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Abstract. Spectral theory and functional calculus for unbounded self-adjoint
operators on a Hilbert space are usually treated through von Neumann’s Cay-
ley transform. Using ideas of Woronowicz, we redevelop this theory from the
point of view of multiplier algebras and the so-called bounded transform (which
establishes a bijective correspondence between closed operators and pure con-
tractions). This also leads to a simple account of the affiliation relation between
von Neumann algebras and self-adjoint operators.

1. Introductory overview

The theory of unbounded self-adjoint operators on a Hilbert space was initiated
by von Neumann [7], partly motivated by mathematical problems of quantum
mechanics. The monograph by Schmüdgen [10] presents an excellent survey of
the present state of the art.

Von Neumann’s approach was based on the Cayley transform, and in its sub-
sequent development the notion of a spectral measure played an important role,
especially in defining a functional calculus. We consider this route a bit indirect
and will avoid both by first invoking the bounded transform instead of the Cayley
transform; that is, the formal expressions

S = T
√
I + T 2

−1
, (1.1)

T = S
√
I − S2

−1
, (1.2)
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make rigorous sense and provide a bijective correspondence between self-adjoint
operators T and self-adjoint pure contractions S (i.e., ‖Sx‖ < ‖x‖ for each x ∈
H \ {0}; see [3], [4], [10]).

Note that the bounded transform T 7→ S is an operatorial version of the
homeomorphism R ∼= (−1, 1) given by the function b : R → (−1, 1) and its
inverse u : (−1, 1) → R defined by

b(x) =
x√

1 + x2
, (1.3)

u(x) =
x√

1− x2
. (1.4)

Second, we replace spectral measures by simple arguments using multiplier
algebras. Our approach is based on Woronowicz’s work (see [12] and [13]), whose
functional calculus we adopt and to some extent complete, at least in the usual
context of operators on a Hilbert space (Woronowicz’s work was mainly intended
to deal with problems involving multiplier algebras and, even more generally, with
operators on Hilbert C∗-modules, as in [5]).

If T is bounded (and, by standing assumption, self-adjoint), then it is easy to
prove the equality

C∗(T ) = C∗(S), (1.5)

where C∗(S) is the C∗-algebra generated within B(H) by S and the unit, and so
forth. Furthermore, the spectral mapping theorem implies that the spectra of S
and T are related by

σ(T ) =
{
µ(1− µ2)−1/2

∣∣ µ ∈ σ(S)
}
, (1.6)

σ(S) =
{
λ(1 + λ2)−1/2

∣∣ λ ∈ σ(T )
}
, (1.7)

preserving point spectra. As to the continuous functional calculus, for S = S∗ ∈
B(H) we have the familiar isomorphism C(σ(S))

∼=→ C∗(S), written g 7→ g(S),
given by the spectral theorem. Assuming that T = T ∗ ∈ B(H), the same applies
to T . These calculi are related by

f(T ) = (f ◦ u)(S), (1.8)

where f ∈ C(σ(T )) so that f ◦ u ∈ C(σ(S)). Self-adjointness is preserved in that

f(T )∗ = f ∗(T ), (1.9)

where f ∗(x) = f(x). In particular, if f is real-valued, then f(T ) is self-adjoint.
At the level of von Neumann algebras, defining W ∗(S) = C∗(S)′′ and similarly
for T , equation (1.5) gives

W ∗(T ) = W ∗(S). (1.10)

The functional calculus f 7→ f(T ) may then be extended to bounded Borel
functions f on σ(T ), in which case it is still given by (1.8). We then have
f(T ) ∈ W ∗(T ), while (1.9) remains valid; however, instead of the isometric prop-
erty ‖f(T )‖ = ‖f‖∞ for continuous f , we now have ‖f(T )‖ ≤ ‖f‖∞ (where ‖·‖∞
is the supremum-norm) (see, e.g., [8]).
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Our aim here is to generalize these results to the case where T is unbounded.
This indeed turns out to be possible so that our main results are as follows.
Throughout the remainder of this article, we assume that T ∗ = T is possibly
unbounded with bounded transform S.

Theorem 1.1. The spectra of T and its bounded transform S are related by

σ(T ) =
{
µ(1− µ2)−1/2 : µ ∈ σ̃(S)

}
, (1.11)

σ(S) =
{
λ(1 + λ2)−1/2 : λ ∈ σ(T )

}−
, (1.12)

where − denotes the closure in R, and we abbreviate

σ̃(S) = σ(S) ∩ (−1, 1). (1.13)

Note that σ̃(S) = σ(S) if and only if T is bounded (in which case σ(S) is a
compact subset of (−1, 1) since ±1 ∈ σ(S) if and only if T is unbounded). We
define the following operator algebras within B(H):

C∗
•(S) =

{
g(S) : g ∈ C•

(
σ̃(S)

)}
, (1.14)

where • is b, c, or 0 so that we have defined C∗
c (S), C

∗
0(S), and C∗

b (S). Notice
that C(σ(S)) consists of all g ∈ Cb(σ̃(S)) for which limy→±1 g(y) exists, where
this limit is 0 if and only if g ∈ C0(σ̃(S)); hence, we have the inclusions (of which
the first set implies the second)

Cc

(
σ̃(S)

)
⊆ C0

(
σ̃(S)

)
⊆ C

(
σ(S)

)
⊆ Cb

(
σ̃(S)

)
, (1.15)

C∗
c (S) ⊆ C∗

0(S) ⊆ C∗(S) ⊆ C∗
b (S), (1.16)

with equalities if and only if T is bounded. This means that g(S) is defined for
g ∈ C0(σ̃(S)), and hence a fortiori also for g ∈ Cc(σ̃(S)). Consequently, f(T )
may be defined by (1.8) whenever f ∈ C0(σ(T )), including f ∈ Cc(σ(T )). To
pass to the larger class f ∈ Cb(σ(T )), we define C∗

0(S)H as the linear span of
all vectors of the form g(S)ψ, where g ∈ C0(σ̃(S)) and ψ ∈ H. Then C∗

0(S)H is
dense in H (see Lemma 2.1). In the spirit of Woronowicz (see [5, Chapter 10],
[12]), we then initially define f(T ) for f ∈ Cb(σ(T )) on the domain C∗

0(S)H by
linear extension of the formula

f(T )0h(T )ψ = (fh)(T )ψ, (1.17)

where h ∈ C0(σ(T )), and hence also fh ∈ C0(σ(T )) since Cb(σ(T )) is the muti-
plier algebra of C0(σ(T )). Then f(T )0 is bounded (see Lemma 2.2), and we define
f(T ) as its closure; that is,

f(T ) = f(T )−0 . (1.18)

This also works for f ∈ C(σ(T )), in which case f(T )0 may no longer be bounded,
but remains closable (see Lemma 2.3) so that we may once again define f(T ) as
its closure (cf. (1.18)). We have the following theorem (see also Theorem 1.4).

Theorem 1.2. If f ∈ C(σ(T )) is real-valued, then f(T ) is self-adjoint; that is,
f(T )−0 = f(T )∗0, and, more generally, f(T )∗ = f ∗(T ). Furthermore, the continu-
ous functional calculus f 7→ f(T ) restricts to an isometric ∗-homomorphism from
C0(σ(T )) (with supremum-norm) to C∗(S).



414 C. BUDDE and K. LANDSMAN

In addition, the map f 7→ f(T ) has the reassuring special cases

1σ(T )(T ) = I, (1.19)

id(T ) = T, (1.20)

(id− z)−1(T ) = (T − z)−1, z ∈ ρ(T ), (1.21)

where 1σ(T )(x) = 1 and id(x) = x (x ∈ σ(T )), and therefore it does what it is
supposed to do.

Finding the right analogue of (1.10) for unbounded T = T ∗ first requires a
redefinition of W ∗(T ), which is standard (see [8]). If T is unbounded and R ∈
B(H), then we say that R and T commute, written TR ⊂ RT , if Rψ ∈ D(T ) and
RTψ = TRψ for any ψ ∈ D(T ). Let {T}′ be the set of all bounded operators that
commute with T . If T ∗ = T , then {T}′ is a unital, strongly closed ∗-subalgebra
of B(H), and hence a von Neumann algebra (see [8]). Its commutant

W ∗(T ) = {T}′′ (1.22)

is a von Neumann algebra, too. If T is bounded, thenW ∗(T ) is the von Neumann
algebra generated by T , which coincides with C∗(T )′′. As usual, we call a closed
unbounded operator X affiliated to a von Neumann algebra A ⊂ B(H), written
XηA, if and only if XR ⊂ RX for each R ∈ A′. For example, if T ∗ = T , then
TηW ∗(T ), and if TηA, then W ∗(T ) ⊆ A; in other words, W ∗(T ) is the smallest
von Neumann algebra such that T is affiliated to it.

As a result of independent interest as well as a lemma for Theorem 1.4, we may
then adapt [8, Lemma 5.2.8] to the bounded transform, as in this theorem.

Theorem 1.3. Let A ⊂ B(H) be a von Neumann algebra. Then TηA if and only
if S ∈ A.

Denoting the (Banach) space of (bounded) Borel functions on σ(T ) (equipped
with the supremum-norm) by B(b)(σ(T )), we may still define f(T ) by (1.8) and
the usual Borel functional calculus for the bounded transform S.

Theorem 1.4. The map f 7→ f(T ) is a norm-decreasing ∗-homomorphism from
Bb(σ(T )) to

W ∗(T ) = W ∗(S). (1.23)

More generally, if f ∈ B(σ(T )), then f(T ) is affiliated with W ∗(T ).

The remainder of this paper simply consists of the proofs of these theorems.

2. Proofs

This section contains all proofs. We will not repeat the theorems.

2.1. Proof of Theorem 1.1. The operator
√
1− S2 is a bijection from H to

R(
√
1− S2) = D(T ) (see [4], proof of Theorem 1). Let λ ∈ ρ(T ) ≡ C \ σ(T )

so that T − λI is a bijection from D(T ) to H. Thus, by composition, we have a
bijection H → H; equivalently, (T − λI)(

√
I − S2) is invertible, which in turn is

equivalent to invertibility of S − λ
√
I − S2. Thus, λ ∈ ρ(T ) ⇐⇒ S − λ

√
I − S2



FUNCTIONAL CALCULUS AND VON NEUMANN ALGEBRAS 415

is a bijection, or, expressed contrapositively, λ ∈ σ(T ) ⇐⇒ S − λ
√
I − S2 is not

invertible in B(H). This is the case if and only if S−λ
√
I − S2 is not invertible in

C∗(S), which, using the Gelfand isomorphism C∗(S) ∼= C(σ(S)), in turn is true
if and only if the function kλ(x) = x − λ

√
1− x2 is not invertible in C(σ(S));

that is, if and only if 0 ∈ σ(kλ). Since in C(X) we have σ(f) = R(f) (with X
a compact Hausdorff space), and since σ(S) is indeed compact and Hausdorff
because S is bounded, we obtain λ ∈ σ(T ) if and only if 0 ∈ R(kλ). If ±1 lie
in σ(S), then they cannot give rise to 0 ∈ R(kλ) since kλ(±1) = ±1 for each λ;
hence, 0 ∈ R(kλ) if and only if λ = µ(1 − µ2)−1/2 for some µ ∈ σ(S) ∩ (−1, 1),
which yields (1.11).

The same argument shows that µ ∈ σ(S) ∩ (−1, 1) comes from λ ∈ σ(T ). But
since σ(S) is compact and hence closed in [−1, 1], we obtain (1.12).

2.2. Proof of Theorem 1.2. This proof relies on three lemmas.

Lemma 2.1. Let C∗
c (S)H be the linear span of all vectors of the form g(S)ψ,

where g ∈ Cc(σ̃(S)) and ψ ∈ H. Then C∗
c (S)H is dense in H.

Proof. Define gn : (−1, 1) → [0, 1] by putting gn(x) = 0 for x ∈ (−1, 1
n
− 1] ∪

[1 − 1
n
, 1), gn(x) = 1 if x ∈ [ 2

n
− 1, 1 − 2

n
], and linear interpolation in between.

The ensuing sequence converges pointwise to the unit 1 on (−1, 1). Restricting
each gn to σ̃(S), the continuous functional calculus gives gn(S) → 1σ̃(S) strongly.
Therefore, for any ψ ∈ H, we have a sequence ψn = gn(S)ψ in C∗

c (S)H such that
ψn → ψ. �

Lemma 2.2. For f ∈ Cb(σ(T )), define an operator f(T )0 on the domain C∗
0(S)H

by (1.17). Then f(T )0 is bounded with bound∥∥f(T )0∥∥ ≤ ‖f‖∞. (2.1)

Proof. Let ε > 0. If h ∈ C0(σ(T )), then fh ∈ C0(σ(T )) so that we can find a

compact subset K ⊂ σ(T ) such that |h(x)f(x)| < ε for each x /∈ K. Let h̃ = h◦u
(see (1.4)). Then h̃ ∈ C0(σ̃(S)) whenever h ∈ C0(σ(T )); in fact, we have an
isometric isomorphism

C0

(
σ(T )

) ∼=→ C0

(
σ̃(S)

)
, h 7→ h ◦ u. (2.2)

Contractivity of the Borel functional calculus for bounded operators on H gives∥∥(1̃Kcfh)(S)ψ
∥∥ ≤

∥∥(1̃Kcfh)(S)
∥∥‖ψ‖ ≤ ‖1̃Kcfh‖∞‖ψ‖ < ε‖ψ‖.

Using also the homomorphism property of the Borel functional calculus, we then
find that ∥∥(fh)(T )ψ∥∥ =

∥∥(f̃h)(S)ψ∥∥
=

∥∥(̃1Kfh)(S) + (f̃h− 1̃Kfh)(S)ψ
∥∥

≤
∥∥(1̃Kfh)(S)ψ

∥∥+
∥∥(1̃Kcfh)(S)ψ

∥∥
=

∥∥(̃1Kf)(S)h̃(S)ψ
∥∥+

∥∥(1̃Kcfh)(S)ψ
∥∥
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<
∥∥(̃1Kf)

∥∥
∞

∥∥h(T )ψ∥∥+ ε‖ψ‖
≤ ‖f‖∞

∥∥h(T )ψ∥∥+ ε‖ψ‖

since ‖(̃1Kf)‖∞ ≤ ‖f̃‖∞ = ‖f‖∞. Since the last expression above is independent
of K, we may let ε→ 0, obtaining boundedness of f(T ) as well as (2.1). �

The last claim in Theorem 1.2 now follows from the continuous functional
calculus for S and the isometric isomorphism (2.2). Although isometry may be
lost if we go from C0(σ(T )) to Cb(σ(T )), it easily follows from (1.17)–(1.18) that
the map f 7→ f(T ) at least defines a ∗-homomorphism Cb(σ(T )) → B(H). This
property will be used after Lemma 2.4 below.

Lemma 2.3. For f ∈ C(σ(T )), define an operator f(T )0 on the domain C∗
c (S)H

by (1.17). Then f(T )0 is closable. Moreover, if f is real-valued (f ∗ = f), then
f(T )0 is symmetric.

Proof. Suppose that h1(T )ψ1 and h2(T )ψ2 lie in D(f(T )0). Then we may compute〈
h2(T )ψ2, f(T )0h1(T )ψ1

〉
=

〈
ψ2, h2(T )

∗(fh1)(T )ψ1

〉
=

〈
ψ2, (h2fh1)(T )ψ1

〉
; (2.3)〈

(h2f)(T )ψ2, h1(T )ψ1

〉
=

〈
ψ2, h2f)(T )

∗h1(T )ψ1

〉
=

〈
ψ2, (h2fh1)(T )ψ1

〉
, (2.4)

where in the first equality in (2.3) we have h2 ∈ C0(σ(T )) so that the operator
h2(T ) = h2 ◦ u(S) is defined by (1.8), and hence is bounded (see Section 1).
The continuous functional calculus for S then gives h2(T )

∗ = h2(T ) as well as
h2(T )(fh1)(T ) = (h2fh1)(T ), and similarly in (2.4).

This implies thatD(f(T )0) ⊆ D(f(T )∗0). SinceD(f(T )0) is dense, so isD(f(T )∗0),
which implies that f(T )0 is closable. The second claim is obvious from
(2.3)–(2.4). �

Proof of Theorem 1.2. To prove Theorem 1.2, we use a well-known result of Nel-
son [6] (see also [9]) (this step was suggested to us by Nigel Higson). For conve-
nience we recall this result (without proof).

Lemma 2.4. Let {U(t)}t∈R be a strongly continuous unitary group of operators on
a Hilbert space H. Let R : D(R) → H be densely defined and symmetric. Assume
that D(R) is invariant under {U(t)}t∈R; that is, assume that U(t) : D(R) →
D(R) for each t, and also that {U(t)}t∈R is strongly differentiable on D(R). Then
−idU(t)/dt is essentially self-adjoint on D(R), and its closure is the self-adjoint
generator of {U(t)}t∈R (given by Stone’s theorem). In particular, if (dU(t)/dt)ψ =
iRU(t)ψ for each ψ ∈ D(R), then R is essentially self-adjoint.

Set R = f(T )0 for f ∈ C(σ(T )) so that

D(R) = C∗
c (S)H, (2.5)
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and for each t ∈ R define U(t) via the (bounded) function x 7→ exp(itf(x)) on
σ(T ); that is, for h ∈ Cc(σ(T )) and ψ ∈ H, we initially define

U(t)0h(T )ψ = (eitfh)(T )ψ. (2.6)

Then U(t)0 is bounded by Lemma 2.2, and we define U(t) as the closure of U(t)0.
The remark before Lemma 2.3 then implies that t 7→ U(t) defines a unitary
representation of R on H. Strong continuity of this representation follows from
an ε/3 argument. First, for

ϕ = h(T )ψ, (2.7)

and assuming that ‖ψ‖ = 1 for simplicity, equations (2.6) and (2.1) give∥∥U(t)ϕ− ϕ
∥∥ ≤ ‖eitfh− h‖∞ ≤ ‖h‖∞‖eitf − 1‖(K)

∞ , (2.8)

where K is the (compact) support of h in σ(T ). Since the exponential function
is uniformly convergent on any compact set, this gives limt→0 ‖U(t)ϕ − ϕ‖ = 0
for ϕ of the form (2.7); taking finite linear combinations thereof gives the same
result for any ϕ ∈ C∗

c (S)H. Thus, for any ε > 0, we can find δ > 0 so that
‖U(t)ϕ − ϕ‖ < ε/3 whenever |t| < δ. For general ψ′ ∈ H, we find ϕ ∈ C∗

c (S)H
such that ‖ϕ− ψ′‖ < ε/3, and we estimate∥∥U(t)ψ′ − ψ′∥∥ ≤

∥∥U(t)ψ′ − U(t)ϕ
∥∥+

∥∥U(t)ϕ− ϕ
∥∥+ ‖ϕ− ψ′‖

≤ ε/3 + ε/3 + ε/3 = ε

since ‖U(t)ψ′ − U(t)ϕ‖ = ‖ψ′ − ϕ‖ by unitarity of U(t). Thus, limt→0 ‖U(t)ψ −
ψ‖ = 0 for any ψ ∈ H so that the unitary representation t 7→ U(t) is strongly
continuous. Similarly,∥∥∥U(t+ s)ϕ− U(t)ϕ

s
− iRU(t)ϕ

∥∥∥ ≤
∥∥∥eisfh− h

s
− ifh

∥∥∥
∞
, (2.9)

assuming (2.7), so that by the same argument as in (2.8) we obtain

dU(t)

dt
ϕ = iRU(t)ϕ (2.10)

initially for any ϕ of the form (2.7), and hence, taking finite sums, for any ϕ ∈
D(R) (see (2.5)). The final part of Lemma 2.4 then shows that f(T )0 is essentially
self-adjoint on its domain C∗

c (S)H. Its closure f(T ) is therefore self-adjoint, and
Theorem 1.2 is proved. �

We now prove the examples (1.19)–(1.21), of which the first is trivial. Writing
T0 for the operator id(T )0, the definition (1.17) gives

T0ϕ = Tϕ

for ϕ ∈ D(T0) = C∗
c (S)H. Let ψ ∈ D(T−

0 ) so that there is a sequence (ϕn) in
D(T0) such that ϕn → ϕ and (T0ϕn) converges. Since T is closed, it follows that
T0ϕn = Tϕn → Tϕ so that ϕ ∈ D(T ); hence, T−

0 ⊂ T . Since both operators are
self-adjoint, this implies that T−

0 = T , which proves (1.20).
The proof of (1.21) is easier since (T − z)−1 is bounded: writing

f(x) = (x− z)−1,
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where z /∈ σ(T ) is fixed and x ∈ σ(T ), we have

f(T )0h(T )ψ = (fh)(T )ψ = (T − z)−1h(T )ψ,

and hence

f(T )0ϕ = (T − z)−1ϕ

for any ϕ ∈ D(f(T )0) = C∗
c (S)H. If ϕn → ϕ for ϕ ∈ H and ϕn ∈ D(f(T )0),

boundedness and hence continuity of the resolvent implies that

f(T )ϕ = lim
n→∞

f(T )0ϕn = lim
n→∞

(T − z)−1ϕn = (T − z)−1ϕ.

2.3. Proof of Theorem 1.3. The first step consists in the observation that TηA
if and only if UT = TU (or, equivalently, UTU∗ = T ) for each unitary U ∈ A′

[11, Proposition 5.3.4].
The second step is to show that UT = TU if and only if SU = US for any

unitary U . This is a simple computation. First, suppose that UTU∗ = T . Then

U(1 + T 2)−1U∗ =
(
U(1 + T 2)U∗)−1

=
(
(U + UT 2)U∗)−1

= (UU∗ + UT 2U∗)−1 = (1 + UTU∗UTU∗)−1

= (1 + T 2)−1.

If R is bounded and positive, then UR = RU if and only if U ∈ C∗(R)′, and since√
R ∈ C∗(R) by the continuous functional calculus, we also have U

√
R =

√
RU .

Consequently,

USU∗ = U
(
T
√
(1 + T 2)−1

)
U∗

= (UTU∗)
(
U
√

(1 + T 2)−1U∗) = T
√

(1 + T 2)−1 = S.

Similarly, if SU = US, then

UTU∗ = US
√
1− S2

−1
U∗

= SU
√
1− S2

−1
U∗ = S(U

√
1− S2U∗)−1 = S

√
1− S2

−1
= T.

Third, as in the first step, SU = US for any unitary U ∈ A′ if and only if
S ∈ A′′ = A.

2.4. Proof of Theorem 1.4. Equation (1.23) in Theorem 1.4 follows from
Theorem 1.3: taking A = W ∗(T ) so that TηA yields S ∈ W ∗(T ), and hence
W ∗(S) ⊆ W ∗(T ). On the other hand, taking A = W ∗(S), in which case S ∈ A,
gives TηW ∗(S), and hence W ∗(T ) ⊆ W ∗(S).

Similarly to (2.2), we have an isometric isomorphism

Bb

(
σ(T )

) ∼=→ Bb

(
σ̃(S)

)
, h 7→ h ◦ u (2.11)

so that the first claim of Theorem 1.4 follows from the Borel functional calculus for
the bounded operator S (see [8]). The proof of the last one is, mutatis mutandis,
practically the same as in [8, Theorem 5.3.8], so we omit the details (see [2]).

As explained in [8, Section 5.3], there exists a Borel measure µ on σ(T ) such that
the map f 7→ f(T ) may also be seen as a so-called essential ∗-homomorphism from
B(σ(T ))/N (σ(T )) into the ∗-algebra of normal operators affiliated with W ∗(T ),
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where N (σ(T )) is the set of µ-null functions on σ(T ). This remains true in our
approach with the same proof (see [2]).

3. Epilogue

Let us finally note that, although the present article was inspired by the work of
Woronowicz, the C∗-algebraic affiliation relation he defines in [12, Definition 1.1]
(as did, independently, also Baaj and Julg in [1]) has not been used here. If we
call his relation η′ to avoid confusion with the W ∗-algebraic relation η we do use,
if A ⊂ B(H), then we have Tη′A ⇒ T ∈ A (and hence T is bounded) (cf. [12,
Proposition 1.3]). Woronowicz does not define a C∗-algebraic counterpart of the
von Neumann algebra W ∗(T ), but it might be reasonable to define C∗(T ) as the
smallest C∗-algebra A in B(H) such that Tη′A. It follows from [12, Example 4]
that this would give C∗(T ) = C∗

0(S) as defined in (1.14). This C∗-algebra contains
S (and hence T ) if and only if T is bounded, in which case C∗

0(S) = C∗(S) and
hence C∗(T ) = C∗(S), as in our approach (see (1.5)). Also, in general (i.e., if T is
possibly unbounded), the bicommutant C∗(T )′′ coincides with W ∗(T ) as defined
in the usual way (1.22). This follows from C∗

0(S)
′′ = C∗(S)′′ = W ∗(S) and (1.10).

Of course, we could also redefine η′, now calling it η′′, by stipulating that
Tη′′A whenever S ∈ A, and redefine C∗(T ) accordingly (i.e., as the smallest
C∗-algebra A in B(H) such that Tη′′A). This would give (1.5) even if T is un-
bounded, though in a somewhat empty way.

Acknowledgments. The authors are indebted to Eli Hawkins, Nigel Higson,
Jens Kaad, Erik Koelink, Bram Mesland, Arnoud van Rooij, and an anonymous
referee for advice (most of which was taken).

References
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