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Abstract. Let M be a von Neumann algebra with a faithful normal semifi-
nite trace τ . The noncommutative Hardy space Hp(M) associates with A,
which is a subdiagonal algebra of M. We define the Hankel operator Ht on
Hp(M), and we obtain that the norm ‖Ht‖ is equal to d(t;A) and is also the
equivalent of the BMO(Msa) norm of t for every t ∈ M, where Msa are the
self-adjoint operators in M.

1. Introduction and preliminaries

In [1], Arverson introduced the subdiagonal algebras as noncommutative ana-
logues of weak-∗ Dirichlet algebras A of M for the von Neumann algebra M with
a faithful normal finite trace. The noncommutativeHp(M) spaces associated with
such algebras are studied by several authors in [2], [3], [6], [7], and [11]. In par-
ticular, Nehari’s problem of a noncommutative Hankel operator associated with
a finite and σ-finite subdiagonal algebra is considered, and the noncommutative
analogue of the classical results is shown to be valid (see [5], [6], [10]). The dis-
tance formulas for Toeplitz and Hankel operators associated with a subdiagnoal
algebra are established in [10] and [12]. We now consider the Hankel operator on a
noncommutative Hardy space associated with a semifinite von Neumann algebra.

Throughout the present article, M will denote a semifinite von Neumann al-
gebra possessing a normal semifinite faithful trace τ . Let x = u|x| be the polar
decomposition of x. Let r(x) = u∗u, and let `(x) = uu∗. We call r(x) and `(x)

Copyright 2016 by the Tusi Mathematical Research Group.
Received Oct. 27, 2015; Accepted Dec. 4, 2015.
2010 Mathematics Subject Classification. Primary 46L51; Secondary 46L52.
Keywords. semifinite von Neumann algebra, noncommutative Hardy space, Hankel operator,

noncommutative BMO.
402

http://dx.doi.org/10.1215/20088752-3605321
http://projecteuclid.org/afa


HANKEL OPERATORS AND BMO 403

the left and right supports of x, respectively. If x is self-adjoint, then `(x) = r(x).
This common projection is then called the support of x, and is denoted by s(x).
Let S+(M) = {x ∈ M+ : τ(s(x)) < ∞} and S(M) be the linear span of S+(M).
A projection e is said to be of finite trace if τ(e) < ∞. The elements of S(M)
are said to be supported by projection of finite trace. We will often denote S(M)
simply as S. Lp(M) is the noncommutative Lp-space associated with (M, τ) (see
[9], [11]). For X ⊂ Lp(M), [X]p denotes the closure of X in Lp(M), and J(X)
is the family of the adjoints of the elements of X. Let A be a weak-∗ closed
unital subalgebra of M with semifinite subdiagonal D = A ∩ J(A), and let E be
the faithful normal conditional expectation from M onto D. In addition, A is a
subdiagonal subalgebra of M with respect to E if:

• A+ J(A) is weak-∗-dense in M,
• E is multiplicative on A, and
• τ ◦ E = τ .

We say that A is a maximal subdiagonal algebra in M with respect to E in
the case that A is not properly contained in any other subalgebra of M which
is subdiagonal with respect to E . It was proved by Ji in [4] that a semifinite
subdiagonal algebra A is automatically maximal. For p ∈ [1,∞), the closure
[A ∩ S]p in Lp(M) is denoted by Hp(M). Let the closure [A0 ∩ S]p be denoted
by Hp(M), where A0 = {x ∈ A : E(x) = 0}. There exists an increasing family
{eλ}λ∈Λ of the projections of D such that τ(eλ) < ∞ for every λ ∈ Λ, and
eλ converges in the strong operator topology to the unit element 1 of M. Let
Meλ = eλMeλ, let Aeλ = eλAeλ, and let Deλ = eλDeλ for any λ ∈ Λ. Then
Aeλ is a maximal subdiagonal subalgebra of Meλ . Since eλMeλ ⊂ S, it follows
that Lp(Mλ) ⊂ Lp(M) for all λ ∈ Λ. Moreover, for any x ∈ Lp(M), we have

xeλ
‖·‖p−−→ x; hence, Lp(M) = [

⋃
λ∈Λ L

p(Mλ)]p, H
p(M) = [

⋃
λ∈ΛH

p(Mλ)]p, and
Hp

0 (M) = [
⋃

λ∈ΛH
p
0 (Mλ)]p (for details, see [2]).

Let e be a τ finite projection in D. It is well known that we have the following
decomposition:

Ae + J(A)e = eA0e⊕De ⊕ eJ(A0)e.

The notion of Hilbert transforms (or conjugate operators) plays an important role
for studying function spaces, and noncommutative settings have been considered
by several authors. We recall that the Hilbert transform or the conjugate operator
is defined as

H(a+ d+ b∗) = −i(a− b∗), a, b ∈ eA0e, d ∈ De

(see [2], [7], [9]). It is clear that x + iH(x) ∈ A and H(x) ∈ Ker(E) for all
x ∈ Ae + J(A)e. The Hilbert transform H can be extended to a bounded map on
Lp(M) with 1 < p < +∞ (see [2]), and the Riesz projection from Lp(M) onto
Hp(M) is

P =
1

2
(I + iH+ E).

Let X be a Banach space. For x ∈ X and Y ⊂ X∗, which is the dual space
of X, the notation x ⊥ Y means that f(x) = 0 for all f ∈ Y , and the real dual
space of X is denoted by Xre∗.
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Proposition 1.1 ([2, Proposition 3.2]). Let A be a subdiagonal algebra of M.

(1) If 1 ≤ p ≤ ∞, 1
p
+ 1

q
= 1, then

Hp(M) =
{
x ∈ Lp(M) : x⊥J

(
Hq

0(M)
)}

,

Hp
0 (M) =

{
x ∈ Lp(M) : x⊥J

(
Hq(M)

)}
.

(2) If 1 < p < ∞, then

Lp(M) = Hp(M)⊕ J
(
Hp

0 (M)
)

= Hp
0 (M)⊕ Lp(D)⊕ J

(
Hp

0 (M)
)
.

(3) If 1 < p < ∞, 1
p
+ 1

q
= 1, then Hp(M)∗ = Hq(M) isometrically, with

associated duality bracket given by 〈x, y〉 = τ(xy∗) for x ∈ Hp(M),
y ∈ Hq(M).

For 1 < p < ∞, the Hilbert transform is used to establish the decomposition
Lp(M) = Hp

0 (M) ⊕ Lp(D) ⊕ J(Hp
0 (M)). Given 1 < p < ∞, the following prop-

erties of the Hilbert transform are valid. If x ∈ Lp(M) and y ∈ Lq(M), then
τ(xH(y)) = −τ(H(x)y) (see [2]). In the p = 1 case, the Hilbert transform is un-
bounded and the decomposition is invalid, but we use the same method as in [2]
and [8] to obtain the following results. For 1 ≤ p ≤ ∞, x ∈ Re(Hp(M)), we have

• if x ∈ Re(Hp
0 (M)), then x+ iH(x) ∈ Hp

0 (M);
• x− E(x) ∈ Re(Hp

0 (M)) and H(x) = H(x− E(x));
• H(H(x)) = −(I − E)x.

2. Toeplitz and Hankel operators

Let A be a subdiagonal algebra of M, let 1 < p < ∞, and let P be the Riesz
projection from Lp(M) to Hp(M) and t ∈ M. We respectively define the (left)
Toelitz and Hankel operators with symbol t by Tt = PLtP and Ht = (I− P)LtP,
where the (left) multiplication operator Lt is defined as Ltf = tf for all f ∈
Lp(M). If the domain is Hp(M), then

Tt : H
p(M)→ Hp(M),

h 7→ P(th)

and

Ht : H
p(M) → J

(
Hp

0 (M)
)
,

h 7→ (I− P)(th).

Let ξ ∈ Hp(M) and let η ∈ Hq(M). Then 〈Tt∗ξ, η〉 = 〈P(t∗ξ), η〉 = 〈t∗ξ,P(η)〉 =
〈t∗ξ, η〉 = 〈ξ,P(tη)〉 = 〈ξ, Ttη〉 = 〈T ∗

t ξ, η〉. Furthermore, we have

〈Tt1Tt2ξ, η〉 =
〈
PLt1P(t2ξ), η

〉
=

〈
Lt1P(t2ξ),P(η)

〉
=

〈
Lt1P(t2ξ), η

〉
=

〈
P(t2ξ), Lt∗1

η
〉
=

〈
P(t2ξ), t

∗
1η
〉
.

If t2 ∈ A, then t2ξ ∈ Hp(M). Thus 〈P(tξ), s∗η〉 = 〈tξ, s∗η〉. On the other hand,
if t1 ∈ A∗, then t∗1η ∈ Hq(M), and so〈

P(tξ), t∗1η
〉
=

〈
t2ξ,P(t

∗
1η)

〉
= 〈t2ξ, t∗1η〉.
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Therefore,

〈Tt1Tt2ξ, η〉 =
〈
P(t2ξ), t1

∗η
〉
= 〈t2ξ, t∗1η〉

= 〈t1t2ξ, η〉 =
〈
P(t1t2ξ), η

〉
= 〈Tt1t2ξ, η〉 for all ξ ∈ Hp(M), η ∈ Hq(M);

that is, Tt1Tt2 = Tt1t2 . Summing up, we get the following properties about Toeplitz
operators.

Proposition 2.1. Let 1 < p < ∞. The we have

• (Tt)
∗ = Tt∗ , for all t ∈ M;

• Tt1Tt2 = Tt1t2, where t2 ∈ A or t1 ∈ A∗.

Let σ(x) be the spectral set of x. Using the method in [12], we get our Hartman–
Wintner spectral inclusion properties in the general case.

Theorem 2.2. Let M be a semifinite von Neumann algebra and let 1 < p < ∞.
Suppose that t ∈ M. Then σ(t) = σ(Lt) ⊂ σ(Tt).

Since J(Hp
0 (M))∗ = J(Hq

0(M))(1
p
+ 1

q
= 1), it follows that

‖Ht‖ = sup
{ |〈Htx, y〉|
‖x‖p‖y‖q

: 0 6= y ∈ J
(
Hq

0(M)
)
, 0 6= x ∈ Hp(M)

}
= sup

{ |〈tx, y〉|
‖x‖p‖y‖q

: 0 6= y ∈ J
(
Hq

0(M)
)
, 0 6= x ∈ Hp(M)

}
= sup

{ |τ(txy∗)|
‖x‖p‖y ∗ ‖q

: 0 6= y ∈ J
(
Hq

0(M)
)
, 0 6= x ∈ Hp(M)

}
= sup

{ |τ(txh)|
‖x‖p‖h‖q

: 0 6= h ∈ Hq
0(M), 0 6= x ∈ Hp(M)

}
.

Thus

‖Ht‖ = sup
{∣∣τ(tgh)∣∣ : g ∈ Hp(M), h ∈ Hq

0(M), ‖g‖p ≤ 1, ‖h‖q ≤ 1
}
.

Since A is a weak-∗ closed subalgebra of M, by the Hahn–Banach theorem we
know that

d(t,A) = sup
{∣∣τ(tx)∣∣ : x ∈ L1(M), ‖x‖1 ≤ 1, τ(xa) = 0,∀a ∈ A

}
= sup

{∣∣τ(tx)∣∣ : x ∈ H1
0 (M), ‖x‖1 ≤ 1

}
,

where t ∈ M.
Now, we discuss Nehari’s problem.

Theorem 2.3. Let 1 < p < ∞. If A is a subdiagonal subalgebra of M and
t ∈ M, then ‖Ht‖ = d(t;A).

Proof. By the discussion above, we have

‖Ht‖ = sup
{∣∣τ(tgh)∣∣ : g ∈ Hp(M), h ∈ Hq

0(M), ‖g‖p ≤ 1, ‖h‖q ≤ 1
}

≤ sup
{∣∣τ(tf)∣∣ : f ∈ H1

0 (M), ‖f‖1 ≤ 1
}

= d(t;A).
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Conversely, for an arbitrary ε > 0, there exists f ∈ H1
0 (M) such that ‖f‖1 ≤ 1

and |τ(tf)| ≥ d(t;A)− ε. Since feλ
‖·‖p−−→ f , there exists some λ0 ∈ Λ such that∣∣τ(tfeλ)∣∣ ≥ d(t;A)− 2ε, ∀λ ≥ λ0.

On the other hand, feλ ∈ H1
0 (Meλ), where Meλ is a finite von Neumann algebra

and Aeλ is a subalgebra of Meλ . By the noncommutative Riesz factorization
theorem (Theorem 3.4 of [3]), there exist gλ ∈ Hp(Meλ) and hλ ∈ Hq

0(Meλ) such
that feλ = gλhλ, ‖gλ‖p ≤

√
1 + ε, and ‖hλ‖q ≤

√
1 + ε. This implies that

‖Ht‖ ≥
∣∣∣τ(t gλ√

1 + ε

hλ√
1 + ε

)∣∣∣ = 1

1 + ε

∣∣τ(tfeλ)∣∣ ≥ 1

1 + ε
d(t;A)− ε.

Letting ε → 0, we obtain

‖Ht‖ ≥ d(t;A),

and hence

‖Ht‖ = d(t;A). �

Corollary 2.4. Let 1 < p < ∞. If A is a subdiagonal subalgebra of M and
t ∈ M, then

‖Ht‖ = sup
{∣∣τ(tf)∣∣ : f ∈ H1

0 (M), ‖f‖1 ≤ 1
}
.

3. Noncommutative BMO space

Let Re(f) = f+f∗

2
, and let Im(f) = f−f∗

2i
where f ∈ L1(M). We denote

H1
Re(M) = {Re(f) : f ∈ H1(M)} and H1

Im(M) = {Im(f) : f ∈ H1(M)}. If
x ∈ H1(M), then Re x ∈ L1(M)sa and H(Re(x)) ∈ L1(M). On the other hand, if
x ∈ L1(M)sa and H(x) ∈ L1(M), then we have x = f+g∗ for some f, g ∈ H1(M).
Since x = x∗, we have

x =
(f + g

2

)
+
(f + g

2

)∗
∈ H1

Re(M).

We have that H1
Re(M) is a normed real vector space with a graph norm, as

follows:∥∥Re(f)∥∥
H1

Re
=

∥∥Re(f)∥∥
1
+
∥∥H(Re(f))∥∥

1
=

∥∥Re(f)∥∥
1
+
∥∥(I − E) Im(f)

∥∥
1
.

For f ∈ L1(M), we have ‖f‖1 ≤ ‖Re(f)‖H1
Re

≤ ‖2f‖1 since H(Re(f)) = Im(f)

and f ∈ H1
0 (M), and so

Re : H1
0 (M)→ H1

Re(M),

f 7→ Re(f)

is a real linear isomorphic injection. Let Msa = {x ∈ M : x = x∗}, and let
(H1

0 (M))re∗ be the real dual space of H1
0 (M). For F1 ∈ (H1

0 (M))re∗ then, by
the real Hahn–Banach theorem, we can extend with norm preservation to F1 ∈
(L1(M)sa ⊕ L1(M)sa)re∗ = Msa ⊕ Msa; thus, there exist x, y ∈ Msa such that
F1(w) = τ(Re(w)(x + H(y))) for all w ∈ H2

0 (M). Since H2
0 (M) ∩ S is dense in

H1
0 (M), it follows that F is represented by x+H(y) via the pairing〈

f, x+H(y)
〉
= τ

(
Re(f)x

)
− τ

(
Im(f)y

)
.
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On H2
0 (M) the pairing is simply τ(Re(f)(x+H(y))), and every operator x+H(y)

represents such a functional, where x, y ∈ Msa.

Proposition 3.1. Suppose that F ∈ (H1
0 (M))re∗ represented by x + H(y) with

x, y ∈ Msa is uniquely determined up to perturbation by the elements of D.

Proof. Suppose that τ(Re(f)x)−τ(Im(f)y) = 0 for all f ∈ H1
0 (M). Now Im(f) =

Re(−if) and Re(f) = − Im(−if), and so τ(Re(f)y) + τ(Im(f)x) = 0. Then we
get τ(f(x+ iy)) = 0. Since f ∈ H1

0 (M) was arbitrary, we get x+ iy ∈ H2(M) ∩
M ⊂ A. We next show that for x, y ∈ Msa, x+iy ∈ A if and only if x+H(y) ∈ D.
We consider x, y ∈ L2(M)sa. If x + H(y) ∈ D, then H(x) + E(y) − y =
H(x+H(y)) = 0 and x+H(y)− E(x) = x+H(y)− E(x+H(y)) = 0. Hence

2(x+ iy) = x+ x+ iy + iy

= x+ E(x)− H(y) + iy + i
(
H(x) + E(y)

)
= x+ i

(
H(x)

)
+ i

(
y + iH(y)

)
+ E(x+ iy)

∈ H2(M) ∩M
⊂ A.

Conversely, if x+ iy ∈ A, then H(y) = H(Im(x+ iy)) = −x+E(x). So x+H(y) =
E(x) ∈ D. �

We identify the (complex) dual of H1
0 (M). For fixed F ∈ (H1

0 (M))∗, there
exists a F1 ∈ (H1

0 (M))re∗ such that F (w) = F1(w)− iF1(iw) for all w ∈ H1
0 (M).

Let e be a τ -finite projection in D. Then Msa
e = eMsae and De = eDe are

finite von Neumann algebras. We define noncommutative BMO(Msa
e ) as the set{

x+H(y) : x, y ∈ Msa
e

}
with norm∥∥x+H(y)

∥∥
BMO(Msa

e )

= inf
{
‖u‖∞ + ‖v‖∞ : x+H(y)− u− H(v) ∈ De, u, v ∈ Msa

e

}
.

Lemma 3.2. Given µ, ν ∈ Λ and µ ≤ ν, we have∥∥x+H(y)
∥∥
BMO(Msa

eµ )
=

∥∥x+H(y)
∥∥
BMO(Msa

eν )

for all x+H(y) ∈ BMO(Msa
eµ).

Proof. Let x+H(y) ∈ BMO(Msa
eµ). First, we have from the fact that Msa

eµ ⊂ Msa
eν

that ∥∥x+H(y)
∥∥
BMO(Msa

eµ
)
≥

∥∥x+H(y)
∥∥
BMO(Msa

eν
)
.

Second, if x+H(y) = u+H(v) + d, u, v ∈ Msa
eν , and d ∈ Deν , then

x+H(y) = eµ
(
x+H(y)

)
eµ = eνueν +H(eνveν) + eνdeν .

We know that

‖u‖∞ + ‖v‖∞ ≥ ‖eµueµ‖∞ + ‖eµveµ‖∞.

This allows us to deduce that ‖x+H(y)‖BMO(Msa
eµ

) ≤ ‖x+H(y)‖BMO(Msa
eν

). Sum-

ming up the above, we get the conclusion. �
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The noncommutative BMO(Msa) space is defined as the completion of the set
norm {

x+H(y) : x, y ∈ Msa
}

with BMO norm ‖x + H(y)‖BMO(Msa) equal to the infimum of ‖u‖∞ + ‖v‖∞,
where eλxeλ + H(eλyeλ) − eλueλ − H(eλveλ) ∈ D, u, v ∈ Msa, λ ∈ Λ. We define
multiplication by i on this space by i(x+H(y)) = H(x+H(y)). With this definition
of multiplication by i, the space becomes a complex Banach space. For all a ∈
H1

0 (M), and x, y ∈ M, the dual pairing of x and x + H(y) is defined as the
following: 〈

a, x+H(y)
〉
= lim

λ
τ
(
a
(
eλxeλ +H(eλyeλ)

)∗)
.

Remark 3.3. For w ∈ M, we have

w = w1 + iw2 = w1 + i
(
w2 +H(0)

)
= w1 +H

(
w2 +H(0)

)
= w1 +H(w2),

where w1 and w2 are in Msa. We immediately get

‖w‖BMO(Msa) ≤ ‖w1‖∞ + ‖w2‖∞ ≤ 2‖w‖∞. (3.1)

Theorem 3.4. The dual space of H1
0 (M) can be isomorphically identified with

BMO(Msa) under the dual pairing above.

Proof. Let x + H(y) ∈ BMO(Msa). There exist u, v ∈ Msa. For a ∈ H2
0 (M) ∩

H1
0 (M) and µ ∈ Λ, we have∣∣τ(a(eµxeµ +H(eµyeµ)

)∗)∣∣
=

∣∣τ(eµaeµ(eµueµ +H(eµveµ)
)∗)∣∣

=
∣∣τ(eµaeµeµu∗eµ) + τ

(
eµaeµH(eµveµ)

∗)∣∣
=

∣∣τ(eµaeµeµu∗eµ)− τ
(
H(eµaeµ)(eµveµ)

∗)∣∣
≤ ‖eµaeµ‖1‖eµu∗eµ‖∞ +

∥∥H(eµaeµ)∥∥1

∥∥(eµv∗eµ)∥∥∞

= ‖eµaeµ‖1‖eµu∗eµ‖∞ +
∥∥−i(I − E)(eµaeµ)

∥∥
1

∥∥(eµv∗eµ)∥∥∞

≤ 2‖eµaeµ‖1
(
‖eµueµ‖∞ + ‖eµveµ‖∞

)
≤ 2‖a‖1

(
‖u‖∞ + ‖v‖∞

)
.

By the definition of BMO, we have∣∣τ(a(eµxeµ +H(eµyeµ)
)∗)∣∣ ≤ 2‖a‖1

∥∥x+H(y)
∥∥
BMO(Msa)

for all µ ∈ Λ.

Given µ, ν ∈ Λ. Using the inequality above, we have∣∣τ(a(eµxeµ +H(eµyeµ)
)∗)− a

(
eνxeν +H(eνyeν)

)∗∣∣
=

∣∣τ((eµaeµ − eνaeν)
(
eλxeλ +H(eλyeλ)

)∗)∣∣
≤ 2‖eµaeµ − eνaeν‖1

∥∥x+H(y)
∥∥
BMO(Msa)

,

where λ ∈ Λ and λ ≥ µ, ν.
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Since eλaeλ
‖·‖p−−→ a, we conclude that {τ(a(eµxeµ + H(eµyeµ))

∗)} is a Cauchy
net; hence, we can define a bounded function on H1

0 (M):

Fx+H(y) : H
1
0 (M) → C,

a 7→ τ
(
a
(
x+H(y)

)∗)
,

where τ(a(x+H(y))∗) = limλ(τ(eλxeλ +H(eλyeλ))), and the norm

‖Fx+H(y)‖H1
0 (M)∗ ≤ 2

∥∥x+H(y)
∥∥
BMO(Msa)

.

On the other hand, if F ∈ H1
0 (M)∗, then by the Hahn–Banach theorem we

can extend F to some Fw of the form Fw(a) = τ(aw∗), for all a ∈ H1
0 (M), with

w∗ ∈ L1(M)∗ = M and ‖F‖H1
0 (M)∗ = ‖w‖∞, and so we obtain

F (a) = τ(aw∗) = lim τ
(
a
(
eλ(w1 + iw2)eλ

)∗)
= lim τ

(
a
(
eλw1eλ +H(eλw2eλ)

)∗)
for all a ∈ H1

0 (M), w = w1 + iw2, and w1, w2 ∈ Msa. And by Remark 3.3 we get

‖F‖H1
0 (M)∗ = ‖w‖∞ ≥ 1

2
‖w‖BMO(Msa). �

Now we immediately deduce the equivalent relationship between the norm of
the Hankel operator and the BMO(Msa) norm of the norm of symbol t.

Theorem 3.5. Given 1 < p < ∞ and t ∈ M, the Hankel operator Ht is defined
on the Hp(M) space. Then we have ‖Ht‖ ≈ ‖t‖BMO(Msa).

Proof. By Theorems 2.3 and 3.4, we get the result immediately. �
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