Ann. Funct. Anal. 7 (2016), no. 3, 402-410
http://dx.doi.org/10.1215/20088752-3605321
ISSN: 2008-8752 (electronic)
http://projecteuclid.org/afa

THE HANKEL OPERATORS AND NONCOMMUTATIVE BMO SPACES

CHENG YAN

Communicated by J. Hamhalter

Abstract

Let \mathcal{M} be a von Neumann algebra with a faithful normal semifinite trace τ. The noncommutative Hardy space $H^{p}(\mathcal{M})$ associates with \mathcal{A}, which is a subdiagonal algebra of \mathcal{M}. We define the Hankel operator H_{t} on $H^{p}(\mathcal{M})$, and we obtain that the norm $\left\|H_{t}\right\|$ is equal to $d(t ; \mathcal{A})$ and is also the equivalent of the $\operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)$ norm of t for every $t \in \mathcal{M}$, where $\mathcal{M}^{\text {sa }}$ are the self-adjoint operators in \mathcal{M}.

1. InTroduction And Preliminaries

In [1], Arverson introduced the subdiagonal algebras as noncommutative analogues of weak-* Dirichlet algebras \mathcal{A} of \mathcal{M} for the von Neumann algebra \mathcal{M} with a faithful normal finite trace. The noncommutative $H^{p}(\mathcal{M})$ spaces associated with such algebras are studied by several authors in [2], [3], [6], [7], and [11]. In particular, Nehari's problem of a noncommutative Hankel operator associated with a finite and σ-finite subdiagonal algebra is considered, and the noncommutative analogue of the classical results is shown to be valid (see [5], [6], [10]). The distance formulas for Toeplitz and Hankel operators associated with a subdiagnoal algebra are established in [10] and [12]. We now consider the Hankel operator on a noncommutative Hardy space associated with a semifinite von Neumann algebra.

Throughout the present article, \mathcal{M} will denote a semifinite von Neumann algebra possessing a normal semifinite faithful trace τ. Let $x=u|x|$ be the polar decomposition of x. Let $r(x)=u^{*} u$, and let $\ell(x)=u u^{*}$. We call $r(x)$ and $\ell(x)$

[^0]Proposition 1.1 ([2, Proposition 3.2]). Let \mathcal{A} be a subdiagonal algebra of \mathcal{M}.
(1) If $1 \leq p \leq \infty, \frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{aligned}
H^{p}(\mathcal{M}) & =\left\{x \in L^{p}(\mathcal{M}): x \perp \mathrm{~J}\left(H_{0}^{q}(\mathcal{M})\right)\right\} \\
H_{0}^{p}(\mathcal{M}) & =\left\{x \in L^{p}(\mathcal{M}): x \perp \mathrm{~J}\left(H^{q}(\mathcal{M})\right)\right\}
\end{aligned}
$$

(2) If $1<p<\infty$, then

$$
\begin{aligned}
L^{p}(\mathcal{M}) & =H^{p}(\mathcal{M}) \oplus \mathrm{J}\left(H_{0}^{p}(\mathcal{M})\right) \\
& =H_{0}^{p}(\mathcal{M}) \oplus L^{p}(\mathcal{D}) \oplus \mathrm{J}\left(H_{0}^{p}(\mathcal{M})\right)
\end{aligned}
$$

(3) If $1<p<\infty, \frac{1}{p}+\frac{1}{q}=1$, then $H^{p}(\mathcal{M})^{*}=H^{q}(\mathcal{M})$ isometrically, with associated duality bracket given by $\langle x, y\rangle=\tau\left(x y^{*}\right)$ for $x \in H^{p}(\mathcal{M})$, $y \in H^{q}(\mathcal{M})$.

For $1<p<\infty$, the Hilbert transform is used to establish the decomposition $L^{p}(\mathcal{M})=H_{0}^{p}(\mathcal{M}) \oplus L^{p}(\mathcal{D}) \oplus \mathrm{J}\left(H_{0}^{p}(\mathcal{M})\right)$. Given $1<p<\infty$, the following properties of the Hilbert transform are valid. If $x \in L^{p}(\mathcal{M})$ and $y \in L^{q}(\mathcal{M})$, then $\tau(x \mathrm{H}(y))=-\tau(\mathrm{H}(x) y)$ (see [2]). In the $p=1$ case, the Hilbert transform is unbounded and the decomposition is invalid, but we use the same method as in [2] and [8] to obtain the following results. For $1 \leq p \leq \infty, x \in \operatorname{Re}\left(H^{p}(\mathcal{M})\right)$, we have

- if $x \in \operatorname{Re}\left(H_{0}^{p}(\mathcal{M})\right)$, then $x+i \mathrm{H}(x) \in H_{0}^{p}(\mathcal{M})$;
- $x-\mathcal{E}(x) \in \operatorname{Re}\left(H_{0}^{p}(\mathcal{M})\right)$ and $\mathrm{H}(x)=\mathrm{H}(x-\mathcal{E}(x))$;
- $\mathrm{H}(\mathrm{H}(x))=-(I-\mathcal{E}) x$.

2. Toeplitz and Hankel operators

Let \mathcal{A} be a subdiagonal algebra of \mathcal{M}, let $1<p<\infty$, and let P be the Riesz projection from $L^{p}(\mathcal{M})$ to $H^{p}(\mathcal{M})$ and $t \in \mathcal{M}$. We respectively define the (left) Toelitz and Hankel operators with symbol t by $T_{t}=\mathrm{P} L_{t} \mathrm{P}$ and $H_{t}=(\mathrm{I}-\mathrm{P}) L_{t} \mathrm{P}$, where the (left) multiplication operator L_{t} is defined as $L_{t} f=t f$ for all $f \in$ $L^{p}(\mathcal{M})$. If the domain is $H^{p}(\mathcal{M})$, then

$$
\begin{aligned}
T_{t}: H^{p}(\mathcal{M}) & \rightarrow H^{p}(\mathcal{M}), \\
h & \mapsto \mathrm{P}(t h)
\end{aligned}
$$

and

$$
\begin{aligned}
H_{t}: H^{p}(\mathcal{M}) & \rightarrow \mathrm{J}\left(H_{0}^{p}(\mathcal{M})\right), \\
h & \mapsto(\mathrm{I}-\mathrm{P})(t h) .
\end{aligned}
$$

Let $\xi \in H^{p}(\mathcal{M})$ and let $\eta \in H^{q}(\mathcal{M})$. Then $\left\langle T_{t^{*}} \xi, \eta\right\rangle=\left\langle\mathrm{P}\left(t^{*} \xi\right), \eta\right\rangle=\left\langle t^{*} \xi, \mathrm{P}(\eta)\right\rangle=$ $\left\langle t^{*} \xi, \eta\right\rangle=\langle\xi, \mathrm{P}(t \eta)\rangle=\left\langle\xi, T_{t} \eta\right\rangle=\left\langle T_{t}^{*} \xi, \eta\right\rangle$. Furthermore, we have

$$
\begin{aligned}
\left\langle T_{t_{1}} T_{t_{2}} \xi, \eta\right\rangle & =\left\langle\mathrm{P} L_{t_{1}} \mathrm{P}\left(t_{2} \xi\right), \eta\right\rangle=\left\langle L_{t_{1}} \mathrm{P}\left(t_{2} \xi\right), \mathrm{P}(\eta)\right\rangle \\
& =\left\langle L_{t_{1}} \mathrm{P}\left(t_{2} \xi\right), \eta\right\rangle=\left\langle\mathrm{P}\left(t_{2} \xi\right), L_{t_{1}^{*}}^{*} \eta\right\rangle=\left\langle\mathrm{P}\left(t_{2} \xi\right), t_{1}^{*} \eta\right\rangle .
\end{aligned}
$$

If $t_{2} \in \mathcal{A}$, then $t_{2} \xi \in H^{p}(\mathcal{M})$. Thus $\left\langle\mathrm{P}(t \xi), s^{*} \eta\right\rangle=\left\langle t \xi, s^{*} \eta\right\rangle$. On the other hand, if $t_{1} \in \mathcal{A}^{*}$, then $t_{1}^{*} \eta \in H^{q}(\mathcal{M})$, and so

$$
\left\langle\mathrm{P}(t \xi), t_{1}^{*} \eta\right\rangle=\left\langle t_{2} \xi, \mathrm{P}\left(t_{1}^{*} \eta\right)\right\rangle=\left\langle t_{2} \xi, t_{1}^{*} \eta\right\rangle .
$$

Therefore,

$$
\begin{aligned}
\left\langle T_{t_{1}} T_{t_{2}} \xi, \eta\right\rangle & =\left\langle\mathrm{P}\left(t_{2} \xi\right), t_{1}{ }^{*} \eta\right\rangle=\left\langle t_{2} \xi, t_{1}^{*} \eta\right\rangle \\
& =\left\langle t_{1} t_{2} \xi, \eta\right\rangle=\left\langle\mathrm{P}\left(t_{1} t_{2} \xi\right), \eta\right\rangle \\
& =\left\langle T_{t_{1} t_{2}} \xi, \eta\right\rangle \quad \text { for all } \xi \in H^{p}(\mathcal{M}), \eta \in H^{q}(\mathcal{M}) ;
\end{aligned}
$$

that is, $T_{t_{1}} T_{t_{2}}=T_{t_{1} t_{2}}$. Summing up, we get the following properties about Toeplitz operators.

Proposition 2.1. Let $1<p<\infty$. The we have

- $\left(T_{t}\right)^{*}=T_{t^{*}}$, for all $t \in \mathcal{M}$;
- $T_{t_{1}} T_{t_{2}}=T_{t_{1} t_{2}}$, where $t_{2} \in \mathcal{A}$ or $t_{1} \in \mathcal{A}^{*}$.

Let $\sigma(x)$ be the spectral set of x. Using the method in [12], we get our HartmanWintner spectral inclusion properties in the general case.

Theorem 2.2. Let \mathcal{M} be a semifinite von Neumann algebra and let $1<p<\infty$. Suppose that $t \in \mathcal{M}$. Then $\sigma(t)=\sigma\left(L_{t}\right) \subset \sigma\left(T_{t}\right)$.

Since $\mathrm{J}\left(H_{0}^{p}(\mathcal{M})\right)^{*}=\mathrm{J}\left(H_{0}^{q}(\mathcal{M})\right)\left(\frac{1}{p}+\frac{1}{q}=1\right)$, it follows that

$$
\begin{aligned}
\left\|H_{t}\right\| & =\sup \left\{\frac{\left|\left\langle H_{t} x, y\right\rangle\right|}{\|x\|_{p}\|y\|_{q}}: 0 \neq y \in \mathrm{~J}\left(H_{0}^{q}(\mathcal{M})\right), 0 \neq x \in H^{p}(\mathcal{M})\right\} \\
& =\sup \left\{\frac{|\langle t x, y\rangle|}{\|x\|_{p}\|y\|_{q}}: 0 \neq y \in \mathrm{~J}\left(H_{0}^{q}(\mathcal{M})\right), 0 \neq x \in H^{p}(\mathcal{M})\right\} \\
& =\sup \left\{\frac{\left|\tau\left(t x y^{*}\right)\right|}{\|x\|_{p}\|y *\|_{q}}: 0 \neq y \in \mathrm{~J}\left(H_{0}^{q}(\mathcal{M})\right), 0 \neq x \in H^{p}(\mathcal{M})\right\} \\
& =\sup \left\{\frac{|\tau(t x h)|}{\|x\|_{p}\|h\|_{q}}: 0 \neq h \in H_{0}^{q}(\mathcal{M}), 0 \neq x \in H^{p}(\mathcal{M})\right\} .
\end{aligned}
$$

Thus

$$
\left\|H_{t}\right\|=\sup \left\{|\tau(t g h)|: g \in H^{p}(\mathcal{M}), h \in H_{0}^{q}(\mathcal{M}),\|g\|_{p} \leq 1,\|h\|_{q} \leq 1\right\}
$$

Since \mathcal{A} is a weak-* closed subalgebra of \mathcal{M}, by the Hahn-Banach theorem we know that

$$
\begin{aligned}
d(t, \mathcal{A}) & =\sup \left\{|\tau(t x)|: x \in L^{1}(\mathcal{M}),\|x\|_{1} \leq 1, \tau(x a)=0, \forall a \in \mathcal{A}\right\} \\
& =\sup \left\{|\tau(t x)|: x \in H_{0}^{1}(\mathcal{M}),\|x\|_{1} \leq 1\right\}
\end{aligned}
$$

where $t \in \mathcal{M}$.
Now, we discuss Nehari's problem.
Theorem 2.3. Let $1<p<\infty$. If \mathcal{A} is a subdiagonal subalgebra of \mathcal{M} and $t \in \mathcal{M}$, then $\left\|H_{t}\right\|=d(t ; \mathcal{A})$.

Proof. By the discussion above, we have

$$
\begin{aligned}
\left\|H_{t}\right\| & =\sup \left\{|\tau(t g h)|: g \in H^{p}(\mathcal{M}), h \in H_{0}^{q}(\mathcal{M}),\|g\|_{p} \leq 1,\|h\|_{q} \leq 1\right\} \\
& \leq \sup \left\{|\tau(t f)|: f \in H_{0}^{1}(\mathcal{M}),\|f\|_{1} \leq 1\right\} \\
& =d(t ; \mathcal{A})
\end{aligned}
$$

Conversely, for an arbitrary $\varepsilon>0$, there exists $f \in H_{0}^{1}(\mathcal{M})$ such that $\|f\|_{1} \leq 1$ and $|\tau(t f)| \geq d(t ; \mathcal{A})-\varepsilon$. Since $f e_{\lambda} \xrightarrow{\|\cdot\|_{p}} f$, there exists some $\lambda_{0} \in \Lambda$ such that

$$
\left|\tau\left(t f e_{\lambda}\right)\right| \geq d(t ; \mathcal{A})-2 \varepsilon, \quad \forall \lambda \geq \lambda_{0}
$$

On the other hand, $f e_{\lambda} \in H_{0}^{1}\left(\mathcal{M}_{e_{\lambda}}\right)$, where $\mathcal{M}_{e_{\lambda}}$ is a finite von Neumann algebra and $\mathcal{A}_{e_{\lambda}}$ is a subalgebra of $\mathcal{M}_{e_{\lambda}}$. By the noncommutative Riesz factorization theorem (Theorem 3.4 of [3]), there exist $g_{\lambda} \in H^{p}\left(\mathcal{M}_{e_{\lambda}}\right)$ and $h_{\lambda} \in H_{0}^{q}\left(\mathcal{M}_{e_{\lambda}}\right)$ such that $f e_{\lambda}=g_{\lambda} h_{\lambda},\left\|g_{\lambda}\right\|_{p} \leq \sqrt{1+\varepsilon}$, and $\left\|h_{\lambda}\right\|_{q} \leq \sqrt{1+\varepsilon}$. This implies that

$$
\left\|H_{t}\right\| \geq\left|\tau\left(t \frac{g_{\lambda}}{\sqrt{1+\varepsilon}} \frac{h_{\lambda}}{\sqrt{1+\varepsilon}}\right)\right|=\frac{1}{1+\varepsilon}\left|\tau\left(t f e_{\lambda}\right)\right| \geq \frac{1}{1+\varepsilon} d(t ; \mathcal{A})-\varepsilon
$$

Letting $\varepsilon \rightarrow 0$, we obtain

$$
\left\|H_{t}\right\| \geq d(t ; \mathcal{A})
$$

and hence

$$
\left\|H_{t}\right\|=d(t ; \mathcal{A})
$$

Corollary 2.4. Let $1<p<\infty$. If \mathcal{A} is a subdiagonal subalgebra of \mathcal{M} and $t \in \mathcal{M}$, then

$$
\left\|H_{t}\right\|=\sup \left\{|\tau(t f)|: f \in H_{0}^{1}(\mathcal{M}),\|f\|_{1} \leq 1\right\} .
$$

3. Noncommutative BMO space

Let $\operatorname{Re}(f)=\frac{f+f^{*}}{2}$, and let $\operatorname{Im}(f)=\frac{f-f^{*}}{2 i}$ where $f \in L^{1}(\mathcal{M})$. We denote $H_{\operatorname{Re}}^{1}(\mathcal{M})=\left\{\operatorname{Re}(f): f \in H^{1}(\mathcal{M})\right\}$ and $H_{\operatorname{Im}}^{1}(\mathcal{M})=\left\{\operatorname{Im}(f): f \in H^{1}(\mathcal{M})\right\}$. If $x \in H^{1}(\mathcal{M})$, then $\operatorname{Re} x \in L^{1}(\mathcal{M})^{\text {sa }}$ and $\mathrm{H}(\operatorname{Re}(x)) \in L^{1}(\mathcal{M})$. On the other hand, if $x \in L^{1}(\mathcal{M})^{\text {sa }}$ and $\mathrm{H}(x) \in L^{1}(\mathcal{M})$, then we have $x=f+g^{*}$ for some $f, g \in H^{1}(\mathcal{M})$. Since $x=x^{*}$, we have

$$
x=\left(\frac{f+g}{2}\right)+\left(\frac{f+g}{2}\right)^{*} \in H_{\mathrm{Re}}^{1}(\mathcal{M})
$$

We have that $H_{\mathrm{Re}}^{1}(\mathcal{M})$ is a normed real vector space with a graph norm, as follows:

$$
\|\operatorname{Re}(f)\|_{H_{\mathrm{Re}}^{1}}=\|\operatorname{Re}(f)\|_{1}+\|\mathrm{H}(\operatorname{Re}(f))\|_{1}=\|\operatorname{Re}(f)\|_{1}+\|(I-\mathcal{E}) \operatorname{Im}(f)\|_{1}
$$

For $f \in L^{1}(\mathcal{M})$, we have $\|f\|_{1} \leq\|\operatorname{Re}(f)\|_{H_{\mathrm{Re}}^{1}} \leq\|2 f\|_{1}$ since $\mathrm{H}(\operatorname{Re}(f))=\operatorname{Im}(f)$ and $f \in H_{0}^{1}(\mathcal{M})$, and so

$$
\begin{aligned}
\operatorname{Re}: H_{0}^{1}(\mathcal{M}) & \rightarrow H_{\operatorname{Re}}^{1}(\mathcal{M}), \\
f & \mapsto \operatorname{Re}(f)
\end{aligned}
$$

is a real linear isomorphic injection. Let $\mathcal{M}^{\text {sa }}=\left\{x \in \mathcal{M}: x=x^{*}\right\}$, and let $\left(H_{0}^{1}(\mathcal{M})\right)^{\text {re* }}$ be the real dual space of $H_{0}^{1}(\mathcal{M})$. For $F_{1} \in\left(H_{0}^{1}(\mathcal{M})\right)^{\text {re* }}$ then, by the real Hahn-Banach theorem, we can extend with norm preservation to $F_{1} \in$ $\left(L^{1}(\mathcal{M})^{\text {sa }} \oplus L^{1}(\mathcal{M})^{\text {sa }}\right)^{\text {re* }}=\mathcal{M}^{\text {sa }} \oplus \mathcal{M}^{\text {sa }}$; thus, there exist $x, y \in \mathcal{M}^{\text {sa }}$ such that $F_{1}(w)=\tau(\operatorname{Re}(w)(x+\mathrm{H}(y)))$ for all $w \in H_{0}^{2}(\mathcal{M})$. Since $H_{0}^{2}(\mathcal{M}) \cap \mathcal{S}$ is dense in $H_{0}^{1}(\mathcal{M})$, it follows that F is represented by $x+\mathrm{H}(y)$ via the pairing

$$
\langle f, x+\mathrm{H}(y)\rangle=\tau(\operatorname{Re}(f) x)-\tau(\operatorname{Im}(f) y) .
$$

On $H_{0}^{2}(\mathcal{M})$ the pairing is simply $\tau(\operatorname{Re}(f)(x+\mathrm{H}(y)))$, and every operator $x+\mathrm{H}(y)$ represents such a functional, where $x, y \in \mathcal{M}^{\text {sa }}$.
Proposition 3.1. Suppose that $F \in\left(H_{0}^{1}(\mathcal{M})\right)^{\text {re* }}$ represented by $x+\mathrm{H}(y)$ with $x, y \in \mathcal{M}^{\text {sa }}$ is uniquely determined up to perturbation by the elements of \mathcal{D}.
Proof. Suppose that $\tau(\operatorname{Re}(f) x)-\tau(\operatorname{Im}(f) y)=0$ for all $f \in H_{0}^{1}(\mathcal{M})$. Now $\operatorname{Im}(f)=$ $\operatorname{Re}(-i f)$ and $\operatorname{Re}(f)=-\operatorname{Im}(-i f)$, and so $\tau(\operatorname{Re}(f) y)+\tau(\operatorname{Im}(f) x)=0$. Then we get $\tau(f(x+i y))=0$. Since $f \in H_{0}^{1}(\mathcal{M})$ was arbitrary, we get $x+i y \in H^{2}(\mathcal{M}) \cap$ $\mathcal{M} \subset \mathcal{A}$. We next show that for $x, y \in \mathcal{M}^{\text {sa }}, x+i y \in \mathcal{A}$ if and only if $x+\mathrm{H}(y) \in \mathcal{D}$. We consider $x, y \in L^{2}(\mathcal{M})^{\text {sa }}$. If $x+\mathrm{H}(y) \in \mathcal{D}$, then $\mathrm{H}(x)+\mathcal{E}(y)-y=$ $\mathrm{H}(x+\mathrm{H}(y))=0$ and $x+\mathrm{H}(y)-\mathcal{E}(x)=x+\mathrm{H}(y)-\mathcal{E}(x+\mathrm{H}(y))=0$. Hence

$$
\begin{aligned}
2(x+i y) & =x+x+i y+i y \\
& =x+\mathcal{E}(x)-\mathrm{H}(y)+i y+i(\mathrm{H}(x)+\mathcal{E}(y)) \\
& =x+i(\mathrm{H}(x))+i(y+i \mathrm{H}(y))+\mathcal{E}(x+i y) \\
& \in H^{2}(\mathcal{M}) \cap \mathcal{M} \\
& \subset \mathcal{A} .
\end{aligned}
$$

Conversely, if $x+i y \in \mathcal{A}$, then $\mathrm{H}(y)=\mathrm{H}(\operatorname{Im}(x+i y))=-x+\mathcal{E}(x)$. So $x+H(y)=$ $\mathcal{E}(x) \in \mathcal{D}$.

We identify the (complex) dual of $H_{0}^{1}(\mathcal{M})$. For fixed $F \in\left(H_{0}^{1}(\mathcal{M})\right)^{*}$, there exists a $F_{1} \in\left(H_{0}^{1}(\mathcal{M})\right)^{\text {re* }}$ such that $F(w)=F_{1}(w)-i F_{1}(i w)$ for all $w \in H_{0}^{1}(\mathcal{M})$.

Let e be a τ-finite projection in \mathcal{D}. Then $\mathcal{M}_{e}^{\text {sa }}=e \mathcal{M}^{\text {sa }} e$ and $\mathcal{D}_{e}=e \mathcal{D} e$ are finite von Neumann algebras. We define noncommutative $\operatorname{BMO}\left(\mathcal{M}_{e}^{\text {sa }}\right)$ as the set

$$
\left\{x+\mathrm{H}(y): x, y \in \mathcal{M}_{e}^{\text {sa }}\right\}
$$

with norm

$$
\begin{aligned}
& \|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}_{e}^{\mathrm{sa}}\right)} \\
& \quad=\inf \left\{\|u\|_{\infty}+\|v\|_{\infty}: x+\mathrm{H}(y)-u-\mathrm{H}(v) \in \mathcal{D}_{e}, u, v \in \mathcal{M}_{e}^{\mathrm{sa}}\right\} .
\end{aligned}
$$

Lemma 3.2. Given $\mu, \nu \in \Lambda$ and $\mu \leq \nu$, we have

$$
\|x+\mathrm{H}(y)\|_{\operatorname{BMO}\left(\mathcal{M}_{e_{\mu}}^{\mathrm{sa}}\right)}=\|x+\mathrm{H}(y)\|_{\operatorname{BMO}\left(\mathcal{M}_{e_{\nu}}^{\mathrm{sa}}\right)}
$$

for all $x+\mathrm{H}(y) \in \operatorname{BMO}\left(\mathcal{M}_{e_{\mu}}^{\mathrm{sa}}\right)$.
Proof. Let $x+\mathrm{H}(y) \in \operatorname{BMO}\left(\mathcal{M}_{e_{\mu}}^{\mathrm{sa}}\right)$. First, we have from the fact that $\mathcal{M}_{e_{\mu}}^{\text {sa }} \subset \mathcal{M}_{e_{\nu}}^{\mathrm{sa}}$ that

$$
\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}_{e_{\mu}}^{\mathrm{sa}}\right)} \geq\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}_{e_{\nu}}^{\mathrm{sa}}\right)} .
$$

Second, if $x+\mathrm{H}(y)=u+\mathrm{H}(v)+d, u, v \in \mathcal{M}_{e_{\nu}}^{\mathrm{sa}}$, and $d \in \mathcal{D}_{e_{\nu}}$, then

$$
x+\mathrm{H}(y)=e_{\mu}(x+\mathrm{H}(y)) e_{\mu}=e_{\nu} u e_{\nu}+\mathrm{H}\left(e_{\nu} v e_{\nu}\right)+e_{\nu} d e_{\nu} .
$$

We know that

$$
\|u\|_{\infty}+\|v\|_{\infty} \geq\left\|e_{\mu} u e_{\mu}\right\|_{\infty}+\left\|e_{\mu} v e_{\mu}\right\|_{\infty}
$$

This allows us to deduce that $\|x+\mathrm{H}(y)\|_{\operatorname{BMO}\left(\mathcal{M}_{e_{\mu}}^{\mathrm{sa}}\right)} \leq\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}_{e_{\nu}}^{\mathrm{sa}}\right)}$. Summing up the above, we get the conclusion.

The noncommutative $\operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)$ space is defined as the completion of the set norm

$$
\left\{x+\mathrm{H}(y): x, y \in \mathcal{M}^{\text {sa }}\right\}
$$

with BMO norm $\|x+\mathrm{H}(y)\|_{\operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)}$ equal to the infimum of $\|u\|_{\infty}+\|v\|_{\infty}$, where $e_{\lambda} x e_{\lambda}+\mathrm{H}\left(e_{\lambda} y e_{\lambda}\right)-e_{\lambda} u e_{\lambda}-\mathrm{H}\left(e_{\lambda} v e_{\lambda}\right) \in \mathcal{D}, u, v \in \mathcal{M}^{\text {sa }}, \lambda \in \Lambda$. We define multiplication by i on this space by $i(x+\mathrm{H}(y))=\mathrm{H}(x+\mathrm{H}(y))$. With this definition of multiplication by i, the space becomes a complex Banach space. For all $a \in$ $H_{0}^{1}(\mathcal{M})$, and $x, y \in \mathcal{M}$, the dual pairing of x and $x+\mathrm{H}(y)$ is defined as the following:

$$
\langle a, x+\mathrm{H}(y)\rangle=\lim _{\lambda} \tau\left(a\left(e_{\lambda} x e_{\lambda}+\mathrm{H}\left(e_{\lambda} y e_{\lambda}\right)\right)^{*}\right) .
$$

Remark 3.3. For $w \in \mathcal{M}$, we have

$$
\begin{aligned}
w & =w_{1}+i w_{2}=w_{1}+i\left(w_{2}+\mathrm{H}(0)\right) \\
& =w_{1}+H\left(w_{2}+\mathrm{H}(0)\right)=w_{1}+\mathrm{H}\left(w_{2}\right)
\end{aligned}
$$

where w_{1} and w_{2} are in $\mathcal{M}^{\text {sa }}$. We immediately get

$$
\begin{equation*}
\|w\|_{\mathrm{BMO}\left(\mathcal{M}^{\mathrm{sa}}\right)} \leq\left\|w_{1}\right\|_{\infty}+\left\|w_{2}\right\|_{\infty} \leq 2\|w\|_{\infty} \tag{3.1}
\end{equation*}
$$

Theorem 3.4. The dual space of $H_{0}^{1}(\mathcal{M})$ can be isomorphically identified with $\operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)$ under the dual pairing above.

Proof. Let $x+\mathrm{H}(y) \in \operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)$. There exist $u, v \in \mathcal{M}^{\text {sa }}$. For $a \in H_{0}^{2}(\mathcal{M}) \cap$ $H_{0}^{1}(\mathcal{M})$ and $\mu \in \Lambda$, we have

$$
\begin{aligned}
& \left|\tau\left(a\left(e_{\mu} x e_{\mu}+H\left(e_{\mu} y e_{\mu}\right)\right)^{*}\right)\right| \\
& \quad=\left|\tau\left(e_{\mu} a e_{\mu}\left(e_{\mu} u e_{\mu}+H\left(e_{\mu} v e_{\mu}\right)\right)^{*}\right)\right| \\
& \quad=\left|\tau\left(e_{\mu} a e_{\mu} e_{\mu} u^{*} e_{\mu}\right)+\tau\left(e_{\mu} a e_{\mu} H\left(e_{\mu} v e_{\mu}\right)^{*}\right)\right| \\
& \quad=\left|\tau\left(e_{\mu} a e_{\mu} e_{\mu} u^{*} e_{\mu}\right)-\tau\left(H\left(e_{\mu} a e_{\mu}\right)\left(e_{\mu} v e_{\mu}\right)^{*}\right)\right| \\
& \quad \leq\left\|e_{\mu} a e_{\mu}\right\|_{1}\left\|e_{\mu} u^{*} e_{\mu}\right\|_{\infty}+\left\|\mathrm{H}\left(e_{\mu} a e_{\mu}\right)\right\|_{1}\left\|\left(e_{\mu} v^{*} e_{\mu}\right)\right\|_{\infty} \\
& \quad=\left\|e_{\mu} a e_{\mu}\right\|_{1}\left\|e_{\mu} u^{*} e_{\mu}\right\|_{\infty}+\left\|-i(I-\mathcal{E})\left(e_{\mu} a e_{\mu}\right)\right\|_{1}\left\|\left(e_{\mu} v^{*} e_{\mu}\right)\right\|_{\infty} \\
& \quad \leq 2\left\|e_{\mu} a e_{\mu}\right\|_{1}\left(\left\|e_{\mu} u e_{\mu}\right\|_{\infty}+\left\|e_{\mu} v e_{\mu}\right\|_{\infty}\right) \\
& \quad \leq 2\|a\|_{1}\left(\|u\|_{\infty}+\|v\|_{\infty}\right) .
\end{aligned}
$$

By the definition of BMO, we have

$$
\left|\tau\left(a\left(e_{\mu} x e_{\mu}+\mathrm{H}\left(e_{\mu} y e_{\mu}\right)\right)^{*}\right)\right| \leq 2\|a\|_{1}\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}^{\text {sa }}\right)} \quad \text { for all } \mu \in \Lambda
$$

Given $\mu, \nu \in \Lambda$. Using the inequality above, we have

$$
\begin{aligned}
& \left|\tau\left(a\left(e_{\mu} x e_{\mu}+\mathrm{H}\left(e_{\mu} y e_{\mu}\right)\right)^{*}\right)-a\left(e_{\nu} x e_{\nu}+\mathrm{H}\left(e_{\nu} y e_{\nu}\right)\right)^{*}\right| \\
& \quad=\left|\tau\left(\left(e_{\mu} a e_{\mu}-e_{\nu} a e_{\nu}\right)\left(e_{\lambda} x e_{\lambda}+\mathrm{H}\left(e_{\lambda} y e_{\lambda}\right)\right)^{*}\right)\right| \\
& \quad \leq 2\left\|e_{\mu} a e_{\mu}-e_{\nu} a e_{\nu}\right\|_{1}\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}^{\text {sa }}\right)}
\end{aligned}
$$

where $\lambda \in \Lambda$ and $\lambda \geq \mu, \nu$.

Since $e_{\lambda} a e_{\lambda} \xrightarrow{\|\cdot\|_{p}} a$, we conclude that $\left\{\tau\left(a\left(e_{\mu} x e_{\mu}+\mathrm{H}\left(e_{\mu} y e_{\mu}\right)\right)^{*}\right)\right\}$ is a Cauchy net; hence, we can define a bounded function on $H_{0}^{1}(\mathcal{M})$:

$$
\begin{aligned}
F_{x+\mathrm{H}(y)}: H_{0}^{1}(\mathcal{M}) & \rightarrow \mathbb{C}, \\
a & \mapsto \tau\left(a(x+\mathrm{H}(y))^{*}\right),
\end{aligned}
$$

where $\tau\left(a(x+\mathrm{H}(y))^{*}\right)=\lim _{\lambda}\left(\tau\left(e_{\lambda} x e_{\lambda}+\mathrm{H}\left(e_{\lambda} y e_{\lambda}\right)\right)\right)$, and the norm

$$
\left\|F_{x+\mathrm{H}(y)}\right\|_{H_{0}^{1}(\mathcal{M})^{*}} \leq 2\|x+\mathrm{H}(y)\|_{\mathrm{BMO}\left(\mathcal{M}^{\mathrm{sa}}\right)}
$$

On the other hand, if $F \in H_{0}^{1}(\mathcal{M})^{*}$, then by the Hahn-Banach theorem we can extend F to some F_{w} of the form $F_{w}(a)=\tau\left(a w^{*}\right)$, for all $a \in H_{0}^{1}(\mathcal{M})$, with $w^{*} \in L^{1}(\mathcal{M})^{*}=\mathcal{M}$ and $\|F\|_{H_{0}^{1}(\mathcal{M})^{*}}=\|w\|_{\infty}$, and so we obtain

$$
F(a)=\tau\left(a w^{*}\right)=\lim \tau\left(a\left(e_{\lambda}\left(w_{1}+i w_{2}\right) e_{\lambda}\right)^{*}\right)=\lim \tau\left(a\left(e_{\lambda} w_{1} e_{\lambda}+\mathrm{H}\left(e_{\lambda} w_{2} e_{\lambda}\right)\right)^{*}\right)
$$

for all $a \in H_{0}^{1}(\mathcal{M}), w=w_{1}+i w_{2}$, and $w_{1}, w_{2} \in \mathcal{M}^{\text {sa }}$. And by Remark 3.3 we get

$$
\|F\|_{H_{0}^{1}(\mathcal{M})^{*}}=\|w\|_{\infty} \geq \frac{1}{2}\|w\|_{\mathrm{BMO}\left(\mathcal{M}^{\mathrm{sa}}\right)} .
$$

Now we immediately deduce the equivalent relationship between the norm of the Hankel operator and the $\operatorname{BMO}\left(\mathcal{M}^{\text {sa }}\right)$ norm of the norm of symbol t.

Theorem 3.5. Given $1<p<\infty$ and $t \in \mathcal{M}$, the Hankel operator H_{t} is defined on the $H^{p}(\mathcal{M})$ space. Then we have $\left\|H_{t}\right\| \approx\|t\|_{\mathrm{BmO}\left(\mathcal{M}^{\text {sa }}\right)}$.

Proof. By Theorems 2.3 and 3.4, we get the result immediately.

References

1. W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 89 (1967), 578-642. Zbl 0183.42501. MR0223899. 402
2. T. N. Bekjan, Noncommutative Hardy space associated with semi-finite subdiagonal algebras, J. Math. Anal. Appl. 429 (2015), no. 2, 1347-1369. Zbl 1330.46063. MR3342521. DOI 10.1016/j.jmaa.2015.04.032. 402, 403, 404
3. T. N. Bekjan and Q. Xu, Riesz and Szego type factorizations for noncommutative Hardy spaces, J. Operator Theory 62 (2009), no. 1, 215-231. Zbl 1212.46100. MR2520548. 402, 406
4. G. Ji, Maximality of semi-finite subdiagonal algebras, J. Shaanxi Normal Univ. Nat. Sci. Ed. 28 (2000), no. 1, 15-17. Zbl 0967.46046. MR1758662. 403
5. L. E. Labuschagne and Q. Xu, A Helson-Zegö theorem for subdiagonal subalgebras with applications to Toeplitz operators, J. Funct. Anal. 265 (2013), no. 4, 545-561. Zbl 1285.46052. MR3062536. DOI 10.1016/j.jfa.2013.05.015. 402
6. M. Marsalli, Noncommutative H^{2}-spaces, Proc. Amer. Math. Soc. 125 (1997), no. 3, 779-784. MR1350954. DOI 10.1090/S0002-9939-97-03590-9. 402
7. M. Marsalli and G. West, Noncommutative H^{p} spaces, J. Operator Theory 40 (1998), no. 2, 339-355. Zbl 0869.46033. MR1660390. 402, 403
8. M. Marsalli and G. West, The dual of noncommutative H^{1}, Indiana Univ. Math. J. 47 (1998), no. 2, 489-500. Zbl 0919.46046. MR1647920. DOI 10.1512/iumj.1998.47.1430. 404
9. G. Pisier and Q. Xu, "Non-commutative Lp-spaces" in Handbook of the Geometry of Banach Spaces, II, North-Holland, Amsterdam, 2003, 1459-1517. Zbl 1046.46048. MR1999201. DOI 10.1016/S1874-5849(03)80041-4. 403
10. B. Prunaru, Toeplitz and Hankel operators associated with subdiagonal algebras, Proc. Amer. Math. Soc. 139 (2011), no. 4, 1387-1396. Zbl 1223.46059. MR2748431. DOI 10.1090/ S0002-9939-2010-10573-7. 402
11. Q. Xu, Non-commutative L^{p}-spaces, preprint. 402,403
12. C. Yan and T. N. Bekjan, Toeplitz operators associated with semifinite von Neumann algebra, Acta Math. Sci. Ser. B Engl. Ed. 35 (2015), no. 1, 182-188. Zbl 06501548. MR3283246. DOI 10.1016/S0252-9602(14)60149-1. 402, 405

College of Mathematics and Systems Sciences, Xinjiang University, Urumqi 830046, China.

E-mail address: yanchengggg@163.com

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Oct. 27, 2015; Accepted Dec. 4, 2015.
 2010 Mathematics Subject Classification. Primary 46L51; Secondary 46L52.
 Keywords. semifinite von Neumann algebra, noncommutative Hardy space, Hankel operator, noncommutative BMO.

