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We constitute some necessary and sufficient conditions for the system 𝐴1𝑋1 = 𝐶1,𝑋1𝐵1 = 𝐶2, 𝐴2𝑋2 = 𝐶3,𝑋2𝐵2 = 𝐶4, 𝐴3𝑋1𝐵3 +𝐴4𝑋2𝐵4 = 𝐶�푐, to have a solution over the quaternion skew field in this paper. A novel expression of general solution to this system
is also established when it has a solution.The least norm of the solution to this system is also researched in this article. Some former
consequences can be regarded as particular cases of this article. Finally, we give determinantal representations (analogs of Cramer’s
rule) of the least norm solution to the system using row-column noncommutative determinants. An algorithm and numerical
examples are given to elaborate our results.

1. Introduction

In the whole article, the notation R is reserved for the real
number field andH�푚×�푛 stands for the set of all𝑚×𝑛matrices
over the quaternion skew field

H = {𝑏0 + 𝑏1i + 𝑏2j + 𝑏3k | i2 = j2 = k2 = ijk

= −1, 𝑏0, 𝑏1, 𝑏2, 𝑏3 ∈ R} . (1)

H�푚×�푛
�푟 specifies its subset of matrices with a rank 𝑟. For𝐴 ∈ H�푚×�푛, let 𝐴∗,R(𝐴) and N(𝐴) designate the conjugate

transpose, the column right space and the left row space of𝐴.
dim R(𝐴) illustrates the size of R(𝐴) and dim R(𝐴)=dim
N(𝐴) by [1], which is known as the rank of 𝐴 denoted by𝑟(𝐴).
Definition 1. The Moore-Penrose inverse of 𝐴 ∈ H�푚×�푛,
denoted by 𝐴†, is defined to be the unique solution 𝑋 to the
following four matrix equations

(1) 𝐴𝑋𝐴 = 𝐴,
(2) 𝑋𝐴𝑋 = 𝑋,

(3) (𝐴𝑋)∗ = 𝐴𝑋,
(4) (𝑋𝐴)∗ = 𝑋𝐴.

(2)

Matrices satisfying (1) and (2) are known as reflexive inverses.

Note that the reflexive inverse is denoted most often by𝐴−
�푟 but sometimes by 𝐴+ (see, e.g., [2]) that is different from

the denotation of the Moore-Penrose by 𝐴†. We will use the
denotation 𝐴+ for the reflexive inverse.

Suppose 𝐼 refers an identity matrix with feasible size. In
addition, 𝑅�퐴 = 𝐼 − 𝐴𝐴†, 𝐿�퐴 = 𝐼 − 𝐴†𝐴 represent a pair of
orthogonal projectors induced by 𝐴, respectively, and 𝑅2

�퐴 =𝑅�퐴, 𝑅∗
�퐴 = 𝑅�퐴, 𝐿2

�퐴 = 𝐿�퐴, 𝐿∗
�퐴 = 𝐿�퐴, and 𝑅�퐴∗ = 𝐿�퐴.

Quaternions were invented by Hamilton in 1843. Zhang
presented a detail survey on quaternion matrices in [3].
Quaternions provide a concise mathematical method for rep-
resenting the automorphisms of three- and four-dimensional
spaces.The representations by quaternions aremore compact
and quicker to compute than the representations by matrices
[4]. For this reason, an increasing number of applications
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based onquaternions are found in various fields, such as color
imaging, geometry, mechanics, linear adaptive filter, altitude
control and computer science, signal processing, in particular
as quaternion-valued neural networks, etc. [5–10].

The research of matrix equations have both applied
and theoretical importance. In particular, the Sylvester-type
matrix equations have far reaching applications in singular
system control [11], system design [12], robust control [13],
feedback [14], perturbation theory [15], linear descriptor
systems [16], neural networks [17], and theory of orbits [18].

Some recent work on generalized Sylvester matrix equa-
tions and their systems can be observed in [19–31]. In 2014,
Bao [32] examined the least-norm and extremal ranks of the
least square solution to the quaternion matrix equations

𝐴1𝑋 = 𝐶1,
𝑋𝐵1 = 𝐶2,

𝐴3𝑋𝐵3 = 𝐶�푐.
(3)

Wang et al. [33] examined the expression of the general
solution to the system

𝐴1𝑋1 = 𝐶1,
𝐴2𝑋2 = 𝐶3,

𝐴3𝑋1𝐵3 + 𝐴4𝑋2𝐵4 = 𝐶�푐,
(4)

And, as an application, the 𝑃-symmetric and 𝑃-skew-
symmetric solution to

𝐴�푎𝑋 = 𝐶�푎,
𝐴�푏𝑋𝐵�푏 = 𝐶�푏

(5)

has been established. Li et al. [34] established a novel
expression to the general solution of system (4) and they
computed the least-norm of general solution to (4). In 2009,
Wang et al. [35] constituted the expression of the general
solution to

𝐴1𝑋1 = 𝐶1,
𝑋1𝐵1 = 𝐶2,
𝐴2𝑋2 = 𝐶3,
𝑋2𝐵2 = 𝐶4,

𝐴3𝑋1𝐵3 + 𝐴4𝑋2𝐵4 = 𝐶�푐,

(6)

and as an application they explored the (𝑃, 𝑄)-symmetric
solution to the system

𝐴�푎𝑋 = 𝐶�푎,
𝑋𝐵�푏 = 𝐶�푏,

𝐴�푐𝑋𝐵�푐 = 𝐶�푐.
(7)

Some latest findings on the least-norm of matrix equa-
tions and (𝑃, 𝑄)-symmetric matrices can be consulted in [36–
40]. Furthermore, our main system (6) is a special case of the
following system:

𝐴1𝑋1 = 𝐶1,
𝑋2𝐵1 = 𝐷1,
𝐴2𝑋3 = 𝐶2,
𝑋3𝐵2 = 𝐷2,
𝐴3𝑋4 = 𝐶3,
𝑋4𝐵3 = 𝐷3,

𝐴4𝑋1 + 𝑋2𝐵4 + 𝐶4𝑋3𝐷4 + 𝐶5𝑋4𝐷5 = 𝐶�푐,

(8)

which has been investigated by Zhang in 2014. But the
expressions provided for the 𝑋1, 𝑋2, 𝑋3, and 𝑋4 in [41], we
are in position to calculate the least-norm of the solutions
with its determinantal representations. When some given
matrices are zero in (8), then it becomes our system and we
will give such kind of expressions in which the least-norm
of the solutions can also be computed with its determinantal
representations. It is worthy to note that Zhang examined (8)
with complex settings and we will consider our system (6)
with quaternion settings.

According to our best of knowledge, the least-norm of
the general solution to system (6) is not investigated by any
one.Motivated by the vast application of quaternion matrices
and the latest interest of least-norm of matrix equations, we
construct a novel expression of the general solution to system
(6) and apply this to investigate the least-norm of the general
solution to system (6) over H in this paper. Observing that
systems (3) and (4) are particular cases of our system (6),
solving system (6) will encourage the least-norm to a wide
class of problems in the collected work.

Since the general solutions of considered systems are
expressed in term of generalized inverses, another goal of
the paper is to give determinantal representations of the
least-norm of the general solution to system (6) based on
determinantal representations of generalized inverses.

Determinantal representation of a solution gives a direct
method of its finding analogous to the classical Cramer’s
rule that has important theoretical and practical signifi-
cance. Through looking for their more applicable explicit
expressions, there are various determinantal representations
of generalized inverses even with the complex or real entries,
in particular for the Moore-Penrose inverse (see, e.g., [42–
44]). By virtue of noncommutativity of quaternions, the
problem for determinantal representation of generalized
quaternion inverses is more complicated, and only now it
can be solved due to the theory of column-row determinants
introduced in [45, 46].Within the framework of the theory of
noncommutative row-column determinants, determinantal
representations of various generalized quaternion inverses
and generalized inverse solutions to quaternion matrix equa-
tions have been derived by one of our authors (see, e.g.[47–
54]) and by other researchers (see, e.g. [55–57]). Moreover,
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Song et al. [58] have just recently considered determinantal
representations of general solution to the two-sided coupled
generalized Sylvester matrix equation over H obtained using
the theory of row-column determinants as well. But their
proposed approach differs from our proposed. In [58], for
determinantal representations of the general solution to
the equation supplementary matrices have been used that
not always easy to get. While, by proposed method only
coefficient matrices of the equations are used. More detailed
Cramer’s rule to solutions and (skew-)Hermitian solutions of
some systems of matrix equations and generalized Sylvester
matrix equation over H are recently explored in [59, 60] and
[61, 62], respectively.

The remainder of our article is directed as follows. In
Section 2, we commence with some needed known results
about systems of matrix equations and determinantal rep-
resentations of the Moore-Penrose inverse and of solutions
to the quaternion matrix equations. In Section 3, we provide
a new expression of the general solution to our system
(6) and present an algorithm with an example. We discuss
the least-norm of the general solution to (6) over H in
Section 4. In Section 5, determinantal representations of the
general solution to (6) are derived and other example to
elaborate obtained Cramer’s Rule to system (6) with data
from the example in Section 3 is given. As expected, we get
the same solution. Finally, in Section 6, the conclusions are
drawn.

2. Preliminaries

We commence with the following lemmas which have crucial
function in the construction of the chief outcomes of the
following sections.

2.1. The General Solution to System (6)

Lemma 2 (see [63]). Let 𝐴 ∈ H�푠×�푡, 𝐵 ∈ H�푠×�푘, 𝑎𝑛𝑑 𝐶 ∈ H�푙×�푡 be
given. Then

(1) 𝑟(𝐴) + 𝑟(𝑅�퐴𝐵) = 𝑟(𝐵) + 𝑟(𝑅�퐵𝐴) = 𝑟 [𝐴 𝐵].
(2) 𝑟(𝐴) + 𝑟(𝐶𝐿�퐴) = 𝑟(𝐶) + 𝑟(𝐴𝐿�퐶) = 𝑟 [ �퐴�퐶 ] .
(3) 𝑟(𝐵) + 𝑟(𝐶) + 𝑟(𝑅�퐵𝐴𝐿�퐶) = 𝑟 [ �퐴 �퐵

�퐶 0 ] .
Lemma 3 (see [64]). Let 𝐴, 𝐵, and 𝐶 be known matrices over
H with right sizes. Then

(1) 𝐴† = (𝐴∗𝐴)†𝐴∗ = 𝐴∗(𝐴𝐴∗)†.
(2) 𝐿�퐴 = 𝐿2

�퐴 = 𝐿∗
�퐴, 𝑅�퐴 = 𝑅2

�퐴 = 𝑅∗
�퐴.

(3) 𝐿�퐴(𝐵𝐿�퐴)† = (𝐵𝐿�퐴)†, (𝑅�퐴𝐶)†𝑅�퐴 = (𝑅�퐴𝐶)†.
Lemma 4 (see [65]). Let Φ,Ω be matrices over H and

Φ = [Φ1Φ2

] ,
Ω = [Ω1 Ω2] ,
𝐹 = Φ2𝐿Φ1

,
𝑇 = 𝑅Ω1

Ω2.

(9)

Then

𝐿Φ = 𝐿Φ1
𝐿�퐹,

𝐿Ω = [𝐿Ω1
−Ω†

1Ω2𝐿�푇0 𝐿�푇

] ,
𝑅Ω = 𝑅�푇𝑅Ω1

,
𝑅Φ = [ 𝑅Φ1

0
−𝑅�퐹Φ2Φ†

1 𝑅�퐹

] ,

(10)

where Φ+
1 , Ω+

1 are any fixed reflexive inverses, 𝐿Φ1
and 𝑅Ω1

stand for the projectors 𝐿Φ1
= 𝐼 − Φ+

1Φ1, 𝑅Ω1
= 𝐼 − Ω1Ω+

1

induced by Φ1, Ω1, respectively.

Remark 5. Since Moore-Penrose inverses are reflexive
inverses, this lemma can be used for Moore-Penrose inverses
without any changes. It has taken place in ([64], Lemma 2.4).
But for more credibility, we prove this lemma below for the
Moore-Penroses inverse as well.

Lemma 6 (see [66]). Suppose that

𝐵1𝑋𝐶1 + 𝐵2𝑌𝐶2 = 𝐴 (11)

is consistent linear matrix equation, where 𝐵1 ∈ H�푚×�푝, 𝐶1 ∈
H�푞×�푛, 𝐵2 ∈ H�푚×�푠, 𝐶2 ∈ H�푡×�푛 and 𝐴 ∈ H�푚×�푛, respectively. Then

(1) The general solution of the homogeneous equation,

𝐵1𝑋𝐶1 + 𝐵2𝑌𝐶2 = 0, (12)

can be expressed by

𝑋 = 𝑋1𝑋2 + 𝑋3,
𝑌 = 𝑌1𝑌2 + 𝑌3, (13)

where 𝑋1 − 𝑋3 and 𝑌1 − 𝑌3 are general solution of the
following four homogeneous matrix expressions

𝐵1𝑋1 = −𝐵2𝑌1,
𝑋2𝐶1 = 𝑌2𝐶2,

𝐵1𝑋3𝐶1 = 0,
𝐵2𝑌3𝐶2 = 0.

(14)

By computing the value of unknowns in the above
equations and using them in𝑋 and 𝑌, we have

𝑋 = 𝑆1𝐿�퐺𝑈𝑅�퐻𝑇1 + 𝐿�퐵1
𝑉1 + 𝑉2𝑅�퐶1

,
𝑌 = 𝑆2𝐿�퐺𝑈𝑅�퐻𝑇2 + 𝐿�퐵2

𝑊1 +𝑊2𝑅�퐶2
, (15)

where 𝑆1 = [𝐼�푝, 0], 𝑆2 = [0, 𝐼�푠], 𝑇1 = [ �퐼�푞
0
], 𝑇2 =

[ 0
�퐼�푡
], 𝐺 = [𝐵1, 𝐵2], and 𝐻 = [ �퐶1

−�퐶2
]; the matrices𝑈,𝑉1, 𝑉2,𝑊1 𝑎𝑛𝑑 𝑊2 are free to vary over H.
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(2) Assume that the matrix expression (11) is solvable, then
its general solution can be expressed as

𝑋 = 𝑋0 + 𝑋1𝑋2 + 𝑋3,
𝑌 = 𝑌0 + 𝑌1𝑌2 + 𝑌3, (16)

where𝑋0 and 𝑌0 are any pair of particular solutions to
(11).

It can also be written as

𝑋 = 𝑋0 + 𝑆1𝐿�퐺𝑈𝑅�퐻𝑇1 + 𝐿�퐵1
𝑉1 + 𝑉2𝑅�퐶1

,
𝑌 = 𝑌0 + 𝑆2𝐿�퐺𝑈𝑅�퐻𝑇2 + 𝐿�퐵2

𝑊1 +𝑊2𝑅�퐶2
. (17)

Lemma 7 (see [67]). Let 𝐴1 ∈ H�푚1×�푛1 , 𝐵1 ∈ H�푟1×�푠1 , 𝐶1 ∈
H�푚1×�푟1 , and 𝐶2 ∈ H�푛1×�푠1 be given and 𝑋1 ∈ H�푛1×�푟1 to be
determined. Then the system

𝐴1𝑋1 = 𝐶1,
𝑋1𝐵1 = 𝐶2, (18)

is consistent if and only if

𝑅�퐴1
𝐶1 = 0,

𝐶2𝐿�퐵1
= 0,

𝐴1𝐶2 = 𝐶1𝐵1.
(19)

Under these conditions, the general solution to (18) can be
established as

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐿�퐴1

𝑈1𝑅�퐵1
, (20)

where 𝑈1 is a free matrix over H with accordant dimension.

Lemma 8 (see [35]). Let 𝐴1 ∈ H�푚1×�푝1 , 𝐵1 ∈ H�푞1×�푛1 , 𝐶1 ∈
H�푚1×�푞1 , 𝐶2 ∈ H�푝1×�푛1 , 𝐴2 ∈ H�푚2×�푝2 , 𝐵2 ∈ H�푞2×�푛2 , 𝐶3 ∈ H�푚2×�푞2 ,𝐶4 ∈ H�푝2×�푛2 ,, 𝐴3 ∈ H�푠×�푝1 , 𝐵3 ∈ H�푞1×�푡, 𝐴4 ∈ H�푠×�푝2 , 𝐵4 ∈
H�푞2×�푡, 𝐶�푐 ∈ H�푠×�푡 be given and 𝑋1 ∈ H�푝1×�푞1 , 𝑋2 ∈ H�푝2×�푞2 to be
determined. Denote

𝐴 = 𝐴3𝐿�퐴1
,

𝐵 = 𝑅�퐵1
𝐵3,

𝐶 = 𝐴4𝐿�퐴2
,

𝐷 = 𝑅�퐵2
𝐵4,

𝑁 = 𝐷𝐿�퐵,
𝑀 = 𝑅�퐴𝐶,
𝑆 = 𝐶𝐿�푀,
𝐸 = 𝐶�푐 − 𝐴3𝐴†

1𝐶1𝐵3 − 𝐴𝐶2𝐵†
1𝐵3 − 𝐴4𝐴†

2𝐶3𝐵4

− 𝐶𝐶4𝐵†
2𝐵4.

(21)

Then the following conditions are tantamount:

(1) System (6) is resolvable.
(2) The conditions in (19) are met and

𝑅�퐴2
𝐶3 = 0,

𝐶4𝐿�퐵2
= 0,

𝐴2𝐶4 = 𝐶3𝐵2,
𝑅�푀𝑅�퐴𝐸 = 0,
𝑅�퐴𝐸𝐿�퐷 = 0,
𝐸𝐿�퐵𝐿�푁 = 0,
𝑅�퐶𝐸𝐿�퐵 = 0.

(22)

(3) The equalities in (19) and (22) are satisfied and

𝑀𝑀†𝑅�퐴𝐷†𝐷 = 𝑅�퐴𝐸,
𝐶𝐶†𝐸𝐿�퐵𝑁†𝑁 = 𝐸𝐿�퐵. (23)

In these conditions, the general solution to system (6) can be
written as

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐿�퐴1

𝐴†𝐸𝐵†𝑅�퐵1

− 𝐿�퐴1
𝐴†𝐶𝑀†𝐸𝐵†𝑅�퐵1

− 𝐿�퐴1
𝐴†𝑆𝐶†𝐸𝑁†𝐷𝐵†𝑅�퐵1

− 𝐿�퐴1
𝐴†𝑆𝑉1𝑅�푁𝐷𝐵†𝑅�퐵1

+ 𝐿�퐴1
(𝐿�퐴𝑈1 + 𝑍1𝑅�퐵) 𝑅�퐵1

,

(24)

𝑋2 = 𝐴†
2𝐶3 + 𝐿�퐴2

𝐶4𝐵†
2 + 𝐿�퐴2

𝑀†𝑅�퐴𝐸𝐷†𝑅�퐵2

+ 𝐿�퐴2
𝐿�푀�푏

𝑆†𝑆𝐶†𝐸𝑁†𝑅�퐵2

+ 𝐿�퐴2
𝐿�푀 (𝑉1 − 𝑆†𝑆𝑉1𝑁𝑁†)𝑅�퐵2

+ 𝐿�퐴2
𝑊1𝑅�퐷𝑅�퐵2

,
(25)

where 𝑈1, 𝑉1,𝑊1 𝑎𝑛𝑑 𝑍1 are free matrices over H with agree-
able dimensions.

2.2. Determinantal Representations of Solutions to the Quater-
nion Matrix Equations. Due to noncommutativity of quater-
nions there is a problem of a determinant of matrices
with noncommutative entries (which are also defined as
noncommutative determinants). There are several versions
of defining of noncommutative determinants (e.g., see [68–
70]). But any of the previous noncommutative determinants
has not fully retained those properties which it owned for
matrices with real settings. Moreover, if functional properties
of a noncommutative determinant over a ring are satisfied,
then it takes on a value in its commutative subset. This
dilemma can be avoided due to the theory of row-column
determinants.
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For 𝐴 ∈ H�푛×�푛, we define 𝑛 row determinants and 𝑛
column determinants. Suppose 𝑆�푛 is the symmetric group on
the set 𝐼�푛 = {1, . . . , 𝑛}.
Definition 9 (see [45]). The 𝑖th row determinant of𝐴 = (𝑎�푖�푗) ∈
H�푛×�푛 is defined for all 𝑖 = 1, . . . , 𝑛 by putting

rdet�푖𝐴 = ∑
�휎∈�푆�푛

(−1)�푛−�푟 (𝑎�푖�푖�푘1𝑎�푖�푘1 �푖�푘1+1 . . . 𝑎�푖�푘1+�푙1 �푖)
. . . (𝑎�푖�푘�푟 �푖�푘�푟+1 . . . 𝑎�푖�푘�푟+�푙�푟 �푖�푘�푟 ) ,

𝜎 = (𝑖 𝑖�푘1 𝑖�푘1+1 . . . 𝑖�푘1+�푙1) (𝑖�푘2𝑖�푘2+1 . . . 𝑖�푘2+�푙2)
. . . (𝑖�푘�푟 𝑖�푘�푟+1 . . . 𝑖�푘�푟+�푙�푟) ,

(26)

where 𝜎 is the left-ordered permutation. It means that its first
cycle from the left starts with 𝑖, other cycles start from the left
with the minimal of all the integers which are contained in it,

𝑖�푘�푡 < 𝑖�푘�푡+�푠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 = 2, . . . , 𝑟, 𝑠 = 1, . . . , 𝑙�푡, (27)

and the order of disjoint cycles (except for the first one) is
strictly conditioned by increase from left to right of their first
elements, 𝑖�푘2 < 𝑖�푘3 < ⋅ ⋅ ⋅ < 𝑖�푘�푟 .
Definition 10 (see [45]). The 𝑗th column determinant of 𝐴 =(𝑎�푖�푗) ∈ H�푛×�푛 is defined for all 𝑗 = 1, . . . , 𝑛 by putting

cdet�푗𝐴 = ∑
�휏∈�푆�푛

(−1)�푛−�푟 (𝑎�푗�푘�푟 �푗�푘�푟+�푙�푟 . . . 𝑎�푗�푘�푟+1�푗�푘�푟 )
. . . (𝑎�푗�푗�푘1+�푙1 . . . 𝑎�푗�푘1+1�푗�푘1𝑎�푗�푘1 �푗) ,

(28)

𝜏 = (𝑗�푘�푟+�푙�푟 . . . 𝑗�푘�푟+1𝑗�푘�푟) . . . (𝑗�푘2+�푙2 . . . 𝑗�푘2+1𝑗�푘2)
⋅ (𝑗�푘1+�푙1 . . . 𝑗�푘1+1𝑗�푘1𝑗) ,

(29)

noindent where 𝜏 is the right-ordered permutation. It means
that its first cycle from the right starts with 𝑗, other cycles start
from the right with the minimal of all the integers which are
contained in it,

𝑗�푘�푡 < 𝑗�푘�푡+�푠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 = 2, . . . , 𝑟, 𝑠 = 1, . . . , 𝑙�푡, (30)

and the order of disjoint cycles (except for the first one) is
strictly conditioned by increase from right to left of their first
elements, 𝑗�푘2 < 𝑗�푘3 < ⋅ ⋅ ⋅ < 𝑗�푘�푟 .

Since [45] for Hermitian A we have

rdet1A = ⋅ ⋅ ⋅ = rdet�푛A = cdet1A = ⋅ ⋅ ⋅ = cdet�푛A ∈ R, (31)

the determinant of a Hermitian matrix is defined by putting

detA fl rdet�푖A = cdet�푖A for all 𝑖 = 1, . . . , 𝑛. (32)

Its properties are similar to the properties of an usual
(commutative) determinant and they have been completely
explored in [46] by using row and column determinants that
are so defined only by construction.

For determinantal representations of the Moore-Penrose
inverse, we shall use the following notations. Let 𝛼 fl{𝛼1, . . . , 𝛼�푘} ⊆ {1, . . . , 𝑚} and 𝛽 fl {𝛽1, . . . , 𝛽�푘} ⊆ {1, . . . , 𝑛}
be subsets of the order 1 ≤ 𝑘 ≤ min{𝑚, 𝑛}. Let 𝐴�훼

�훽 be a
submatrix of𝐴whose rows are indexed by 𝛼 and the columns
indexed by 𝛽. Similarly, let 𝐴�훼

�훼 be a principal submatrix of𝐴 whose rows and columns indexed by 𝛼. If 𝐴 ∈ H�푛×�푛 is
Hermitian, then |𝐴|�훼�훼 is the corresponding principal minor
of det𝐴. For 1 ≤ 𝑘 ≤ 𝑛, the collection of strictly increasing
sequences of 𝑘 integers chosen from {1, . . . , 𝑛} is denoted by𝐿�푘,�푛 fl {𝛼 : 𝛼 = (𝛼1, . . . , 𝛼�푘), 1 ≤ 𝛼1 < ⋅ ⋅ ⋅ < 𝛼�푘 ≤ 𝑛}. For fixed𝑖 ∈ 𝛼 and 𝑗 ∈ 𝛽, let 𝐼�푟,�푚{𝑖} fl {𝛼 : 𝛼 ∈ 𝐿�푟,�푚, 𝑖 ∈ 𝛼} denotes the
collection of sequences of row indexes that contain the index𝑖, and 𝐽�푟,�푛{𝑗} fl {𝛽 : 𝛽 ∈ 𝐿�푟,�푛, 𝑗 ∈ 𝛽} denotes the collection of
sequences of column indexes that contain 𝑗.

Let 𝑎.�푗 be the 𝑗th column and 𝑎�푖. be the 𝑖th row of𝐴, respectively. Suppose 𝐴 .�푗(𝑏) denotes the matrix obtained
from 𝐴 by replacing its 𝑗th column with the column-vector𝑏, and𝐴 �푖.(𝑏) denotes the matrix obtained from𝐴 by replacing
its 𝑖th row with the row-vector 𝑏. We denote the 𝑖th row and
the 𝑗th column of 𝐴∗ by 𝑎∗�푖. and 𝑎∗.�푗, respectively.
Lemma 11 (see [47]). If 𝐴 ∈ H�푚×�푛

�푟 , then the Moore-Penrose
inverse 𝐴† = (𝑎†�푖�푗) ∈ H�푛×�푚 have the following determinantal
representations,

𝑎†�푖�푗 = ∑�훽∈�퐽�푟,�푛{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝑎∗.�푗))�훽�훽
∑�훽∈�퐽�푟,�푛

|𝐴∗𝐴|�훽�훽 , (33)

and

𝑎†�푖�푗 = ∑�훼∈�퐼�푟,�푚{�푗}
rdet�푗 ((𝐴𝐴∗)�푗. (𝑎∗�푖. ))�훼�훼∑�훼∈�퐼�푟,�푚

|𝐴𝐴∗|�훼�훼 . (34)

Remark 12. For an arbitrary full-rank matrix 𝐴 ∈ H�푚×�푛
�푟 , a

row-vector 𝑏 ∈ H1×�푚, and a column-vector 𝑐 ∈ H�푛×1, we put

(𝑖) rdet�푖 ((𝐴𝐴∗)�푖. (𝑏)) = ∑
�훼∈�퐼�푚,�푚{�푖}

rdet�푖 ((𝐴𝐴∗)�푖. (𝑏))�훼�훼 ,
det (𝐴𝐴∗) = ∑

�훼∈�퐼�푚,�푚

󵄨󵄨󵄨󵄨𝐴𝐴∗󵄨󵄨󵄨󵄨�훼�훼 , when 𝑟 = 𝑚,
(𝑖𝑖) cdet�푗 ((𝐴∗𝐴).�푗 (𝑐))

= ∑
�훽∈�퐽�푛,�푛{�푗}

cdet�푗 ((𝐴∗𝐴).�푗 (𝑐))�훽�훽 ,
det (𝐴∗𝐴) = ∑

�훽∈�퐽�푛,�푛

󵄨󵄨󵄨󵄨𝐴∗𝐴󵄨󵄨󵄨󵄨�훽�훽 , when 𝑟 = 𝑛.

(35)

Corollary 13. If𝐴 ∈ H�푚×�푛
�푟 , then the projection matrix𝐴†𝐴 =:𝑄�퐴 = (𝑞�푖�푗)�푛×�푛 has the determinantal representation

𝑞�푖�푗 = ∑�훽∈�퐽�푟,�푛{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 ( ̇𝑎.�푗))�훽�훽
∑�훽∈�퐽�푟,�푛

|𝐴∗𝐴|�훽�훽 , (36)

where ̇𝑎.�푗 is the 𝑗th column of 𝐴∗𝐴 ∈ H�푛×�푛.
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Corollary 14. If𝐴 ∈ H�푚×�푛
�푟 , then the projection matrix𝐴𝐴† =:𝑃�퐴 = (𝑝�푖�푗)�푚×�푚 has the determinantal representation

𝑝�푖�푗 = ∑�훼∈�퐼�푟,�푚{�푗}
rdet�푗 ((𝐴𝐴∗)�푗. ( ̈𝑎�푖.))�훼�훼∑�훼∈�퐼�푟,�푚

|𝐴𝐴∗|�훼�훼 , (37)

where ̈𝑎�푖. is the 𝑖th row of 𝐴𝐴∗ ∈ H�푚×�푚.

Lemma 15 (see [2]). Let 𝐴 ∈ H�푚×�푛, 𝐵 ∈ H�푟×�푠, 𝐶 ∈ H�푚×�푠 be
known and𝑋 ∈ H�푛×�푟 be unknown. Then the matrix equation

𝐴𝑋𝐵 = 𝐶 (38)

is consistent if and only if 𝐴𝐴†𝐶𝐵†𝐵 = 𝐶. In this case, its
general solution can be expressed as

𝑋 = 𝐴†𝐶𝐵† + 𝐿�퐴𝑉 +𝑊𝑅�퐵, (39)

where 𝑉,𝑊 are arbitrary matrices over H with appropriate
dimensions.

In [71], it’s proved that (39) is the least squares solution to
(38), and its minimum norm least squares solution is 𝑋�퐿�푆 =𝐴†𝐶𝐵†.

Lemma 16 (see [48]). Let 𝐴 ∈ H�푚×�푛
�푟1

, 𝐵 ∈ H�푟×�푠
�푟2

. Then the
minimum norm least squares solution 𝑋 = 𝐴†𝐶𝐵† = (𝑥�푖�푗) ∈
H�푛×�푟 to (38) have determinantal representations,

𝑥�푖�푗 = ∑�훽∈�퐽�푟1 ,�푛{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝑑�퐵

.�푗))�훽�훽
∑�훽∈�퐽�푟1 ,�푛

|𝐴∗𝐴|�훽�훽 ∑�훼∈�퐼�푟2 ,�푟
|𝐵𝐵∗|�훼�훼 , (40)

or

𝑥�푖�푗 = ∑�훼∈�퐼�푟2 ,�푟{�푗}
rdet�푗 ((𝐵𝐵∗)�푗. (𝑑�퐴

�푖. ))�훼�훼∑�훽∈�퐽�푟1 ,�푛
|𝐴∗𝐴|�훽�훽 ∑�훼∈�퐼�푟2 ,�푟

|𝐵𝐵∗|�훼�훼 , (41)

where

𝑑�퐵
.�푗 = [

[
∑

�훼∈�퐼�푟2,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑐�푘.))�훼�훼]]
∈ H

�푛×1,
𝑘 = 1, . . . , 𝑛,

𝑑�퐴
�푖. = [

[
∑

�훽∈�퐽�푟1 ,�푛{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑐.�푙))�훽�훽]]
∈ H

1×�푟,
𝑙 = 1, . . . , 𝑟,

(42)

are the column vector and the row vector, respectively. 𝑐�푘. and𝑐.�푙 are the 𝑘th row and the 𝑙th column of 𝐶 = 𝐴∗𝐶𝐵∗.

Corollary 17. Let 𝐴 ∈ H�푚×�푛
�푘 , 𝐶 ∈ H�푚×�푠 be known and𝑋 ∈ H�푛×�푠 be unknown. Then the matrix equation 𝐴𝑋 = 𝐶

is consistent if and only if 𝐴𝐴†𝐶 = 𝐶. In this case, its general
solution can be expressed as 𝑋 = 𝐴†𝐶 + 𝐿�퐴𝑉, where 𝑉

is an arbitrary matrix over H with appropriate dimensions.
Its minimum norm least squares solution 𝑋 = 𝐴†𝐶 has the
following determinantal representation,

𝑥�푖�푗 = ∑�훽∈�퐽�푘,�푛{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝑐.�푗))�훽�훽
∑�훽∈�퐽�푘,�푛

|𝐴∗𝐴|�훽�훽 , (43)

where 𝑐.�푗 is the 𝑗th column of 𝐶 = 𝐴∗𝐶.
Corollary 18. Let 𝐵 ∈ H�푟×�푠

�푘 , 𝐶 ∈ H�푛×�푠 be given, and 𝑋 ∈
H�푛×�푟 be unknown. Then the equation 𝑋𝐵 = 𝐶 is solvable if
and only if 𝐶 = 𝐶𝐵†𝐵 and its general solution is 𝑋 = 𝐶𝐵† +𝑊𝑅�퐵, where 𝑊 is a any matrix with conformable dimension.
Moreover, its minimum norm least squares solution 𝑋 = 𝐶𝐵†

has the determinantal representation,

𝑥�푖�푗 = ∑�훼∈�퐼�푘,�푟{�푗}
rdet�푗 ((𝐵𝐵∗)�푗. (𝑐�푖.))�훼�훼∑�훼∈�퐼�푘,�푟

|𝐵𝐵∗|�훼�훼 , (44)

where 𝑐�푖. is the 𝑖th row of 𝐶 = 𝐶𝐵∗.

3. A New Expression of the General
Solution to System (6)

First, we show that Lemma 4 is true for the Moore-Penrose
inverses.

Lemma 19. Let Φ,Ω be matrices over H and

Φ = [Φ1Φ2

] ,
Ω = [Ω1 Ω2] ,
𝐹 = Φ2𝐿Φ1

,
𝑇 = 𝑅Ω1

Ω2.

(45)

Then
𝐿Φ = 𝐿Φ1

𝐿�퐹,
𝐿Ω = [𝐿Ω1

−Ω†
1Ω2𝐿�푇0 𝐿�푇

] , (46)

𝑅Ω = 𝑅�푇𝑅Ω1
,

𝑅Φ = [ 𝑅Φ1
0

−𝑅�퐹Φ2Φ†
1 𝑅�퐹

] . (47)

where Ω†
1, Φ†

1 are the Moore-Penrose inverses, and 𝐿Φ1
,𝑅Ω1

, 𝐿�푇, 𝑅�퐹, 𝐿Ω, and 𝑅Φ are projectors with respect to the
corresponding Moore-Penrose inverses.

Proof. In ([65], Lemma 2.4), it is proved that for fixed
reflexive inverses Ω+

1 and 𝑇+, the reflexive inverse Ω+ can be
expressed as follows,

Ω+ = [Ω+
1 − Ω+

1Ω2𝑇+𝑅Ω1𝑇+𝑅Ω1

] . (48)
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We chooseΩ†
1, 𝑇† as the Moore-Penrose inverses, and 𝑅Ω1

as
the projector with respect to the Moore-Penrose inverse Ω†

1

and show that the obtained matrix

Ω† = [Ω†
1 − Ω†

1Ω2𝑇†𝑅Ω1𝑇†𝑅Ω1

] (49)

is the Moore-Penrose inverse of Ω. For this, it is enough
to proof that Ω† satisfies the conditions (3) and (4) in
Definition 1.

Since by Lemma 3, 𝑇†𝑅Ω1
= (𝑅Ω1

Ω2)†𝑅Ω1
= 𝑇†, then Ω†

can be expressed as

Ω† = [Ω†
1 − Ω†

1Ω2𝑇†

𝑇†
] . (50)

So,

ΩΩ† = [Ω1 Ω2] [Ω
†
1 − Ω†

1Ω2𝑇†

𝑇†
]

= [Ω1Ω†
1 − Ω1Ω†

1Ω2𝑇† + Ω2𝑇†]
= [Ω1Ω†

1 + 𝑅Ω1
Ω2𝑇†]

= [Ω1Ω†
1 + 𝑅Ω1

Ω2 (𝑅Ω1
Ω2)†]

(51)

Since condition (3) is satisfied by components, namely,

(Ω1Ω†
1)∗ = Ω1Ω†

1 , (52)

(𝑅Ω1
Ω2 (𝑅Ω1

Ω2)†)∗ = 𝑅Ω1
Ω2 (𝑅Ω1

Ω2)† (53)

it follows thatΩ† satisfies condition (3) as well; i.e., (ΩΩ†)∗ =ΩΩ†.
Similar, it can be shown that Ω† satisfies condition (4).

Hence, the Moore-Penrose inverse of Ω can be expressed by
(49). From this (46) immediately follow.

The equations (47) can be proved similarly.

Now we demonstrate the principal theorem of this sec-
tion.

Theorem 20. Assume that 𝑆1 = [𝐼�푝1 0], 𝑆2 = [0 𝐼�푝2], 𝑇1 =
[ �퐼�푞1

0
], 𝑇2 = [ �퐼�푞2

0
], 𝐺 = [𝐴 𝐶], 𝐻 = [ �퐵

−�퐷 ], 𝐻1 = 𝐿�퐴1
𝐿�퐴,𝐻2 = 𝐿�퐴1

𝑆1𝐿�퐺,𝐻3 = 𝑅�퐻𝑇1𝑅�퐵1
,𝐻4 = 𝐿�퐴2

𝐿�퐶,𝐻5 = 𝐿�퐴2
𝑆2𝐿�퐺,𝐻6 = 𝑅�퐻𝑇2𝑅�퐵2

and system (6) is solvable, then the general
solution to our system can be formed as

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐿�퐴1

𝐴†𝐸𝐵†𝑅�퐵1

− 𝐿�퐴1
𝐴†𝐶𝑀†𝐸𝐵†𝑅�퐵1

− 𝐿�퐴1
𝐴†𝑆𝐶†𝐸𝑁†𝐷𝐵†𝑅�퐵1

+ 𝐻1𝑉1𝑅�퐵1

+ 𝐻2𝑈𝐻3 + 𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

,
(54)

𝑋2 = 𝐴†
2𝐶3 + 𝐿�퐴2

𝐶4𝐵†
2 + 𝐿�퐴2

𝑀†𝑅�퐴𝐸𝐷†𝑅�퐵2

+ 𝐿�퐴2
𝐿�푀𝑆†𝑆𝐶†𝐸𝑁†𝑅�퐵2

+ 𝐻4𝑊1𝑅�퐵2

+ 𝐻5𝑈𝐻6 + 𝐿�퐴2
𝑊2𝑅�퐷𝑅�퐵2

,
(55)

where 𝑈,𝑉1, 𝑉2,𝑊1, 𝑎𝑛𝑑 𝑊2 are free matrices over H with
allowable dimensions.

Proof. Our proof contains three parts. At the first step, we
show that the matrices 𝑋1 and 𝑋2 have the forms of

𝑋1 = 𝜙0 + 𝐻1𝑉1𝑅�퐵1
+ 𝐿�퐴1

𝑉2𝑅�퐵𝑅�퐵1
+ 𝐻2𝑈𝐻3, (56)

𝑋2 = 𝜓0 + 𝐻4𝑊1𝑅�퐵2
+ 𝐿A2𝑊2𝑅�퐷𝑅�퐵2

+ 𝐻5𝑈𝐻6, (57)

where 𝜙0 and 𝜓0 are any pair of particular solution to system
(6), 𝑉1, 𝑉2, 𝑊1, 𝑊2 and 𝑈 are free matrices of able shapes
over H, are solutions to system (6). At the second step, we
display that any couple of solutions 𝜇0 and ]0 to system (6)
can be established as (56) and (57), respectively. At the end,
we confirm that

𝜇 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐶𝑀†𝐸𝐵†

− 𝐴†𝑆𝐶†𝐸𝑁†𝐷𝐵†
(58)

and

] = 𝐴†
2𝐶3 + 𝐿�퐴2

𝐶4𝐵†
2 + 𝐿�퐴2

𝑀†𝑅�퐴𝐸𝐷†

+ 𝐿�퐴2
𝐿�푀𝑆†𝑆𝐶†𝐸𝑁†𝑅�퐵2

(59)

are a couple of particular solutions to system (6).
Nowwe prove that a couple of matrices𝑋1 and𝑋2 having

the shape of (56) and (57), respectively, are solutions to system
(6). Observe that

𝐴†
1𝐶1𝐵1 + 𝐿�퐴1

𝐶2𝐵†
1𝐵1 = 𝐴†

1𝐴1𝐶2 + 𝐿�퐴1
𝐶2 = 𝐶2,

𝐴†
2𝐶3𝐵2 + 𝐿�퐴2

𝐶4𝐵†
2𝐵2 = 𝐴†

2𝐴2𝐶4 + 𝐿�퐴2
𝐶4 = 𝐶4. (60)

It is evident that 𝑋1 having the form (56) is a solution of𝐴1𝑋1 = 𝐶1, and 𝑋1𝐵1 = 𝐶2 and 𝑋2 having the form (57)
is a solution to 𝐴2𝑋2 = 𝐶3, 𝑋2𝐵2 = 𝐶4. Now we are left to
show that 𝐴3𝑋1𝐵3 + 𝐴4𝑋2𝐵4 = 𝐶�푐 is satisfied by 𝑋1 and 𝑋2

given in (56) and (57). By Lemma 4, we have

𝐴𝑆1𝐿�퐺 = 𝐴 [𝐼�푝1 0] [𝐿�퐴 −𝐴†𝐶𝐿�푀0 𝐿�푀

]
= 𝐴 [𝐿�퐴 −𝐴†𝐶𝐿�푀] = [0 −𝐴𝐴†𝐶𝐿�푀]
= [0 − (𝐶 −𝑀)𝐿�푀] = [0 −𝐶𝐿�푀]
= − [0 𝑆] = −𝐶𝑆2𝐿�퐺,

(61)
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and

𝑅�퐻𝑇1𝐵 = [ 𝑅�퐵 0
𝑅�푁𝐷𝐵† 𝑅�푁

][𝐼�푞10 ]𝐵 = [ 𝑅�퐵

𝑅�푁𝐷𝐵†
]𝐵

= [ 0
𝑅�푁𝐷𝐵†𝐵] = [ 0

𝑅�푁𝐷(𝐼 − 𝐿�퐵)]

= [ 0
𝑅�푁𝐷 ] = 𝑅�퐻𝑇2𝐷.

(62)

Observe that 𝐴𝐿�퐴 = 0 and by using (61) and (62), we arrive
that

𝐴3𝑋1𝐵3 + 𝐴4𝑋2𝐵4 = 𝐶�푐. (63)

Conversely, assume that 𝜇0 and ]0 are any couple of solutions
to our system (6). By Lemma 7, we have

𝐴1𝐴†
1𝐶1 = 𝐶1,

𝐶2𝐵†
1𝐵1 = 𝐶2,

𝐴2𝐴†
2𝐶3 = 𝐶3,

𝐶4𝐵†
2𝐵2 = 𝐶4,

𝐴1𝐶2 = 𝐶1𝐵1,
𝐴2𝐶4 = 𝐶3𝐵2.

(64)

Observe that

𝐿�퐴1
𝜇0𝑅�퐵1

= (𝐼 − 𝐴†
1𝐴1) 𝜇0 (𝐼 − 𝐵1𝐵†

1)
= 𝜇0 − 𝜇0𝐵1𝐵†

1 − 𝐴†
1𝐴1𝜇0 + 𝐴†

1𝐴1𝜇0𝐵1𝐵†
1

= 𝜇0 − 𝐶2𝐵†
1 − 𝐴†

1𝐶1 + 𝐴†
1𝐴1𝐶2𝐵†

1

= 𝜇0 − 𝐿�퐴1
𝐶2𝐵†

1 − 𝐴†
1𝐶1

(65)

produces

𝜇0 = 𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†
1𝐶1 + 𝐿�퐴1

𝜇0𝑅�퐵1
. (66)

On the same lines, we can get

]0 = 𝐿�퐴2
𝐶4𝐵†

2 + 𝐴†
2𝐶3 + 𝐿�퐴2

]0𝑅�퐵2
. (67)

It is manifest that 𝜇0 and ]0 defined in (66)-(67) are also
solution pair of

𝐴𝑋1𝐵 + 𝐶𝑋2𝐷 = 𝐸. (68)

Since

𝐴𝑋1𝐵 + 𝐶𝑋2𝐷 = 𝐴3𝐿�퐴1
𝜇0𝑅�퐵1

𝐵3 + 𝐴4𝐿�퐴2
]0𝑅�퐵2

𝐵4

= 𝐴3 (𝜇0 − 𝐿�퐴1
𝐶2𝐵†

1 − 𝐴†
1𝐶1) 𝐵3

+ 𝐴4 (]0 − 𝐿�퐴2
𝐶4𝐵†

2 − 𝐴†
2𝐶3) 𝐵4

= 𝐴3𝜇0𝐵3 − 𝐴3𝐿�퐴1
𝐶2𝐵†

1𝐵3

− 𝐴†
1𝐶1𝐵3 + 𝐴4]0𝐵4

− 𝐴4𝐿�퐴2
𝐶4𝐵†

2𝐵4 − 𝐴4𝐴†
2𝐶3𝐵4

= 𝐴3𝜇0𝐵3 + 𝐴4]0𝐵4 − 𝐴𝐶2𝐵†
1𝐵3

− 𝐴†
1𝐶1𝐵3 − 𝐶𝐶4𝐵†

2𝐵4

− 𝐴4𝐴†
2𝐶3𝐵4

= 𝐶�푐 − 𝐴𝐶2𝐵†
1𝐵3 − 𝐴†

1𝐶1𝐵3

− 𝐶𝐶4𝐵†
2𝐵4 − 𝐴4𝐴†

2𝐶3𝐵4 = 𝐸.
(69)

Hence by Lemma 6, 𝜇0 and ]0 can be written as

𝜇0 = 𝑋01 + 𝑆1𝐿�퐺𝑈𝑅�퐻𝑇1 + 𝐿�퐴𝑉1 + 𝑉2𝑅�퐵, (70)

]0 = 𝑋02 + 𝑆2𝐿�퐺𝑈𝑅�퐻𝑇2 + 𝐿�퐶𝑊1 +𝑊2𝑅�퐷, (71)

where 𝑋01 and 𝑋02 are a couple of special solutions to (68)
and 𝑈,𝑉1, 𝑉2,𝑊1 and 𝑊2 are free matrices with agreeable
dimensions. Using (70) and (71) in (66) and (67), respectively,
we get

𝜇0 = 𝑋10 + 𝐻2𝑈𝐻3 + 𝐻1𝑉1𝑅�퐵1
+ 𝐿�퐴1

𝑉2𝑅�퐵𝑅�퐵1
,

]0 = 𝑋20 + 𝐻5𝑈𝐻6 + 𝐻4𝑊1𝑅�퐵2
+ 𝐿�퐴2

𝑊2𝑅�퐷𝑅�퐵2
, (72)

where 𝑋10 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐿�퐴1

𝑋01𝑅�퐵1
and 𝑋20 =𝐴†

2𝐶3 + 𝐿�퐴2
𝐶4𝐵†

2 + 𝐿�퐴2
𝑋02𝑅�퐵2

. It is evident that 𝑋10 and𝑋20 are a couple of solutions to system (6). It is clear that𝜇0 and ]0 can be represented by (56) and (57), respectively.
Lastly, by putting 𝑈1, 𝑉1,𝑊1, and 𝑍1 equal to zero in (24) and
(25), we conclude that 𝜇 and ] are special solutions to system
(6). Hence the expressions (54) and (55) represent the general
solution to system (6) and the theorem is completed.

Remark 21. Due to Lemma 3 and taking into account𝐿�퐴2
𝐿�푀 = 𝐿�푀𝐿�퐴2

, we have the following simplification of the
solution pair to system (6) that is identical for (24)-(25) and
(54)-(55) when 𝑈,𝑈1, 𝑉1, 𝑉2, 𝑍1,𝑊1, and𝑊2 disappear,

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵†

− 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†,
𝑋2 = 𝐴†

2𝐶3 + 𝐿�퐴2
𝐶4𝐵†

2 +𝑀†𝐸𝐷† + 𝑆†𝑆𝐶†𝐸𝑁†.
(73)

Comment 1. We have established a novel expression of the
general solution to system (6) in Theorem 20 which is
different from one created in [35]. With the help of this novel
expression, we can explore the least-norm of the general
solution which can not be studied with the help of the
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expression given in [35], which is one of the advantage of our
new expression.

Now we discuss some special cases of our system.
If 𝐵1, 𝐵2, 𝐶2 and 𝐶4 disappear in Theorem 20, then we

gain the following conclusion.

Corollary 22. Denote 𝑆1 = [𝐼�푝1 0], 𝑆2 = [0 𝐼�푝2], 𝑇1 = [ �퐼�푞1
0
],

𝑇2 = [ �퐼�푞2
0
], 𝐺 = [𝐴 𝐶],𝐻 = [ �퐵3

−�퐵4
], 𝐻1 = 𝐿�퐴1

𝐿�퐴, 𝐻2 =𝐿�퐴1
𝑆1𝐿�퐺, 𝐻3 = 𝑅�퐻𝑇1,𝐻4 = 𝐿�퐴2

𝐿�퐶, 𝐻5 = 𝐿�퐴2
𝑆2𝐿�퐺, 𝐻6 =𝑅�퐻𝑇2 and system (4) is solvable, then the general solution to

system (4) can be formed as

𝑋1 = 𝐴†
1𝐶1 + 𝐴†𝐸𝐵†

3 − 𝐴†𝐴4𝑀†𝐸𝐵†
3

− 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†
3 − 𝐻1𝑌1 + 𝐻2𝑉𝐻3

+ 𝐿�퐴1
𝑌2𝑅�퐵3

,
𝑋2 = 𝐴†

2𝐶3 +𝑀†𝐸𝐵†
4 + 𝑆†𝑆𝐶†𝐸𝑁† + 𝐻4𝑍1

+ 𝐻5𝑉𝐻6 + 𝐿�퐴2
𝑍2𝑅�퐵4

,

(74)

where 𝐴,𝐶,𝑁,𝑀, 𝑆 are the same as in Lemma 6, 𝐸 = 𝐶�푐 −𝐴3𝐴†
1𝐶1𝐵3−𝐴4𝐴†

2𝐶3𝐵4,𝑉, 𝑌1, 𝑌2, 𝑍1, and𝑍2 are freematrices
over H obeying agreeable dimensions.

Comment 2. The above consequence is a chief result of [64].
If𝐴2, 𝐵2, 𝐶3, 𝐴4, 𝐵4 and𝐶4 vanish in our system (6), then

we get the following outcome.

Corollary 23. Suppose that 𝐴1, 𝐵1, 𝐶1, 𝐶2, 𝐴3, 𝐵3 and 𝐶�푐 are
given. Then the general solution to system (3) is established by

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + (𝐴3𝐿�퐴1

)†
⋅ [𝐶�푐 − 𝐴3𝐴†

1𝐶1𝐵3 − 𝐴3𝐿�퐴1
𝐶2𝐵†

1𝐵3]
⋅ (𝑅�퐵1

𝐵3)† + 𝐿�퐴1
𝐿�퐴3�퐿�퐴1

𝑊1𝑅�퐵1

+ 𝐿�퐴1
𝑊2𝑅�푅�퐵1�퐵3

𝑅�퐵1
,

(75)

where𝑊1 and𝑊2 are arbitrary matrices overHwith appropri-
ate sizes.

Comment 3. Corollary 23 is the rudimentary result of [32].

Comment 4. When 𝐴1, 𝐵1, 𝐴4 and 𝐵4 become zero in (8),
then we will get the least-norm of the solution of (8) with the
help of Theorem 20 quite smoothly. This is one of the
advantage of the our expressions over the expressions given
in [41].

An algorithm and numerical example is provided to
obtain the general solution of (6) with the help ofTheorem 20.

Algorithm 24. (1) Input𝐴1, 𝐵1,𝐶1,𝐴2, 𝐵2,𝐶2,𝐷2,𝐴3, 𝐵3,𝐶3,𝐷3, 𝐴4, 𝐵4, 𝐶4 with viable dimensions over H.
(2) Evaluate 𝑋1 and 𝑋2 by (54)-(55).

Example 25. For given matrices

𝐴1 = [[[[
[

1 −i

j k

]]]]
]
,

𝐵1 = [−j k i
1 i −k] ,

𝐶1 = [ i k
j −1 ] ,

𝐶2 = [−i j 1
−k −1 j

] ,

𝐴2 = [[
[

i−k
j

]]
]
,

𝐶3 = [[
[
i −k1 j
j 1

]]
]
,

𝐴3 = [[
[

i 1
−1 i
k j

]]
]
,

𝐴4 = [[
[
−1
0
j

]]
]
,

𝐵2 = [ j
k
] ,

𝐵3 = [ i 1
k −j] ,

𝐵4 = [ j −k
k −j] ,

𝐶4 = [−i + j] ,

𝐶�푐 = [[
[
−1 − j + k −2 + i − j + k

−i −1
−1 + j + k −𝑖 + j + k

]]
]
.

(76)

By these given matrices, the consistency conditions of (6)
from Lemma 3 are fulfilled. So, system (6) is resolvable.
Now we compute the partial solution to system (6) when𝑈,𝑈1, 𝑉1, 𝑉2, 𝑍1,𝑊1, and 𝑊2 disappear. Using determinan-
tal representations (33)-(34) for computing Moore-Penrose
inverses, we find that

𝐴†
1 = 14 [1 −j

i −k] ,

𝐿�퐴1
= 12 [ 1 i

−i 1] ,
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𝐵†
1 = 16 [[

[
j 1
−k −i
−i k

]]
]
,

𝑅�퐵1
= 12 [ 1 j

−j 1] ,
𝐵†
2 = 12 [−j −k] ,

𝐴†
2 = 13 [−i k −j] ,

𝐴 = [[
[
0 0
0 0
k j

]]
]
,

𝐵 = [ i 1
k −j] ,

𝐴† = 12 [0 0 −k
0 0 −j] ,

𝐵† = 14 [−i −k
1 j

] ,

𝐸 = [[
[
k −j
−1 𝑖
j k

]]
]
,

𝑅�퐵2
= 12 [ 1 i

−i 1] .
(77)

Since 𝐿�퐴2
= 0 and 𝐷 = 0, then 𝐶, 𝑆,𝑀,𝑁 are zero-

matrices. Hence the general solution to our system (6) is

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵†

= 112 [ 5 + i − 2j − k −2 − i + 7j + 5k
−5 + i − j + 2k −1 + 2i − j − k

] ,
𝑋2 = 𝐴†

2𝐶3 = 13 [2 + k −i − 2j] .
(78)

4. The Least-Norm of the General
Solution to System (6)

We experience the least-norm to system (6) in this section.
We firstmodify the description of quaternionic inner product
space defined in [72] as follows:

A rightH-vector spaceV�푟 is a quaternionic inner product
space if there is a mapping ⟨⋅, ⋅⟩ : V ×V 󳨀→ H such that for
all 𝑞1, 𝑞2 ∈ H and 𝜉, 𝜉1, 𝜉2 ∈ V�푟:

(1) ⟨𝜉, 𝜉1𝑞1+𝜉2𝑞2⟩ = 𝑞1⟨𝜉, 𝜉1⟩+𝑞2⟨𝜉, 𝜉2⟩; ⟨𝜉1𝑞1+𝜉2𝑞2, 𝜉⟩ =⟨𝜉1, 𝜉⟩𝑞1 + ⟨𝜉2, 𝜉⟩𝑞2;

(2) ⟨𝜉1, 𝜉2⟩ = ⟨𝜉2, 𝜉1⟩;
(3) ⟨𝜉, 𝜉⟩ ≥ 0, 𝑎𝑛𝑑 ⟨𝜉, 𝜉⟩ = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝜉 = 0.

It can be achieved by putting ⟨𝜉, 𝜂⟩ = ∑�푖 𝜂�푖𝜉�푖 for 𝜉 =(𝜉�푖)�푛�푖=1, 𝜂 = (𝜂�푖)�푛�푖=1 ∈ V�푟. ‖𝜉‖ = √⟨𝜉, 𝜉⟩ is referred as the
norm of 𝜉. It is routine to verify thatH is a quaternionic inner
product space under the inner product defined by ⟨𝐶,𝐷⟩ =
tr(𝐷∗C)where𝐶,𝐷 ∈ H�푚×�푛. ‖𝐴‖ = (tr(𝐴∗𝐴))1/2 is thematrix
norm defined by𝐴. The real part of a quaternion 𝑞 is denoted
by 𝑟𝑒[𝑞].

By the definition and [73], we can get the following result
easily.

Lemma 26. Let 𝐴 ∈ H�푚×�푛, 𝐵 ∈ H�푛×�푚. Then we have
(1) ‖𝐴 + 𝐵‖2 = ‖𝐴‖2 + ‖𝐵‖2 + 2𝑅𝑒[tr(𝐵∗𝐴)].
(2) 𝑅𝑒[tr(𝐴𝐵)] = 𝑅𝑒[tr(𝐵𝐴)].

Theorem27. Assume that system (6) is solvable, then the least-
norm of the solution pair 𝑋1 and 𝑋2 to system (6) can be
extracted as follows:

󵄩󵄩󵄩󵄩𝑋1
󵄩󵄩󵄩󵄩�푚�푖�푛 = 𝐴†

1𝐶1 + 𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†𝐸𝐵†

− 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†, (79)

󵄩󵄩󵄩󵄩𝑋2
󵄩󵄩󵄩󵄩�푚�푖�푛 = 𝐴†

2𝐶3 + 𝐿�퐴2
𝐶4𝐵†

2 +𝑀†𝐸𝐷† + 𝑆†𝑆𝐶†𝐸𝑁†. (80)

Proof. With the help of Theorem 20 and Remark 21, the
general solution to system (6) can be formed as

𝑋1 = 𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵†

− 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵† − 𝐻1𝑉1𝑅�퐵1
+ 𝐻2𝑈𝐻3

+ 𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

,
𝑋2 = 𝐴†

2𝐶3 + 𝐿�퐴2
𝐶4𝐵†

2 +𝑀†𝐸𝐷† + 𝑆†𝑆𝐶†𝐸𝑁†

+ 𝐻4𝑊1𝑅�퐵2
+ 𝐻5𝑈𝐻6 + 𝐿�퐴2

𝑊2𝑅�퐷𝑅�퐵2
,

(81)

where 𝑈,𝑉1, 𝑉2,𝑊1, and 𝑊2 are free matrices over H having
executable dimensions. By Lemma 26, the norm of𝑋1 can be
established as

󵄩󵄩󵄩󵄩𝑋1
󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩𝐴†

1𝐶1 + 𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵†

− 𝐴†𝑆𝐶†𝐸𝑁†𝐵4B
† − 𝐻1𝑉1𝑅�퐵1

+ 𝐻2𝑈𝐻3

+ 𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

󵄩󵄩󵄩󵄩󵄩2 = 󵄩󵄩󵄩󵄩󵄩𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵†

− 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝐻1𝑉1𝑅�퐵1

+ 𝐻2𝑈𝐻3 + 𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

󵄩󵄩󵄩󵄩󵄩2 + 𝐽,

(82)
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where

𝐽
= 2Re [tr ((𝐻1𝑉1𝑅�퐵1

+ 𝐻2𝑈𝐻3 + 𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

)∗ (𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1

+ 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))] .
(83)

Now we want to show that 𝐽 = 0. Applying Lemmas 3, 4, and
26, we have

Re [tr ((𝐻1𝑉1𝑅�퐵1
)∗ (𝐴†

1𝐶1 + 𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]
= Re [tr (𝑅�퐵1

𝑉∗
1 𝐻∗

1 (𝐴†
1𝐶1 + 𝐿�퐴1

C2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝑅�퐵1
𝑉∗
1 𝐿�퐴𝐿�퐴1

(𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝑅�퐵1
𝑉∗
1 𝐿�퐴𝐿�퐴1

(𝐿�퐴1
𝐶2𝐵†

1))] = Re [tr (𝑉∗
1 𝐿�퐴𝐿�퐴1

(𝐿�퐴1
𝐶2𝐵†

1) 𝑅�퐵1
)] = 0,

(84)

Re [tr ((𝐿�퐴1
𝑉2𝑅�퐵𝑅�퐵1

)∗ (𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝑅�퐵1
𝑅�퐵𝑉∗

2 𝐿∗
�퐴1

(𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝑅�퐵1
𝑅�퐵𝑉∗

2 𝐿�퐴1
(𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†S𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝑉∗
2 𝐿�퐴1

(𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†)𝑅�퐵1
𝑅�퐵)]

= Re [tr (𝑉∗
2 𝐿�퐴1

(𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†) 𝑅�퐵)] = 0,

(85)

Re [tr ((𝐻2𝑈𝐻3)∗ (𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝐻∗
3𝑈∗𝐻∗

2 (𝐴†
1𝐶1 + 𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝐻∗
3𝑈∗𝐿�퐺𝑆∗1𝐿�퐴1

(𝐿�퐴1
𝐶2𝐵†

1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]
= Re[tr(𝐻∗

3𝑈∗ [𝐿�퐴 −𝐴†𝐶𝐿�푀0 𝐿�푀

][ 𝐼
0 ] (𝐿�퐴1

𝐶2𝐵†
1 + 𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝐻∗
3𝑈∗𝐿�퐴 (𝐴†𝐸𝐵† − 𝐴†𝐴4𝑀†𝐸𝐵† − 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†))]

= Re [tr (𝐻∗
3𝑈∗𝐿�퐴𝐿�퐴1

𝐶2𝐵†
1)] = Re [tr (𝑅�퐵1

𝑇∗
1 𝑅�퐻𝑈∗𝐿�퐴𝐿�퐴1

𝐶2𝐵†
1)]

= Re [tr (𝑇∗
1 𝑅�퐻𝑈∗𝐿�퐴𝐿�퐴1

𝐶2𝐵†
1𝑅�퐵1

)] = 0.

(86)

By using (84)-(86) in (83) produces 𝐽 = 0. Since 𝑋1 is
arbitrary, we get (79) from (82). On the same way, we can
prove that (80) hold.

A special cases of our system (6) are given below.
If 𝐵1, 𝐵2, 𝐶2 and 𝐶4 become zeromatrices inTheorem 27,

then again we get the principal result of [30].

Corollary 28. Assume that system (4) is solvable, then the
least-norm of the solution pair 𝑋1 and 𝑋2 to system (4) can
be furnished as

󵄩󵄩󵄩󵄩𝑋1
󵄩󵄩󵄩󵄩�푚�푖�푛 = 𝐴†

1𝐶1 + 𝐴†𝐸𝐵†
3 − 𝐴†𝐴4𝑀†𝐸𝐵†

3

− 𝐴†𝑆𝐶†𝐸𝑁†𝐵4𝐵†
3 ,

󵄩󵄩󵄩󵄩𝑋2
󵄩󵄩󵄩󵄩�푚�푖�푛 = 𝐴†

2𝐶3 +𝑀†𝐸𝐵†
4 + 𝑆†𝑆𝐶†𝐸𝑁†.

(87)

If 𝐴2, 𝐵2, 𝐶3, 𝐴4, 𝐵4, and 𝐶4 vanish in our system, then
we get the next consequence.

Corollary 29. Suppose that 𝐴1, 𝐵1, 𝐶1, 𝐶2, 𝐴3, 𝐵3, and𝐶�푐 are
given.Then the least-norm of the least square solution to system
(3) is launched by

󵄩󵄩󵄩󵄩𝑋1
󵄩󵄩󵄩󵄩�푚�푖�푛 = 𝐴†

1𝐶1 + 𝐿�퐴1
𝐶2𝐵†

1 + (𝐴3𝐿�퐴1
)†

⋅ [𝐶�푐 − 𝐴3𝐴†
1𝐶1𝐵3 − 𝐴3𝐿�퐴1

𝐶2𝐵†
1𝐵3] (𝑅�퐵1

𝐵3)† .
(88)

Comment 5. Corollary 29 is the key result of [32].
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5. Determinantal Representations of
the Least-Norm Solution to System (6)

In this section, we give determinantal representations of the
least-norm solution to system (6). Let 𝐴1 ∈ H�푚×�푛

�푟1
, 𝐵1 ∈ H�푟×�푠

�푟2
,

𝐴2 ∈ H�푘×�푝
�푟3

, 𝐵2 ∈ H�푞×�푙
�푟4

, 𝐴3 ∈ H�푡×�푛
�푟5

, 𝐵3 ∈ H�푟×ℎ
�푟6

, 𝐴4 ∈ H�푡×�푝
�푟7

𝐵4 ∈
H�푞×ℎ

�푟8
, 𝑟(𝐴) = 𝑟9, 𝑟(𝐵) = 𝑟10, 𝑟(𝐶) = 𝑟11, 𝑟(𝐷) = 𝑟12, 𝑟(𝑀) =𝑟13, 𝑟(𝑁) = 𝑟14, and 𝑟(𝑆) = 𝑟15.
First, consider each term of (79) separately.

(i) Denote 𝐶11 fl 𝐴∗
1𝐶1. Due to Corollary 17 for the first

term of (79), 𝑋11 = 𝐴†
1𝐶1 = (𝑥(11)

�푖�푗 ), we have

𝑥(11)
�푖�푗 = ∑�훽∈�퐽�푟1 ,�푛{�푖}

cdet�푖 ((𝐴∗
1𝐴1).�푖 (𝑐(11).�푗 ))�훽

�훽

∑�훽∈�퐽�푟1 ,�푛

󵄨󵄨󵄨󵄨𝐴∗
1𝐴1

󵄨󵄨󵄨󵄨�훽�훽 , (89)

where 𝑐(11).�푗 is the 𝑗th column of 𝐶11.
(ii) For the second term of (79) we have, 𝑋12 = (𝑥(12)

�푖�푗 ) fl
𝐿�퐴1

𝐶2𝐵†
1 = 𝐶2𝐵†

1 −𝑄�퐴1
𝐶2𝐵†

1 . So, due to Corollaries 18 and 13,

𝑥(12)
�푖�푗 = ∑�훼∈�퐼�푟2,�푟{�푗}

rdet�푗 ((𝐵1𝐵∗
1 )�푗. (𝑐(12)�푖. ))�훼

�훼∑�훼∈�퐼�푟2 ,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼 − ∑�푓 ∑�훽∈�퐽�푟1 ,�푛{�푖}

cdet�푖 ((𝐴∗
1𝐴1).�푖 ( ̇𝑎(1).�푓 ))�훽

�훽
∑�훼∈�퐼�푟2,�푟{�푗}

rdet�푗 ((𝐵1𝐵∗
1 )�푗. (𝑐(12)�푓. ))�훼

�훼∑�훽∈�퐽�푟1 ,�푛

󵄨󵄨󵄨󵄨𝐴∗
1𝐴1

󵄨󵄨󵄨󵄨�훼�훼 ∑�훼∈�퐼�푟2 ,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼 , (90)

where 𝑐(12)�푖. is the 𝑖th row of 𝐶12 fl 𝐶2𝐵∗
1 and ̇𝑎(1)

.�푓
is the 𝑓th

column of 𝐴∗
1𝐴1.

Construct the matrix Ψ1 = (𝜓(1)
�푖�푓
), where

𝜓(1)
�푖�푓 = ∑

�훽∈�퐽�푟1 ,�푛{�푖}

cdet�푖 ((𝐴∗
1𝐴1).�푖 ( ̇𝑎(1).�푓 ))�훽

�훽
, (91)

and denote Ψ̃1 = Ψ1𝐶2𝐵∗
1 . Then, from (90), it follows that

𝑥(12)
�푖�푗 = ∑�훼∈�퐼�푟2 ,�푟{�푗}

rdet�푗 ((𝐵1𝐵∗
1 )�푗. (𝑐(12)�푖. ))�훼

�훼∑�훼∈�퐼�푟2 ,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼

− ∑�훼∈�퐼�푟2,�푟{�푗}
rdet�푗 ((𝐵1𝐵∗

1 )�푗. (𝜓̃(1)
�푖. ))�훼

�훼∑�훽∈�퐽�푟1 ,�푛

󵄨󵄨󵄨󵄨𝐴∗
1𝐴1

󵄨󵄨󵄨󵄨�훼�훼 ∑�훼∈�퐼�푟2 ,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼 ,

(92)

where 𝜓̃(1)
�푖. is the 𝑖th row of the matrix Ψ̃1.

If we construct the matrix Ψ2 = (𝜓(2)
�푖�푓
), where

𝜓(2)
�푓�푗 = ∑

�훼∈�퐼�푟2,�푟{�푗}

rdet�푗 ((𝐵1𝐵∗
1 )�푗. (𝑐(12)�푓. ))�훼

�훼
, (93)

and denote Ψ̃2 fl 𝐴∗
1𝐴1Ψ2, and then, from (90), we obtain

𝑥(12)
�푖�푗 = ∑�훼∈�퐼�푟2,�푟{�푗}

rdet�푗 ((𝐵1𝐵∗
1 )�푗. (𝑐(12)�푖. ))�훼

�훼∑�훼∈�퐼�푟2,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼

− ∑�훽∈�퐽�푟1 ,�푛{�푖}
cdet�푖 ((𝐴∗

1𝐴1).�푖 (𝜓̃(2)
.�푗 ))�훽

�훽∑�훽∈�퐽�푟1 ,�푛

󵄨󵄨󵄨󵄨𝐴∗
1𝐴1

󵄨󵄨󵄨󵄨�훼�훼 ∑�훼∈�퐼�푟2,�푟

󵄨󵄨󵄨󵄨𝐵1𝐵∗
1
󵄨󵄨󵄨󵄨�훼�훼 ,

(94)

where 𝜓̃(2)
.�푗 is the 𝑗th column of the matrix Ψ̃2.

(iii) Due to Theorem 2.15 for the third term 𝐴†𝐸𝐵† =:𝑋13 = (𝑥(13)
�푖�푗 ), we obtain

𝑥(13)
�푖�푗 = ∑�훽∈�퐽�푟9 ,�푚{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑑�퐵
.�푗))�훽�훽

∑�훽∈�퐽�푟9 ,�푚
|𝐴∗𝐴|�훽�훽 ∑�훼∈�퐼�푟10,�푟

|𝐵𝐵∗|�훼�훼 , (95)

or

𝑥(13)
�푖�푗 = ∑�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑑�퐴
�푖. ))�훼�훼∑�훽∈�퐽�푟9 ,�푚

|𝐴∗𝐴|�훽�훽 ∑�훼∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 , (96)

where

𝑑�퐵
.�푗 = [

[
∑

�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑒(1)�푢. ))�훼�훼]]
∈ H

�푝×1,
𝑢 = 1, . . . , 𝑚,

𝑑�퐴
�푖. = [

[
∑

�훽∈�퐽�푟9 ,�푚{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑒(1).V ))�훽
�훽
]
]

∈ H
1×�푟,

V = 1, . . . , 𝑟,

(97)

are the column vector and the row vector, respectively. 𝑒(1)�푢.

and 𝑒(1).V are the 𝑢th row and the Vth column of 𝐸1 fl 𝐴∗𝐸𝐵∗.
(iv) For the fourth term of (79), 𝐴†𝐴4𝑀†𝐸𝐵† fl 𝑋14 =(𝑥(14)

�푖�푗 ), using the determinantal representation (33) for 𝐴†

and byTheorem 2.15, we have

𝑥(14)
�푖�푗

= ∑�푓 ∑�훽∈�퐽�푟9 ,�푚{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝑎(14).�푓

))�훽
�훽
𝜙�푓�푗

∑�훽∈�퐽�푟9 ,�푚
|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐽�푟13,�푝

|𝑀∗𝑀|�훽�훽 ∑�훼∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 ,

(98)

where

𝜙�푓�푗 = ∑
�훽∈�퐽�푟13,�푝{�푓}

cdet�푓 ((𝑀∗𝑀).�푓 (𝜑�퐵
.�푗))�훽�훽

= ∑
�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝜑�푀
�푓. ))�훼�훼 ,

(99)
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and

𝜑�퐵
.�푗 = [

[
∑

�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑒(2)�푢. ))�훼�훼]]
∈ H

�푝×1,
𝑢 = 1, . . . , 𝑝,

𝜑�푀
�푓. = [

[
∑

�훽∈�퐽�푟13,�푝{�푓}

cdet�푓 ((𝑀∗𝑀).�푓 (𝑒(2).V ))�훽
�훽
]
]

∈ H
1×�푟,

V = 1, . . . , 𝑟,

(100)

are the column vector and the row vector, respectively. 𝑎(14).�푓

is the 𝑓th column of 𝐴14 fl 𝐴∗𝐴4, 𝑒�푢.(2), and 𝑒.V(2) are the𝑢th row and the vth column of 𝐸2 fl 𝑀∗𝐸𝐵∗, respectively.

Construct the matrix Φ = (𝜙�푖�푗), where 𝜙�푖�푗 is given by (99)
and denote 𝐴∗𝐴Φ =: Φ̃ = (𝜙�푖�푗). Then, from (98), we get
the following final determinantal representation of the fourth
term of (79),

𝑥(14)
�푖�푗

= ∑�훽∈�퐽�푟9 ,�푚{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝜙.�푗))�훽�훽

∑�훽∈�퐽�푟9 ,�푚
|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐽�푟13,�푝

|𝑀∗𝑀|�훽�훽 ∑�훼∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 ,

(101)

where 𝜙.�푗 is the 𝑗th column of Φ̃.
(v) For the fifth term of (79), 𝐴†𝑆𝐶†𝐸𝑁†𝐵4B

† fl 𝑋15 =(𝑥(15)
�푖�푗 ), due toCorollary 17 to𝐴†𝑆, byTheorem 2.15 to𝐶†𝐸𝑁†,

and Corollary 18 to 𝐵4𝐵†, we obtain

𝑥(15)
�푖�푗 = ∑�푓 ∑�푙 ∑�훽∈�퐽�푟9 ,�푛{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑠(1).�푙 ))�훽
�훽
𝜔�푙�푓 ∑�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑏(15)�푓. ))�훼
�훼∑�훽∈�퐽�푟9 ,�푛

|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐽�푟11,�푝
|𝐶∗𝐶|�훽�훽 ∑�훽∈�퐼�푟14,�푞

|𝑁𝑁∗|�훼�훼 ∑�훽∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 , (102)

where 𝑠(1)
.�푙

is the 𝑙th column of 𝑆1 fl 𝐴∗𝑆, 𝑏(15)
�푓.

is the 𝑓th row
of 𝐵15 fl 𝐵4𝐵∗,

𝜔�푙�푓 = ∑
�훽∈�퐽�푟11,�푝{�푙}

cdet�푙 ((𝐶∗𝐶).�푙 (𝜁�푁.�푓))�훽�훽
= ∑

�훼∈�퐼�푟14,�푞{�푓}

rdet�푓 ((𝑁𝑁∗)�푓. (𝜁�퐶�푙. ))�훼�훼 ,
(103)

and

𝜁�푁.�푓 = [
[

∑
�훼∈�퐼�푟14,�푞{�푓}

rdet�푓 ((𝑁𝑁∗)�푓. (𝑒(3)�푢. ))�훼�훼]]
∈ H

�푚×1,
𝑢 = 1, . . . , 𝑝,

𝜁�퐶�푙. = [
[

∑
�훽∈�퐽�푟11,�푝{�푖}

cdet�푙 ((𝐶∗𝐶).�푙 (𝑒(3).V ))�훽
�훽
]
]

∈ H
1×�푡,

V = 1, . . . , 𝑞,
(104)

are the column vector and the row vector, respectively. 𝑒(3)�푢.

and 𝑒(3).V are the 𝑢th row and the Vth column of 𝐸3 = 𝐶∗𝐸𝑁∗.
Construct the matrix Ω = (𝜔�푙�푓), where 𝜔�푙�푓 is determined
by (103), and denote Ω̂ fl 𝐴∗𝑆Ω𝐵4𝐵∗. Then, from (102), it
follows that

𝑥(15)
�푖�푗 =

∑�푓 ∑�푙 ∑�훽∈�퐽�푟9 ,�푛{�푖}
cdet�푖 ((𝐴∗𝐴).�푖 (𝑒.�푙))�훽�훽 𝜔̂�푙�푓 ∑

�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑒�푓.))�훼�훼
∑�훽∈�퐽�푟9 ,�푛

|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐼�푟11,�푝
|𝐶∗𝐶|�훽�훽 ∑�훼∈�퐼�푟14,�푞

|𝑁𝑁∗|�훼�훼 ∑�훽∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 , (105)

where 𝑒�푓. and 𝑒.�푙 are the unit row-vector and the unit
column-vector whose components are 0 except the 𝑓th or 𝑙th
components which are 1, respectively.

If we denote

𝜔(1)
�푖�푓 fl ∑

�푙

∑
�훽∈�퐽�푟9 ,�푛{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑒.�푙))�훽�훽 𝜔̂�푙�푓

= ∑
�훽∈�퐽�푟9 ,�푛{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝜔̂.�푓))�훽�훽 ,
(106)

then, from (102), it follows the determinantal representation

𝑥(15)
�푖�푗 =

∑
�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝜔(1)
�푖. ))�훼

�훼

∑�훽∈�퐽�푟9 ,�푛
|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐽�푟11,�푝

|𝐶∗𝐶|�훽�훽 ∑�훼∈�퐼�푟14,�푞
|𝑁𝑁∗|�훼�훼 ∑�훽∈�퐼�푟10,�푟

|𝐵𝐵∗|�훼�훼 ,
(107)
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where 𝜔(1)
�푖. is the 𝑖th row of the matrix Ω(1) = (𝜔(1)

�푖�푓
) that is

determined by (106).
If we denote

𝜔(2)
�푙�푗 fl ∑

�푓

𝜔̂�푙�푓 ∑
�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑒�푓.))�훼�훼

= ∑
�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝜔̂�푙.))�훼�훼 ,
(108)

then, from (102), it follows the determinantal representation

𝑥(15)
�푖�푗 = ∑�훽∈�퐽�푟9 ,�푛{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝜔(2)
.�푗 ))�훽

�훽

∑�훽∈�퐽�푟9 ,�푛
|𝐴∗𝐴|�훽�훽 ∑�훽∈�퐽�푟11,�푝

|𝐶∗𝐶|�훽�훽 ∑�훼∈�퐼�푟14,�푞
|𝑁𝑁∗|�훼�훼 ∑�훽∈�퐼�푟10,�푟

|𝐵𝐵∗|�훼�훼 , (109)

where 𝜔(2)
.�푗 is the 𝑗th column of the matrix Ω(2) = (𝜔(2)

�푙�푗
) that

is determined by (108).
Similarly, consider each term of (80) separate-

ly.

(i) Denote 𝐶21 fl 𝐴∗
2𝐶3. Due to Corollary 17 for the first

term of (80),𝑋21 = 𝐴†
2𝐶3 = (𝑥(21)

7�푓
), we have

𝑥(21)
7�푓 = ∑�훽∈�퐽�푟3 ,�푝{7}

cdet7 ((𝐴∗
2𝐴2).�푖 (𝑐(21).�푓 ))�훽

�훽

∑�훽∈�퐽�푟3 ,�푝

󵄨󵄨󵄨󵄨𝐴∗
2𝐴2

󵄨󵄨󵄨󵄨�훽�훽 , (110)

where 𝑐(21)
.�푓

is the 𝑓th column of 𝐶21.
(ii) For the second term of (80) we have, 𝑋22 = (𝑥(22)

�푖�푗 ) fl
𝐿�퐴2

𝐶4𝐵†
2 = 𝐶4𝐵†

2 −𝑃�퐴2𝐶4𝐵†
2. So, due to Corollaries 18 and 13,

𝑥(22)
7�푓 = ∑�훼∈�퐼�푟4,�푞{�푓}

rdet�푓 ((𝐵2𝐵∗
2 )�푓. (𝑐(22)7. ))�훼

�훼∑�훼∈�퐼�푟4 ,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼

− ∑�푗 ∑�훽∈�퐽�푟3 ,�푝{7}
cdet7 ((𝐴∗

2𝐴2).7 ( ̇𝑎(2).�푗 ))�훽
�훽
∑�훼∈�퐼�푟4 ,�푞{�푓}

rdet�푓 ((𝐵2𝐵∗
2 )�푓. (𝑐(22)�푗. ))�훼

�훼∑�훽∈�퐽�푟3 ,�푝

󵄨󵄨󵄨󵄨𝐴∗
2𝐴2

󵄨󵄨󵄨󵄨�훼�훼 ∑�훼∈�퐼�푟4 ,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼 ,

(111)

where 𝑐(22)7. is the 𝑔th row of 𝐶22 fl 𝐶4𝐵∗
2 and ̇𝑎(2).�푗 is the 𝑗th

column of 𝐴∗
2𝐴2.

Construct the matrix Υ1 = (𝜐(1)7�푗 ), where
𝜐(1)7�푗 = ∑

�훽∈�퐽�푟3 ,�푝{7}

cdet7 ((𝐴∗
2𝐴2).7 ( ̇𝑎(2).�푗 ))�훽

�훽
, (112)

and denote Υ̃1 = Υ1𝐶4𝐵∗
2 . Then, from (111), it follows that

𝑥(22)
7�푓 = ∑�훼∈�퐼�푟4 ,�푞{�푓}

rdet�푓 ((𝐵2𝐵∗
2 )�푓. (𝑐(22)7. ))�훼

�훼∑�훼∈�퐼�푟4 ,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼

− ∑�훼∈�퐼�푟4 ,�푞{�푓}
rdet�푓 ((𝐵2𝐵∗

2 )�푓. (𝜐(1)7. ))�훼�훼∑�훽∈�퐽�푟3 ,�푝

󵄨󵄨󵄨󵄨𝐴∗
2𝐴2

󵄨󵄨󵄨󵄨�훼�훼 ∑
�훼∈�퐼�푟4,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼 ,

(113)

where 𝜐(1)7. is the 𝑔th row of Υ̃1.

If we construct the matrix Υ2 = (𝜐(2)
�푖�푓
), where

𝜐(2)�푗�푓 = ∑
�훼∈�퐼�푟4,�푞{�푓}

rdet�푓 ((𝐵2𝐵∗
2 )�푓. (𝑐(22)�푗. ))�훼

�훼
, (114)

and denote Υ̃2 = 𝐴∗
2𝐴2Υ2, then, from (111), we obtain

𝑥(22)
7�푓 =

∑
�훼∈�퐼�푟4 ,�푞{�푓}

rdet�푓 ((𝐵2𝐵∗
2 )�푓. (𝑐(22)7. ))�훼

�훼

∑
�훼∈�퐼�푟4 ,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼

− ∑�훽∈�퐽�푟3 ,�푝{7}
cdet7 ((𝐴∗

2𝐴2).7 (𝜐(2).�푓
))�훽

�훽∑�훽∈�퐽�푟3 ,�푝

󵄨󵄨󵄨󵄨𝐴∗
2𝐴2

󵄨󵄨󵄨󵄨�훼�훼 ∑�훼∈�퐼�푟4,�푞

󵄨󵄨󵄨󵄨𝐵2𝐵∗
2
󵄨󵄨󵄨󵄨�훼�훼 ,

(115)

where 𝜐(2)
.�푓

is the 𝑔th row of Υ̃2.
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(iii) Due to Theorem 2.15 for the third term 𝑀†𝐸𝐷† =:𝑋23 = (𝑥(23)
7�푓

), we obtain

𝑥(23)
7�푓 = ∑�훽∈�퐽�푟13,�푝{7}

cdet7 ((𝑀∗𝑀).7 (𝑑�퐷
.�푓))�훽�훽

∑�훽∈�퐽�푟13,�푝
|𝑀∗𝑀|�훽�훽 ∑�훼∈�퐼�푟10,�푟

|𝐵𝐵∗|�훼�훼 , (116)

or

𝑥(13)
�푖�푗 = ∑�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑑�퐴
�푖. ))�훼�훼∑�훽∈�퐽�푟9 ,�푚

|𝐴∗𝐴|�훽�훽 ∑�훼∈�퐼�푟10,�푟
|𝐵𝐵∗|�훼�훼 , (117)

where

𝑑�퐵
.�푗 = [

[
∑

�훼∈�퐼�푟10,�푟{�푗}

rdet�푗 ((𝐵𝐵∗)�푗. (𝑒(4)�푢. ))�훼�훼]]
∈ H

�푝×1,
𝑢 = 1, . . . , 𝑚,

𝑑�퐴
�푖. = [

[
∑

�훽∈�퐽�푟9 ,�푚{�푖}

cdet�푖 ((𝐴∗𝐴).�푖 (𝑒(4).V ))�훽
�훽
]
]

∈ H
1×�푟,

V = 1, . . . , 𝑟,

(118)

are the column vector and the row vector, respectively. 𝑒(1)�푢.

and e(1).V are the 𝑢th row and the Vth column of 𝐸4 fl 𝑀∗𝐸𝐷∗.
(iv) Using Corollary 13 to 𝑆†𝑆 and by Theorem 2.15 to𝐶†𝐸𝑁†, we obtain the the following representation of the

fourth term, 𝑋24 = (𝑥(24)
7�푓

) fl 𝑆†𝑆𝐶†𝐸𝑁†, of (80)

𝑥(24)
7�푓

= ∑�푙 ∑�훽∈�퐽�푟15,�푝{7}
cdet7 ((𝑆∗𝑆).7 ( ̇𝑠.�푙))�훽�훽 𝜔�푙�푓

∑�훽∈�퐽�푟15,�푝
|𝑆∗𝑆|�훽�훽 ∑�훼∈�퐼�푟11,�푡

|𝐶𝐶∗|�훼�훼 ∑�훽∈�퐼�푟14,�푞
|𝑁𝑁∗|�훼�훼 ,

(119)

where 𝜔�푙�푓 is determined by (103). Construct the matrix Ω =(𝜔�푙�푓) and denote Ω̃ = 𝑆∗𝑆Ω. Then, from (119) finally, we have

𝑥(24)
7�푓

= ∑�훽∈�퐽�푟15,�푝{7}
cdet7 ((𝑆∗𝑆).7 (𝜔̃.�푓))�훽�훽

∑�훽∈�퐽�푟15,�푝
|𝑆∗𝑆|�훽�훽 ∑�훼∈�퐼�푟11,�푡

|𝐶𝐶∗|�훼�훼 ∑�훽∈�퐼�푟14,�푞
|𝑁𝑁∗|�훼�훼 ,

(120)

where 𝜔̃.�푓 is the 𝑓th column of Ω̃.
So, we prove the following theorem.

Theorem 30. Let 𝐴1 ∈ H�푚×�푛
�푟1

, 𝐵1 ∈ H�푟×�푠
�푟2

, 𝐴2 ∈ H�푘×�푝
�푟3

, 𝐵2 ∈
H�푞×�푙

�푟4
, 𝐴3 ∈ H�푡×�푛

�푟5
, 𝐵3 ∈ H�푟×ℎ

�푟6
, 𝐴4 ∈ H�푡×�푝

�푟7
𝐵4 ∈ H�푞×ℎ

�푟8
, 𝑟(𝐴) = 𝑟9,𝑟(𝐵) = 𝑟10, 𝑟(𝐶) = 𝑟11, 𝑟(𝐷) = 𝑟12, 𝑟(𝑀) = 𝑟13, 𝑟(𝑁) = 𝑟14,

and 𝑟(𝑆) = 𝑟15.The least-norm solution (79)-(80) to system (8),𝑋1 = (𝑥(1)
�푖�푗 ) ∈ H�푛×�푟,𝑋2 = (𝑥(2)

7�푓
) ∈ H�푝×�푞, by components

𝑥(1)
�푖�푗 = 𝑥(11)

�푖�푗 + 𝑥(12)
�푖�푗 + 𝑥(13)

�푖�푗 − 𝑥(14)
�푖�푗 − 𝑥(15)

�푖�푗 ,
𝑥(2)
7�푓 = x(21)7�푓 + 𝑥(22)

7�푓 + 𝑥(23)
7�푓 + 𝑥(24)

7�푓 , (121)

has determinantal representations, where the term 𝑥(11)
�푖�푗 is (89),

𝑥(12)
�푖�푗 is (92) or (94), 𝑥(13)

�푖�푗 is (95) or (96), 𝑥(14)
�푖�푗 is (101), and 𝑥(15)

�푖�푗

is (107) or (109); similarly, 𝑥(21)
7�푓

is (110), 𝑥(22)
7�푓

is (113) or (115),
𝑥(23)
7�푓 is (116) or (117), and 𝑥(24)

7�푓 is (120).

A numerical example is provided to obtain the least norm
of the general solution of (6) with the help of Theorem 30.

Example 31. We use the given matrices from the Example 25.
Since 𝑟(𝐴1) = 1 and

𝐶11 = 𝐴∗
1𝐶1 = [ 1 + i j + k

−1 + i −j + k
] ,

𝐴∗
1𝐴1 = [2 −2i

2i 2 ] ,
(122)

and then, by (89),

𝑥(11)
11 = 14 + 14 i,

𝑥(11)
12 = 14 j + 14k,

𝑥(11)
21 = −14 + 14 i,

𝑥(11)
22 = −14 j + 14k.

(123)

Now, by (92), we find 𝑥(12)
�푖�푗 for all 𝑖, 𝑗 = 1, 2. So,

𝐶12 = 𝐶2𝐵∗
1 = [−2i − k −i + 2k

i + 2k 2i − k
] ,

𝐵1𝐵∗
1 = [3 −3j

3j 3 ] ,
(124)

Similarly, by (91),Ψ1 = 𝐴∗
1𝐴1. So

Ψ̃1 = Ψ1𝐶2𝐵∗
1 = [2 − 4i + 4j − 2k 4 − 2i − 2j + 4k

4 + 2i + 2j + 4k 2 + 4i − 4j − 2k] (125)

Since 𝑟(𝐵1) = 1, then by (92),

𝑥(12)
11 = 16 (−2i − k) − 124 (2 − 4i + 4j − 2k)

= − 112 − 16 i − 16 j − 112k,
𝑥(12)
12 = 16 (−i + 2k) − 124 (4 − 2i − 2j + 4k)

= −16 − 112 i + 112 j + 16k,
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𝑥(12)
21 = 16 (i + 2k) − 124 (4 + 2i + 2j + 4k)

= −16 + 112 i − 112 j + 16k,
𝑥(12)
22 = 16 (2i − k) − 124 (2 + 4i − 4j − 2k)

= − 112 + 16 i + 16 j − 112k.
(126)

Since 𝑟(𝐴) = 𝑟(𝐵) = 1 and
𝐸1 = 𝐴∗𝐸𝐵∗ = [ 2 2j

−2i −2k] ,

𝐴∗𝐴 = [ 1 i
−i 1] ,

𝐵𝐵∗ = [ 2 2j
−2j 2] ,

(127)

and then, by (95),

𝑑�퐵
.1 = [ 2

−2i] ,

𝑑�퐵
.2 = [ 2j

−2𝑘] ,
(128)

and

𝑥(13)
11 = 14 ,

𝑥(13)
12 = 14 j,

𝑥(13)
21 = −14 i,

𝑥(13)
22 = −14k.

(129)

Further, due to Example 25, 𝑥(14)
�푖�푗 = 𝑥(15)

�푖�푗 = 0 for all 𝑖, 𝑗 = 1, 2.
So,

𝑥(1)
11 = 512 + 112 i − 16 j − 112k,

𝑥(1)
12 = −16 − 112 i + 712 j + 512k,

𝑥(1)
21 = − 512 + 112 i − 112 j + 16k,

𝑥(1)
22 = − 112 + 16 i − 112 j − 112k.

(130)

Since, 𝑟(𝐴2) = 1 and
𝐶21 = 𝐴∗

2𝐶3 = [2 + k −i − 2j] ,
𝐴∗

2𝐴2 = [3] , (131)

and, due to Example 25, 𝑥(22)
1�푗 = 𝑥(23)

1�푗 = 𝑥(24)
1�푗 = 0 for all 𝑗 =1, 2; then by (110) and (121)

𝑥(2)
11 = 𝑥(21)

11 = 23 + 13k,
𝑥(2)
12 = 𝑥(21)

12 = −13 i − 23 j.
(132)

Hence, the least norm solution of (6) obtained by Cramer’s
Rule and the matrix method in Example 25 are the same as
expected.

Note that we used Maple with the package CLIFFORD in
the calculations.

6. Conclusion

We have constructed a novel expression of the general
solution to system (6) over H and used this result to explore
the least-norm of the general solution to this system when
it is solvable. Some particular cases of our system are also
discussed. Our results carry the principal results of [32, 64].
Finally, we give determinantal representations (analogous of
Cramer’s Rule) of the least norm solutions to the systems
using row-column noncommutative determinants. Numeri-
cal examples are also provided to interpret the results.
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