.
 2010 Mathematics Subject Classification. Primary 46L87; Secondary 46H10, 46J10, 46B45, 46K99.

 Keywords. D_{1}-subalgebra, spectral invariance, null sequence algebra, differential structure in C^{\star}-algebras.

