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In this paper, by the use of the weight functions, and the idea of introducing parameters, a discreteMulholland-type inequality with
the general homogeneous kernel and the equivalent form are given. The equivalent statements of the best possible constant factor
related to a few parameters are provided. As applications, the operator expressions and a few particular examples are considered.

1. Introduction

Assuming that 0 < ∑∞𝑚=1 𝑎2𝑚 < ∞ 𝑎𝑛𝑑 0 < ∑∞𝑛=1 𝑏2𝑛 < ∞, we
have the following discrete Hilbert’s inequality with the best
possible constant factor 𝜋 (cf. [1], Theorem 315):

∞∑
𝑚=1

∞∑
𝑛=1

𝑎𝑚𝑏𝑛𝑚 + 𝑛 < 𝜋( ∞∑
𝑚=1

𝑎2𝑚 ∞∑
𝑛=1

𝑏2𝑛)
1/2 . (1)

We still have the following Mulholland’s inequality with the
same best possible constant 𝜋 (cf. [1], Theorem 343):

∞∑
𝑚=2

∞∑
𝑛=2

𝑎𝑚𝑏𝑛
ln𝑚𝑛 < 𝜋( ∞∑

𝑚=2

𝑚𝑎2𝑚 ∞∑
𝑛=2

𝑛𝑏2𝑛)
1/2 . (2)

If 0 < ∫∞
0

𝑓2(𝑥)𝑑𝑥 < ∞ and 0 < ∫∞
0

𝑔2(𝑦)𝑑𝑦 < ∞, then we
have the following Hilbert’s integral inequality:

∫∞
0

∫∞
0

𝑓 (𝑥) 𝑔 (𝑦)𝑥 + 𝑦 𝑑𝑥𝑑𝑦
< 𝜋(∫∞

0
𝑓2 (𝑥) 𝑑𝑥∫∞

0
𝑔2 (𝑦) 𝑑𝑦)1/2 ,

(3)

with the best possible constant factor 𝜋 (cf. [1],Theorem 316).

Inequalities (1), (2), and (3) and their extensions with the
conjugate exponents (𝑝, 𝑞) (𝑝 > 1, 1/𝑝 + 1/𝑞 = 1) and
independent parameters are important in analysis and its
applications (cf. [2–13]).

The following half-discrete Hilbert-type inequality was
provided (cf. [1],Theorem 351). If𝐾(𝑥) (𝑥 > 0) is decreasing,𝑝 > 1, 1/𝑝 + 1/𝑞 = 1, 0 < 𝜙(𝑠) = ∫∞

0
𝐾(𝑥)𝑥𝑠−1𝑑𝑥 < ∞, then

∫∞
0

𝑥𝑝−2 (∞∑
𝑛=1

𝐾 (𝑛𝑥) 𝑎𝑛)
𝑝 𝑑𝑥 < 𝜙𝑝 (1𝑞)

∞∑
𝑛=1

𝑎𝑝𝑛 . (4)

Some new extensions of (4) were provided by [14–19].
In 2016, by the use of the technique of real analysis, Hong

[20] considered some equivalent statements of the extensions
of (1) with the best possible constant factor related to a few
parameters. The other similar works about the extensions of
(3) were provided by [21–25].

In this paper, according to the way given by [20], by
the use of the weight functions and the idea of introducing
parameters, a discrete Mulholland-type inequality with the
general homogeneous kernel and the equivalent form are
given, which is an extension of (2).The equivalent statements
of the best possible constant factor related to a few parameters
are provided. As applications, the operator expressions and a
few particular examples are considered.
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2. Some Lemmas

In what follows, we suppose that 𝑝 > 1, 1/𝑝 + 1/𝑞 = 1, 𝜆 ∈
R, 𝜆𝑖, 𝜆−𝜆𝑖 ≤ 1 (𝑖 = 1, 2), 𝑘𝜆(𝑥, 𝑦) is a positive homogeneous
function of degree−𝜆, satisfying, for any 𝑢, 𝑥, 𝑦 > 0,

𝑘𝜆 (𝑢𝑥, 𝑢𝑦) = 𝑢−𝜆𝑘𝜆 (𝑥, 𝑦) . (5)

Also, 𝑘𝜆(𝑥, 𝑦) is decreasing with respect to 𝑥, 𝑦 > 0 (or(𝜕/𝜕𝑥)𝑘𝜆(𝑥, 𝑦) ≤ 0, (𝜕/𝜕𝑦)𝑘𝜆(𝑥, 𝑦) ≤ 0 (𝑥, 𝑦 > 0)), such that,
for 𝛾 = 𝜆1, 𝜆 − 𝜆2,

𝑘𝜆 (𝛾) fl ∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢𝛾−1𝑑𝑢 ∈ R+ = (0,∞) . (6)

We still assume that 𝑎𝑚, 𝑏𝑛 ≥ 0 (𝑚, 𝑛 ∈ N \ {1} = {2, 3, . . .}),
satisfying

0 < ∞∑
𝑚=2

ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚 < ∞

𝑎𝑛𝑑 0 < ∞∑
𝑛=2

ln𝑞[1−(𝜆2/𝑝+(𝜆−𝜆1)/𝑞)]−1𝑛𝑛1−𝑝 𝑏𝑞𝑛 < ∞.
(7)

Definition 1. Define the following weight functions:

𝜔𝜆 (𝜆2, 𝑚) fl ln𝜆−𝜆2𝑚 ∞∑
𝑛=2

𝑘𝜆 (ln𝑚, ln 𝑛) ln𝜆2−1𝑛𝑛
(𝑚 ∈ N \ {1}) ,

(8)

𝜛𝜆 (𝜆1, 𝑛) fl ln𝜆−𝜆1𝑛 ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) ln𝜆1−1𝑚𝑚
(𝑛 ∈ N \ {1}) .

(9)

Lemma 2. We have the following inequalities:

𝜔𝜆 (𝜆2, 𝑚) < 𝑘𝜆 (𝜆 − 𝜆2) (𝑚 ∈ N \ {1}) , (10)

𝜛𝜆 (𝜆1, 𝑛) < 𝑘𝜆 (𝜆1) (𝑛 ∈ N \ {1}) . (11)

Proof. For 𝜆2−1 ≤ 0, it is evident that 𝑘𝜆(ln𝑚, ln 𝑡)(ln𝜆2−1𝑡)/𝑡
is a strictly decreasing function with respect to 𝑡 > 1. By the
decreasing property, setting 𝑢 = ln𝑚/ ln 𝑡, it follows that
𝜔𝜆 (𝜆2, 𝑚) < ln𝜆−𝜆2𝑚∫∞

1
𝑘𝜆 (ln𝑚, ln 𝑡) ln𝜆2−1𝑡𝑡 𝑑𝑡

= ∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢(𝜆−𝜆2)−1𝑑𝑢 = 𝑘𝜆 (𝜆 − 𝜆2) .
(12)

Hence, we have (10). For 𝜆1 − 1 ≤ 0, it is evident that𝑘𝜆(ln 𝑡, ln 𝑛)(ln𝜆1−1𝑡)/𝑡 is a strictly decreasing function with
respect to 𝑡 > 1. By the decreasing property, setting 𝑢 =
ln 𝑡/ ln 𝑛, we find that

𝜛𝜆 (𝜆1, 𝑛) < ln𝜆−𝜆1𝑛∫∞
1

𝑘𝜆 (ln 𝑡, ln 𝑛) ln𝜆1−1𝑡𝑡 𝑑𝑡
= ∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢𝜆1−1𝑑𝑢 = 𝑘𝜆 (𝜆1) .
(13)

Hence, we have (11).

Lemma 3. We have the following inequality:

𝐼 fl ∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛 < 𝑘1/𝑝𝜆 (𝜆 − 𝜆2)

⋅ 𝑘1/𝑞
𝜆

(𝜆1) { ∞∑
𝑚=2

ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚}
1/𝑝

⋅ {∞∑
𝑛=2

ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛}
1/𝑞 .

(14)

Proof. ByHölder’s inequality with weight (cf. [26]), we obtain

𝐼 fl ∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) [ ln(𝜆2−1)𝑝𝑛𝑛1/𝑝 ln(1−𝜆1)/𝑞𝑚𝑚−1/𝑞 𝑎𝑚]

× [ ln(𝜆1−1)/𝑞𝑚
m1/𝑞

ln(1−𝜆2)/𝑝𝑛𝑛−1/𝑝 𝑏𝑛]
≤ [ ∞∑
𝑚=2

∞∑
𝑛=2

𝑘𝜆 (ln𝑚, ln 𝑛) ln𝜆2−1𝑛𝑛 ln(𝑝−1)(1−𝜆1)𝑚𝑚1−𝑝
⋅ 𝑎𝑝𝑚]
1/𝑝 × [∞∑

𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) ln𝜆1−1𝑚𝑚
⋅ ln(𝑞−1)(1−𝜆2)−1𝑛𝑛1−𝑞 𝑏𝑞𝑛]

1/𝑞 = { ∞∑
𝑚=2

𝜔𝜆 (𝜆2, 𝑚)

⋅ ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚}
1/𝑝 × {∞∑

𝑛=2

𝜛𝜆 (𝜆1, 𝑛)

⋅ ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛}
1/𝑞 .

(15)

Then by (10) and (11), we have (14).

Remark 4. By (14), for 𝜆1 + 𝜆2 = 𝜆, we find

0 < ∞∑
𝑚=2

ln𝑝(1−𝜆1)−1𝑚𝑚1−𝑝 𝑎𝑝𝑚 < ∞

𝑎𝑛𝑑 0 < ∞∑
𝑛=2

ln𝑞(1−𝜆2)−1𝑛𝑛1−𝑝 𝑏𝑞𝑛 < ∞,
(16)

and the following inequality:

∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛 < 𝑘𝜆 (𝜆1)

⋅ [ ∞∑
𝑚=2

ln𝑝(1−𝜆1)−1𝑚𝑚1−𝑝 𝑎𝑝𝑚]
1/𝑝 [∞∑
𝑛=2

ln𝑞(1−𝜆2)−1𝑛𝑛1−𝑞 𝑏𝑞𝑛]
1/𝑞 .

(17)
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In particular, for 𝑝 = 𝑞 = 2, we have
∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛

< 𝑘𝜆 (𝜆1) ( ∞∑
𝑚=2

𝑚
ln2𝜆1−1𝑚𝑎2𝑚 ∞∑

𝑛=2

𝑛
ln2𝜆2−1𝑛𝑏2𝑛)

1/2 .
(18)

For 𝜆 = 1, 𝑘1(𝑥, 𝑦) = 1/(𝑥 + 𝑦), 𝜆1 = 𝜆2 = 1/2, (18) reduces
to (2). Hence, (17) is an extension of (18) and (2).

Lemma5. 	e constant factor 𝑘(𝜆1) in (17) is the best possible.
Proof. For any 𝜀 > 0, we set

�̃�𝑚 fl ln𝜆1−𝜀/𝑝−1𝑚𝑚 ,
𝑏𝑛 fl ln𝜆2−𝜀/𝑞−1𝑛𝑛

(𝑚, 𝑛 ∈ N \ {1}) .
(19)

If there exists a constant 𝑀 (𝑀 ≤ 𝑘𝜆(𝜆1)), such that (17) is
validwhen replacing 𝑘𝜆(𝜆1) by𝑀, then, in particular, we have

�̃� fl ∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) �̃�𝑚𝑏𝑛

< 𝑀[ ∞∑
𝑚=2

ln𝑝(1−𝜆1)−1𝑚𝑚1−𝑝 �̃�𝑝𝑚]
1/𝑝

⋅ [∞∑
𝑛=2

ln𝑞(1−𝜆2)−1𝑛𝑛1−𝑝 𝑏𝑞𝑛]
1/𝑞 .

(20)

We obtain

�̃� < 𝑀[ ∞∑
𝑚=2

ln𝑝(1−𝜆1)−1𝑚𝑚1−𝑝 ln𝑝𝜆1−𝜀−𝑝𝑚𝑚𝑝 ]1/𝑝

⋅ [∞∑
𝑛=2

ln𝑞(1−𝜆2)−1𝑛𝑛1−𝑞 ln𝑞𝜆2−𝜀−1𝑛𝑛𝑞 ]1/𝑞

= 𝑀( ln−𝜀−122 + ∞∑
𝑚=3

ln−𝜀−1𝑚𝑚 )

< 𝑀( ln−𝜀−122 + ∫∞
2

ln−𝜀−1𝑡𝑡 𝑑𝑡)
= 𝑀𝜀 ln𝜀2 ( 𝜀2 ln 2 + 1) .

(21)

By the decreasing property and Fubini theorem (cf. [27]), we
find

�̃� = ∞∑
𝑛=2

∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) ln𝜆1−1𝑚
𝑚ln𝜀/𝑝𝑚 ⋅ ln𝜆2−1𝑛𝑛ln𝜀/𝑞𝑛

≥ ∫∞
2

(∫∞
2

𝑘𝜆 (ln 𝑥, ln𝑦) ln𝜆1−𝜀/𝑝−1𝑥𝑥
⋅ ln𝜆2−𝜀/𝑞−1𝑦𝑦 𝑑𝑥) 𝑑𝑦(𝑢 = ln𝑥

ln𝑦)
= ∫∞
2

ln−𝜀−1𝑦𝑦 (∫∞
ln 2/ ln𝑦

𝑘𝜆 (𝑢, 1)
⋅ 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢)𝑑𝑦
= ∫∞
2

ln−𝜀−1𝑦𝑦 (∫1
ln 2/ ln𝑦

𝑘𝜆 (𝑢, 1)
⋅ 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢)𝑑𝑦
+ ∫∞
2

ln−𝜀−1𝑦𝑦 (∫∞
1

𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢)𝑑𝑦
= ∫1
0
(∫∞
𝜂+21/𝑢

ln−𝜀−1𝑦𝑦 𝑑𝑦)𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢
+ 1𝜀ln𝜀2 ∫∞

1
𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢

= 1𝜀ln𝜀2 (∫1
0
𝑘𝜆 (𝑢, 1) 𝑢𝜆1+𝜀/𝑞−1𝑑𝑢 + ∫∞

1
𝑘𝜆 (𝑢, 1)

⋅ 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢) .

(22)

Then we have

∫1
0
𝑘𝜆 (𝑢, 1) 𝑢𝜆1+𝜀/𝑞−1𝑑𝑢 + ∫∞

1
𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢

< 𝑀( 𝜀2 ln 2 + 1) .
(23)

For 𝜀 → 0+, by Fatou lemma (cf. [27]), we find

𝑘𝜆 (𝜆1) = ∫1
0

lim
𝜀→0+

𝑘𝜆 (𝑢, 1) 𝑢𝜆1+𝜀/𝑞−1𝑑𝑢
+ ∫∞
1

lim
𝜀→0+

𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢]
≤ lim
𝜀→0+

(∫1
0
𝑘𝜆 (𝑢, 1) 𝑢𝜆1+𝜀/𝑞−1𝑑𝑢

+ ∫∞
1

𝑘𝜆 (𝑢, 1) 𝑢𝜆1−𝜀/𝑝−1𝑑𝑢) ≤ 𝑀.

(24)

Hence,𝑀 = 𝑘𝜆(𝜆1) is the best possible constant factor of (17).
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Remark 6. Setting �̂�1 fl (𝜆 −𝜆2)/𝑝+𝜆1/𝑞, �̂�2 fl (𝜆 −𝜆1)/𝑞 +𝜆2/𝑝, we find
�̂�1 + �̂�2 = 𝜆 − 𝜆2𝑝 + 𝜆1𝑞 + 𝜆 − 𝜆1𝑞 + 𝜆2𝑝 = 𝜆𝑝 + 𝜆𝑞 = 𝜆,

�̂�1 ≤ 1𝑝 + 1𝑞 = 1,
�̂�2 ≤ 1𝑞 + 1𝑝 = 1,

(25)

and by Hölder’s inequality (cf. [26]), we have

0 < 𝑘𝜆 (𝜆 − �̂�2) = 𝑘𝜆 (�̂�1) = 𝑘𝜆 (𝜆 − 𝜆2𝑝 + 𝜆1𝑞 )
= ∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢(𝜆−𝜆2)/𝑝+𝜆1/𝑞−1𝑑𝑢
= ∫∞
0

𝑘𝜆 (𝑢, 1) (𝑢(𝜆−𝜆2−1)/𝑝) (𝑢(𝜆1−1)/𝑞) 𝑑𝑢
≤ (∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢𝜆−𝜆2−1𝑑𝑢)1/𝑝

⋅ (∫∞
0

𝑘𝜆 (𝑢, 1) 𝑢𝜆1−1𝑑𝑢)1/𝑞 = 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2)
⋅ 𝑘1/𝑞𝜆 (𝜆1) < ∞.

(26)

We can rewrite (14) as follows:

𝐼 < 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) [[
∞∑
𝑚=2

ln𝑝(1−
̂
𝜆1)−1𝑚𝑚1−𝑝 𝑎𝑝𝑚]]

1/𝑝

⋅ [
[
∞∑
𝑛=2

ln𝑞(1−
̂
𝜆2)−1𝑛𝑛1−𝑞 𝑏𝑞𝑛]]

1/𝑞

.
(27)

Lemma 7. If the constant factor 𝑘1/𝑝
𝜆

(𝜆−𝜆2)𝑘1/𝑞𝜆 (𝜆1) in (14) is
the best possible, then 𝜆1 + 𝜆2 = 𝜆.
Proof. If the constant factor 𝑘1/𝑝

𝜆
(𝜆−𝜆2)𝑘1/𝑞𝜆 (𝜆1) in (14) is the

best possible, then, by (27) and (17), the unique best possible
constant factor must be 𝑘𝜆(�̂�1)(∈ R+), namely,

𝑘𝜆 (�̂�1) = 𝑘1/𝑝𝜆 (𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) . (28)

We observe that (26) keeps the form of equality if and only
if there exist constants𝐴and𝐵, such that they are not all zero
and (cf. [26])

𝐴𝑢𝜆−𝜆2−1 = 𝐵𝑢𝜆1−1𝑎.𝑒. in R+ = (0,∞) . (29)

Assuming that 𝐴 ̸= 0 (otherwise, 𝐵 = 𝐴 = 0), it follows that𝑢𝜆−𝜆2−𝜆1 = 𝐵/𝐴 𝑎.𝑒. in R+, and then 𝜆 − 𝜆2 − 𝜆1 = 0, namely,𝜆1 + 𝜆2 = 𝜆.

3. Main Results

Theorem 8. Inequality (14) is equivalent to

𝐽 fl [∞∑
𝑛=2

ln𝑝((𝜆−𝜆1)/𝑞+𝜆2/𝑝)−1𝑛𝑛 ( ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛)

⋅ 𝑎𝑚)
𝑝]1/𝑝 < 𝑘1/𝑝

𝜆
(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1)

⋅ { ∞∑
𝑚=2

ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚}
1/𝑝 .

(30)

If the constant factor in (14) is the best possible, then so is the
constant factor in (30).

Proof. Suppose that (30) is valid. By Hölder’s inequality (cf.
[26]), we find

𝐼 = ∞∑
𝑛=2

[ ln−1/𝑝+((𝜆−𝜆1)/𝑞+𝜆2/𝑝)𝑛𝑛1/𝑝
∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚]

⋅ [ ln1/𝑝−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)𝑛𝑛−1/𝑝 𝑏𝑛]

≤ 𝐽{∞∑
𝑛=2

ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛}
1/𝑞 .

(31)

Then by (30), we obtain (14).
On the other hand, assuming that (14) is valid, we set

𝑏𝑛
fl

ln𝑝((𝜆−𝜆1)/𝑞+𝜆2/𝑝)−1𝑛𝑛 ( ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚)
𝑝−1 ,

𝑛 ∈ N \ {1} .
(32)

If 𝐽 = 0, then (30) is naturally valid; if 𝐽 = ∞, then it is
impossible to make (30) valid, namely, 𝐽 < ∞. Suppose that0 < 𝐽 < ∞. By (14), it follows that

∞∑
𝑛=2

ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛 = 𝐽𝑝 = 𝐼
< 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1)
⋅ { ∞∑
𝑚=2

ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚}
1/𝑝

⋅ {∞∑
𝑛=2

ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛}
1/𝑞 ,
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𝐽 = {∞∑
𝑛=2

ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 𝑏𝑞𝑛}
1/𝑝

< 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1)
⋅ { ∞∑
𝑚=2

ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 𝑎𝑝𝑚}
1/𝑝 ,

(33)

namely, (30) follows, which is equivalent to (14).
If the constant factor in (14) is the best possible, then so

is constant factor in (30). Otherwise, by (31), we would reach
a contradiction that the constant factor in (14) is not the best
possible.

Theorem 9. 	e statements (i), (ii), (iii), and (iv) are equiva-
lent as follows:

(i) 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) is independent of 𝑝, 𝑞
(ii) 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) is expressible as a single integral
(iii) 𝑘1/𝑝

𝜆
(𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) is the best possible constant factor

of (14)

(iv) 𝜆1 + 𝜆2 = 𝜆
If the statement (iv) follows, namely, 𝜆1 + 𝜆2 = 𝜆, then

we have (17) and the following equivalent inequality with the
best possible constant factor 𝑘𝜆(𝜆1):

[∞∑
𝑛=2

ln𝑝𝜆2−1𝑛𝑛 ( ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚)
𝑝]1/𝑝

< 𝑘𝜆 (𝜆1) [ ∞∑
𝑚=2

ln𝑝(1−𝜆1)−1𝑚𝑚1−𝑝 𝑎𝑝𝑚]
1/𝑝 .

(34)

Proof. (i)=>(ii). Since 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) is independent of𝑝, 𝑞, we find
𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1)
= lim
𝑝→∞

lim
𝑞→1+

𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) = 𝑘𝜆 (𝜆1) , (35)

namely, 𝑘1/𝑝
𝜆

(𝜆 −𝜆2)𝑘1/𝑞𝜆 (𝜆1) is expressible as a single integral
𝑘𝜆 (𝜆1) = ∫∞

0
𝑘𝜆 (𝑢, 1) 𝑢𝜆1−1𝑑𝑢. (36)

(ii)=>(iv). In (26), if 𝑘1/𝑝
𝜆

(𝜆 −𝜆2)𝑘1/𝑞𝜆 (𝜆1) is expressible as
a single integral 𝑘𝜆((𝜆 − 𝜆2)/𝑝 + 𝜆1/𝑞), then (26) keeps the
form of equality, which follows that 𝜆1 + 𝜆2 = 𝜆.

(iv)=>(i). If 𝜆1 + 𝜆2 = 𝜆, then 𝑘1/𝑝𝜆 (𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) =𝑘𝜆(𝜆1), which is independent of 𝑝, 𝑞. Hence, we have
(i)⇐⇒(ii)⇐⇒(iv).

(iii)=>(iv). By Lemma 7, we have 𝜆1 + 𝜆2 = 𝜆.

(iv)=>(iii). By Lemma 5, for 𝜆1 + 𝜆2 = 𝜆, 𝑘1/𝑝𝜆 (𝜆 −
𝜆2)𝑘1/𝑞𝜆 (𝜆1)(= 𝑘𝜆(𝜆1)) is the best possible constant factor of
(14). Therefore, we have (iii)⇐⇒(iv).

Hence, the statements (i), (ii), (iii), and (iv) are equivalent.

Remark 10. (i) For 𝜆 = 1, 𝜆1 = 1/𝑞, 𝜆2 = 1/𝑝 in (17) and
(34), we have the following equivalent inequalities with the
best possible constant factor 𝑘1(1/𝑞):

∞∑
𝑛=2

∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛

< 𝑘1 (1𝑞)( ∞∑
𝑚=2

𝑎𝑝𝑚𝑚1−𝑝)
1/𝑝 (∞∑
𝑛=2

𝑏𝑞𝑛𝑛1−𝑞)
1/𝑞 ,

(37)

[∞∑
𝑛=2

1𝑛 ( ∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚)
𝑝]1/𝑝

< 𝑘1 (1𝑞)( ∞∑
𝑚=2

𝑎𝑝𝑚𝑚1−𝑝)
1/𝑝 .

(38)

(ii) For𝜆 = 1, 𝜆1 = 1/𝑝, 𝜆2 = 1/𝑞 in (17) and (34), we have
the following equivalent inequalities with the best possible
constant factor 𝑘1(1/𝑝):
∞∑
𝑛=2

∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛

< 𝑘1 ( 1𝑝)( ∞∑
𝑚=2

ln𝑝−2𝑚𝑚1−𝑝 𝑎𝑝𝑚)
1/𝑝 (∞∑
𝑛=2

ln𝑝−2𝑛𝑛1−𝑞 𝑏𝑞𝑛)
1/𝑞 ,

(39)

[∞∑
𝑛=2

ln𝑝−2𝑛𝑛 ( ∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚)
𝑝]1/𝑝

< 𝑘1 ( 1𝑝)( ∞∑
𝑚=2

ln𝑝−2𝑚𝑚1−𝑝 𝑎𝑝𝑚)
1/𝑝 .

(40)

(iii) For 𝑝 = 𝑞 = 2, both (37) and (39) reduce to

∞∑
𝑛=2

∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚𝑏𝑛

< 𝑘1 (12)(
∞∑
𝑚=2

𝑚𝑎2𝑚 ∞∑
𝑛=2

𝑛𝑏2𝑛)
1/2 ,

(41)

and both (38) and (40) reduce to the equivalent form of (41)
as follows:

[∞∑
𝑛=2

1𝑛 ( ∞∑
𝑚=2

𝑘1 (ln𝑚, ln 𝑛) 𝑎𝑚)
2]
1/2

< 𝑘1 (12)(
∞∑
𝑚=2

𝑚𝑎2𝑚)
1/2 .

(42)



6 Abstract and Applied Analysis

4. Operator Expressions and
Some Particular Cases

We set functions

𝜑 (𝑚) fl ln𝑝[1−((𝜆−𝜆2)/𝑝+𝜆1/𝑞)]−1𝑚𝑚1−𝑝 ,
𝜓 (𝑛) fl ln𝑞[1−((𝜆−𝜆1)/𝑞+𝜆2/𝑝)]−1𝑛𝑛1−𝑞 ,

(43)

where

𝜓1−𝑝 (𝑛) = ln𝑝((𝜆−𝜆1)/𝑞+𝜆2/𝑝)−1𝑛𝑛 (𝑚, 𝑛 ∈ N \ {1}) . (44)

Define the following real normed spaces:

𝑙𝑝,𝜑 fl {𝑎 = {𝑎𝑚}∞𝑚=2 ; ‖𝑎‖𝑝,𝜑 fl ( ∞∑
𝑚=2

𝜑 (𝑚) 𝑎𝑚𝑝)
1/𝑝

< ∞} ,

𝑙𝑞,𝜓 fl {𝑏 = {𝑏𝑛}∞𝑛=2 ; ‖𝑏‖𝑞,𝜓 fl (∞∑
𝑛=2

𝜓 (𝑛) 𝑏𝑛𝑞)
1/𝑞

< ∞} ,

𝑙𝑝,𝜓1−𝑝 fl {𝑐 = {𝑐𝑛}∞𝑛=2 ; ‖𝑐‖𝑝,𝜓1−𝑝

fl (∞∑
𝑛=2

𝜓1−𝑝 (𝑛) 𝑐𝑛𝑝)
1/𝑝 < ∞} .

(45)

Assuming that 𝑎 ∈ 𝑙𝑝,𝜑, setting
𝑐 = {𝑐𝑛}∞𝑛=2 ,
𝑐𝑛 fl ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚,
𝑛 ∈ N \ {1} ,

(46)

we can rewrite (30) as follows:

‖𝑐‖𝑝,𝜓1−𝑝 < 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) ‖𝑎‖𝑝,𝜑 < ∞, (47)

namely, 𝑐 ∈ 𝑙𝑝,𝜓1−𝑝 .
Definition 11. Define a Mulholland-type operator 𝑇 : 𝑙𝑝,𝜑 →𝑙𝑝,𝜓1−𝑝 as follows: for any 𝑎 ∈ 𝑙𝑝,𝜑, there exists a unique
representation 𝑐 ∈ 𝑙𝑝,𝜓1−𝑝 . Define the formal inner product
of 𝑇𝑎 and 𝑏 ∈ 𝑙𝑞,𝜓 and the norm of 𝑇 as follows:

(𝑇𝑎, 𝑏) fl ∞∑
𝑛=2

( ∞∑
𝑚=2

𝑘𝜆 (ln𝑚, ln 𝑛) 𝑎𝑚)𝑏𝑛,

‖𝑇‖ fl sup
𝑎( ̸=𝜃)∈𝑙𝑝,𝜑

‖𝑇𝑎‖𝑝,𝜓1−𝑝‖𝑎‖𝑝,𝜑 .
(48)

ByTheorems 8 and 9, we have the following.

Theorem 12. If 𝑎 ∈ 𝑙𝑝,𝜑, 𝑏 ∈ 𝑙𝑞,𝜓, ‖𝑎‖𝑝,𝜑, ‖𝑏‖𝑞,𝜓 > 0, then we
have the following equivalent inequalities:

(𝑇𝑎, 𝑏) < 𝑘1/𝑝
𝜆

(𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) ‖𝑎‖𝑝,𝜑 ‖𝑏‖𝑞,𝜓 , (49)

‖𝑇𝑎‖𝑝,𝜓1−𝑝 < 𝑘1/𝑝𝜆 (𝜆 − 𝜆2) 𝑘1/𝑞𝜆 (𝜆1) ‖𝑎‖𝑝,𝜑 . (50)

Moreover, 𝜆1 + 𝜆2 = 𝜆 if and only if the constant factor𝑘1/𝑝
𝜆

(𝜆 − 𝜆2)𝑘1/𝑞𝜆 (𝜆1) = 𝑘𝜆(𝜆1) in (49) and (50) is the best
possible, namely,

‖𝑇‖ = 𝑘𝜆 (𝜆1) . (51)

Example 13. We set 𝑘𝜆(𝑥, 𝑦) fl 1/(𝑐𝑥 + 𝑦)𝜆 (𝑐, 𝜆 > 0; 𝑥, 𝑦 >0). Then we find 𝑘𝜆(ln𝑚, ln 𝑛) = 1/ln𝜆𝑚𝑐𝑛. For 0 < 𝜆𝑖, 𝜆 −𝜆𝑖 ≤ 1 (𝑖 = 1, 2), 𝑘𝜆(𝑥, 𝑦) is a positive homogeneous function
of degree −𝜆, such that 𝑘𝜆(𝑥, 𝑦) is decreasing with respect
to𝑥, 𝑦 > 0, and for 𝛾 = 𝜆1, 𝜆 − 𝜆2,

𝑘𝜆 (𝛾) = ∫∞
0

𝑢𝛾−1
(𝑐𝑢 + 1)𝜆 𝑑𝑢 = 1𝑐𝛾 ∫

∞

0

V𝛾−1

(V + 1)𝜆 𝑑V
= 1𝑐𝛾𝐵 (𝛾, 𝜆 − 𝛾) ∈ R+.

(52)

In view of Theorem 12, it follows that 𝜆1 + 𝜆2 = 𝜆 if and
only if

‖𝑇‖ = 𝑘𝜆 (𝜆1) = 1𝑐𝜆1 𝐵 (𝜆1, 𝜆2) . (53)

Example 14. We set 𝑘𝜆(𝑥, 𝑦) fl ln(𝑐𝑥/𝑦)/(𝑐𝑥)𝜆 − 𝑦𝜆 (𝑐 >0, 𝜆 > 0; 𝑥, 𝑦 > 0). Then we find 𝑘𝜆(ln𝑚, ln 𝑛) =
ln(ln𝑚𝑐/ ln 𝑛)/(ln𝜆𝑚𝑐−ln𝜆𝑛). For 0 < 𝜆𝑖, 𝜆−𝜆𝑖 ≤ 1 (𝑖 = 1, 2),𝑘𝜆(𝑥, 𝑦) is a positive homogeneous function of degree −𝜆,
such that 𝑘𝜆(𝑥, 𝑦) is decreasing with respect to𝑥, 𝑦 > 0 (cf.
[2], Example 2.2.1), and for 𝛾 = 𝜆1, 𝜆 − 𝜆2,

𝑘𝜆 (𝛾) = ∫∞
0

𝑢𝛾−1 ln (𝑐𝑢)
(𝑐𝑢)𝜆 − 1 𝑑𝑢

= 1𝑐𝛾𝜆2 ∫
∞

0

V(𝛾/𝜆)−1 ln V
V − 1 𝑑V

= 1𝑐𝛾 [ 𝜋𝜆 sin (𝜋𝛾/𝜆)]
2 ∈ R+.

(54)

In view of Theorem 12, it follows that 𝜆1 + 𝜆2 = 𝜆 if and
only if

‖𝑇‖ = 𝑘𝜆 (𝜆1) = 1𝑐𝜆1 [ 𝜋𝜆 sin (𝜋𝜆1/𝜆)]
2 . (55)

Example 15. We set 𝑘𝜆(𝑥, 𝑦) fl 1/∏𝑠𝑘=1(𝑥𝜆/𝑠 + 𝑐𝑘𝑦𝜆/𝑠) (0 <𝑐1 ≤ ⋅ ⋅ ⋅ ≤ 𝑐𝑠, 𝜆 > 0; 𝑥, 𝑦 > 0). Then we find

𝑘𝜆 (ln𝑚, ln 𝑛) = 1
∏𝑠𝑘=1 (ln𝜆/𝑠𝑚 + 𝑐𝑘ln𝜆/𝑠𝑛) . (56)
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For 0 < 𝜆𝑖, 𝜆 − 𝜆𝑖 ≤ 1 (𝑖 = 1, 2), 𝑘𝜆(𝑥, 𝑦) is a positive
homogeneous function of degree −𝜆, such that 𝑘𝜆(𝑥, 𝑦) is
decreasing with respect to 𝑥, 𝑦 > 0, and for 𝛾 = 𝜆1, 𝜆 − 𝜆2, by
Example 1 of [28], it follows that

𝑘𝜆(𝑠) (𝛾) = ∫∞
0

𝑡𝛾−1∏𝑠𝑘=1 (𝑡𝜆/𝑠 + 𝑐𝑘)𝑑𝑡
= 𝜋𝑠𝜆 sin (𝜋𝑠𝛾/𝜆)

𝑠∑
𝑘=1

𝑐𝑠𝛾/𝜆−1𝑘

𝑠∏
𝑗=1(𝑗 ̸=𝑘)

1𝑐𝑗 − 𝑐𝑘
∈ R+.

(57)

In view of Theorem 12, it follows that 𝜆1 + 𝜆2 = 𝜆 if and
only if

‖𝑇‖ = 𝑘𝜆(𝑠) (𝜆1)
= 𝜋𝑠𝜆 sin (𝜋𝑠𝜆1/𝜆)

𝑠∑
𝑘=1

𝑐𝑠𝜆1/𝜆−1
𝑘

𝑠∏
𝑗=1(𝑗 ̸=𝑘)

1𝑐𝑗 − 𝑐𝑘 .
(58)

In particular, for 𝑐1 = ⋅ ⋅ ⋅ = 𝑐𝑠 = 𝑐, we have 𝑘𝜆(𝑥, 𝑦) =1/(𝑥𝜆/𝑠 + 𝑐𝑦𝜆/𝑠)𝑠 and
‖𝑇‖ = �̃�𝜆(𝑠) (𝜆1) fl ∫∞

0

𝑡𝜆1−1
(𝑡𝜆/𝑠 + 𝑐)𝑠 𝑑𝑡

= 𝑠𝜆𝑐[1−(𝜆1/𝜆)]𝑠 ∫
∞

0

V𝑠𝜆1/𝜆−1(V + 1)𝑠 𝑑V
= 𝑠𝜆𝑐[1−(𝜆1/𝜆)]𝑠𝐵(𝑠𝜆1𝜆 , 𝑠𝜆2𝜆 ) .

(59)

If 𝑠 = 1, then we have 𝑘𝜆(𝑥, 𝑦) = 1/(𝑥𝜆+𝑐𝑦𝜆), 𝑘𝜆(ln𝑚, ln 𝑛) =1/(ln𝜆𝑚 + 𝑐ln𝜆𝑛), and
‖𝑇‖ = �̃�𝜆(1) (𝜆1) = 1𝜆𝑐1−(𝜆1/𝜆) 𝜋

sin (𝜋𝜆1/𝜆) . (60)

5. Conclusions

In this paper, by the use of the weight functions and the
idea of introducing parameters, a discrete Mulholland-type
inequality with the general homogeneous kernel and the
equivalent form are given in Lemma 3 and Theorem 8. The
equivalent statements of the best possible constant factor
related to a few parameters are considered in Theorem 9. As
applications, the operator expressions and some particular
examples are given in Theorem 12 and Examples 13–15. The
lemmas and theorems provide an extensive account of this
type of inequalities.
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