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In this paper, a mathematical model of pneumococcal pneumonia with time delays is proposed. The stability theory of delay
differential equations is used to analyze the model. The results show that the disease-free equilibrium is asymptotically stable if
the control reproduction ratio 𝑅0 is less than unity and unstable otherwise. The stability of equilibria with delays shows that the
endemic equilibrium is locally stable without delays and stable if the delays are under conditions.The existence of Hopf-bifurcation
is investigated and transversality conditions are proved.Themodel results suggest that, as the respective delays exceed some critical
value past the endemic equilibrium, the system loses stability through the process of local birth or death of oscillations. Further,
a decrease or an increase in the delays leads to asymptotic stability or instability of the endemic equilibrium, respectively. The
analytical results are supported by numerical simulations.

1. Introduction

Worldwide, pneumococcal pneumonia disease continues to
be a major cause of morbidity and mortality in persons of
all ages and the leading cause of bacterial childhood disease,
despite a century of study and the development of antibiotics
and vaccination [1, 2]. Pneumococci are different, with 90
recognized serotypes; several of these serotypes are capable
of causing invasive disease [3]. Pneumococcal pneumonia
infections may follow a viral infection, like a cold or flu
(influenza) [4], and cause the following types of illnesses
depending on the affected part of the body: invasive pneu-
mococcal diseases (IPD) such as meningitis, bacteremia,
and bacteremic pneumonia; lower respiratory tract infections
(e.g., pneumonia), and upper respiratory tract infections
(e.g., otitis media and sinusitis) [5]. The wide spread of
the disease may be promoted by potentially asymptomatic
persons (incubation individuals) [6, 7] and an individual
remains in the exposed class for a certain latent period prior
to becoming infective [8, 9].

Diseases exhibit a lot of economic burden including
productivity loss, health care related expenses, losses due
to disease related mortality, and loss of employment [10].
Globally, an estimated 14.5 million episodes of serious pneu-
mococcal disease occur each year among children under 5
years of age, resulting in approximately 500,000 deaths [11],
most of which occur in low and middle-income countries
[12, 13]. Pneumonia is the most common form of severe
pneumococcal disease, accounting for 15 % of all deaths of
children under 5 years and killing an estimated 922,000 in
2015, and is the leading cause of death in this age group [14].

Vaccination is a highly efficient means of preventing
diseases and death [15]. A vaccine consists of a killed or
weakened form or derivative of the infectious germ. Once
administered to a healthy person, the vaccine activates an
immune response and makes the body to assume that it
is being attacked by a specific organism [16]. Decrease of
invasive pneumococcal disease (IPD) has been managed
by pneumococcal conjugate vaccines (PCVs), and they are
among the many ongoing stories of vaccine successes around
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Table 1: Description of variables.

Variable Description [unit]
S(t) Number of susceptible individuals at time 𝑡 individual𝑉(𝑡) Number of vaccinated individuals at time 𝑡 individual𝐸(𝑡) Number of asymptomatic individuals at time 𝑡 individual𝐶(𝑡) Number of individuals with one serotype not covered by the vaccine individual𝐼(𝑡) Number of infectious individuals at time 𝑡 individual

the world. One dose of vaccine does not protect all receivers
because vaccine-induced immunity is lost after some period
of time [17, 18].

Time delays are significant in the transmission process
of epidemics and arise due to delayed feedback especially
the period for waning vaccine-induced immunity, latent
period of infection, the infectious period, and the immunity
period [19–21]. Among the mathematical tools currently
used, delay differential models with time delay have attracted
attention in the field of science especially modeling infectious
diseases. Delays change the dynamical systems’ stability by
giving rise to Hopf-bifurcations [19, 22]. Works done by
researchers, for example, [8, 23–26], demonstrate the role
played by time delays in different capacities in controlling
the spread of infectious diseases. Sharma et al. [27] discussed
avian influenza transmission dynamicswith twodiscrete time
delays as incubation periods of avian influenza in the human
and avian populations and found out that increment in time
delays occurrence results into decrease in infected human
population.

In this paper, we explore the effect of two delays on
pneumococcal pneumonia disease. We incorporate a time
delay in the latent class because there is delayed time from
the time an individual is infected and when one becomes
infectious. A second time delay of seeking medical care is
included in the infectious class. Not seekingmedical attention
leaves individuals’ behaviors unchanged not to respond to
existing control measures and more individuals become
infected.

This paper is organized as follows. In Section 2, we present
the description and formulation of the time delay model
of pneumococcal pneumonia dynamics. In Section 3, we
present the stability of the steady states. Existence of Hopf-
bifurcation is presented in Section 4. In Section 5, numerical
simulations and results of the model are presented to support
the analytical findings; a discussion is given in Section 6.

2. Model Description and Formulation

We formulate a model for the dynamics of the bacterial
pneumonia (pneumococcal) in a human population with the
total population size at time 𝑡, denoted by𝑁(𝑡). The popula-
tion is subdivided into sixmutually exclusive epidemiological
classes: susceptible, vaccinated, exposed, carrier, and infected
denoted by 𝑆(𝑡), 𝑉(𝑡), 𝐸(𝑡), 𝐶(𝑡), and 𝐼(𝑡), respectively. The
mathematical formulation adopts a mass-action incidence
because it is important in deciding the dynamics of epidemic
models [36], where the contact rate depends on the size of
the total human population [37]. We assume a continuous

vaccination strategy that is received by the recruited suscep-
tible individuals at a rate ] and that vaccination does not
affect the infectious [38]. We assume vaccination is not 100%
efficient, which means there is a chance of being infectious
or carrier in small proportions and the force of infection
for the vaccinated class is 𝜗𝛽𝐼(𝑡), where 0 ≤ 𝜗 < 1 is
the proportion of the serotype not covered by vaccine [39].
The increase in the number of susceptible individuals comes
from a constant recruitment 𝑏 through birth or migration
and recovery of individuals. Several vaccines wane with
time, and so vaccinated individuals return to the susceptible
compartment, at a waning rate 𝜁. The susceptible individuals
become infected through a force of infection 𝛽𝐼(𝑡) and move
to the latent class 𝐸(𝑡).

The latent class, 𝐸(𝑡), accounts for a time delay 𝜏1 > 0 of
the exposed individuals, i.e., the period between the time of
an infection onset and the time of developing pneumococcal
clinical symptoms (assume that an individual is infectious
upon exposure to influenza A disease that promotes severe
pneumococcal pneumonia). The probability (survivorship
function) of an individual surviving the natural mortality
through the latent period [𝑡 − 𝜏1, 𝑡] is 𝑒−𝜇𝜏1 and exposed indi-
viduals transfer to the infectious class at a rate 𝛾. Individuals
in the carrier class 𝐶(𝑡) become symptomatic and join the
infected class at a rate 𝜌.

The infectious class 𝐼(𝑡) accounts for a time delay 𝜏2 > 0:
the time taken by infected individuals to seek medical care.
We assume that infected individuals who survive the natural
mortality through the infectious period [𝑡 − 𝜏2, 𝑡] have a sur-
vivorship function 𝑒−𝜇𝜏2 . Moreover, infected individuals that
delay to seek medical care die of pneumococcal pneumonia
at a rate 𝛿. Infectious individuals upon recovery transfer to
the susceptible class at a rate 𝜙. All classes exhibit a per capita
natural mortality rate 𝜇.

The description of model variables and parameters is
summarized in Tables 1 and 2.

The compartmental diagram of the model is shown in
Figure 1.

Based on the description of model variables, parameters,
and assumptions in Tables 1 and 2., the dynamics of themodel
are governed by the following differential equations:̇𝑆 (𝑡) = 𝑏 + 𝜁𝑉 (𝑡) + 𝜙𝐼 (𝑡) − (] + 𝜇 + 𝛽𝐼 (𝑡)) 𝑆 (𝑡) ,�̇� (𝑡) = ]𝑆 (𝑡) − (𝜇 + 𝜁)𝑉 (𝑡) − 𝛽1𝐼 (𝑡) 𝑉 (𝑡) ,�̇� (𝑡) = 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛾𝑒−𝜇𝜏1𝐸 (𝑡 − 𝜏1) − 𝜇𝐸 (𝑡) ,�̇� (𝑡) = 𝛽1𝐼 (𝑡) 𝑉 (𝑡) − (𝜌 + 𝜇)𝐶 (𝑡) ,
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Table 2: Description of parameters.

Parameter Description value/unit Source𝑏 Recruitment rate 22 day−1 estd
] Effective vaccination rate 2.53 × 10−5 [28]𝛾 Transfer rate from 𝐸 to I class 3.3333 × 10−1 day−1 assumed𝜇 Natural mortality rate from causes unrelated to the infection 2.0547 × 10−3 [29]𝛿 Disease–induced mortality rate 3.3 × 10−1 day−1 [30]𝜌 Progression rate from 𝐶 to 𝐼 class 1.096 × 10−2 day−1 [31]𝜙 Per capita rate of recovery 3.5714 × 10−2day−1 [32]𝜁 Waning rate of vaccine 5.4794 × 10−4day−1 [32]𝜗 Proportion of the sero–type not covered by vaccine 0.54 [33]𝛽 Transmission coefficient 1.0102 × 10−4 day−1 assumed𝜏1 Delay for the incubating individuals 1–3 days [34]𝜏2 Delay in seeking medical care 2 days [35]
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Figure 1: A schematic diagram showing the dynamics of pneu-
mococcal pneumonia. The dotted lines represent contacts made by
individuals in the respective classes and the solid lines show transfer
from one class to another.

̇𝐼 (𝑡) = 𝜌𝐶 (𝑡) + 𝛾𝑒−𝜇𝜏1𝐸 (𝑡 − 𝜏1) − 𝛿𝑒−𝜇𝜏2𝐼 (𝑡 − 𝜏2)− (𝜇 + 𝜙) 𝐼 (𝑡) ,
(1)

where 𝛽1 = 𝜗𝛽.
2.1. Positivity of Solutions. System (1) is a representation of
the dynamics of the human populations; thus it is required
that all solutions are nonnegative. We use the approach of
Bodna [40] and Yang et al. [41]; we let 𝐶 be a Banach
space of continuous real valued functions 𝜓 : [−𝜏, 0] → R5

+
equipped with the supremum norm, ‖𝜓‖𝐶 = sup𝑡∈[−𝜏,0]{|𝜓1|,|𝜓2|, |𝜓3|, |𝜓4|, |𝜓5|}. The initial conditions of system (1) are
represented by 𝑆 (𝑡) = 𝜓1 (𝑡) ,𝑉 (𝑡) = 𝜓2 (𝑡) ,𝐸 (𝑡) = 𝜓3 (𝑡) ,𝐶 (𝑡) = 𝜓4 (𝑡) ,

𝐼 (𝑡) = 𝜓5 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0,
(2)

where 𝜏 = max{𝜏1, 𝜏2} and𝜓 = (𝜓1, 𝜓2, 𝜓3, 𝜓4, 𝜓5)𝑇 ∈ 𝐶, such
that 𝜓𝑖(𝑡) = 𝜓𝑖(0) ≥ 0 (𝑖 = 1, 2, 3, 4, 5). The following Lemma
establishes the positivity of the solutions of system (1).

Lemma 1. Any solution of trajectories (1) with 𝜓𝑖(𝑡) > 0; 𝑡 ∈[−𝜏, 0] remains positive whenever it exists.

Proof. Suppose 𝑆(𝑡) was to lose positivity on some local
existence interval [0, 𝑇) for some constant 𝑇 > 0; there would
be a time at 𝑡1 = sup{𝑡 > 0 : 𝑆(𝑡) > 0} such that 𝑆(𝑡1) = 0.

From the first equation of system (1), it follows that𝑏 + 𝜁𝑉 (𝑡) + 𝜙𝐼 (𝑡) − (] + 𝜇) 𝑆 (𝑡) − 𝛽𝐼 (𝑡) 𝑆 (𝑡) > 0. (3)

This implies that 𝑆(𝑡) < 0 for 𝑡 ∈ (𝑡1 − 𝜀, 𝑡1), where 𝜀 is an
arbitrary small positive constant. This leads to a contradic-
tion; it thus follows that 𝑆(𝑡) is always positive. Hence from
the fundamental theory of differential equations, it is shown
that there exists a unique solution for 𝑆(𝑡) of system (1) with
initial data in R5

+ as follows:𝑑𝑑𝑡 (𝑆 (𝑡) 𝑒∫�푡0 (]+𝜇+𝛽𝐼(𝑡))𝑑𝜉)= 𝑒∫�푡0 (]+𝜇+𝛽𝐼(𝑡))𝑑𝜉 (𝑏 + 𝜁𝑉 (𝑡) + 𝜙𝐼 (𝑡)) ,𝑆 (𝑡)= ∫𝑡

0
((𝑏 + 𝜁𝑉 (𝜎) + 𝜙𝐼 (𝜎)) 𝑒−(]+𝜇)𝑡−∫�푡�휎 𝛽𝐼(𝜉)𝑑𝜉𝑑𝜎+ 𝜓1 (0) 𝑒−(]+𝜇)𝑡−∫�푡0 𝛽𝐼(𝜉)𝑑𝜉.

(4)

Therefore,𝑆 (𝑡1)= 𝜓1 (0) 𝑒−(]+𝜇)𝑡1−∫�푡10 𝛽𝐼(𝜉)𝑑𝜉
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+ ∫𝑡1

0
((𝑏 + 𝜁𝑉 (𝜎) + 𝜙𝐼 (𝜎)) 𝑒−(]+𝜇)𝑡1−∫�푡1�휎 𝛽𝐼(𝜉)𝑑𝜉𝑑𝜎> 0.

(5)

Since 𝑆(𝑡1) > 0, then 𝑆(𝑡) > 0, 𝑡 ≥ 0. This completes the
proof.

Similarly, it can be shown that𝑉 (𝑡2) = 𝜓2 (0) 𝑒−(𝜇+𝜁)𝑡2−∫�푡20 𝛽𝐼(𝜉)𝑑𝜉+ ∫𝑡2

0
𝑒∫�푡2�휎 (𝜇+𝜁+𝛽1𝐼(𝜉))𝑑𝜉]𝑆 (𝜎) 𝑑𝜎 > 0. (6)

𝐸 (𝑡3) = 𝑒−𝜇𝑡3𝜓3 (0) + 𝑒−𝜇𝑡3 (∫𝑡3

0
𝑒𝜇𝜉 (𝛽𝐼 (𝜉) 𝑆 (𝜉)

− 𝛾𝑒−𝜇𝜏1𝐸 (𝜉 − 𝜏1)) 𝑑𝜉) > 0. (7)

𝐶 (𝑡4) = 𝑒−(𝜌+𝜇)𝑡4 (𝜓4 (0) + ∫𝑡4

0
(𝛽1𝐼 (𝜉) 𝑉 (𝜉))⋅ 𝑒(𝜌+𝜇)𝜉𝑑𝜉) > 0, (8)

and𝐼 (𝑡5) = 𝜓5 (0) 𝑒−(𝜇+𝜙)𝑡5 + 𝑒−(𝜇+𝜙)𝑡5 (∫𝑡5

0
(𝜌𝐶 (𝜎)

+ 𝛾𝑒−𝜇𝜏1𝐸 (𝜎 − 𝜏1) − 𝛿𝑒−𝜇𝜏2𝐼 (𝜎 − 𝜏2)) 𝑒(𝜇+𝜙)𝜎)𝑑𝜎 (9)

Therefore, from the above integral forms of (5) to (9) all
solution trajectories are positive for all time 𝑡 > 0 on [0, +∞].
2.2. Boundedness. For boundedness of system (1) with initial
condition (2), we consider the following lemma.

Lemma 2. The closed setΩ𝑑 = {𝑆 (𝑡) , 𝑉 (𝑡) , 𝐸 (𝑡) , 𝐶 (𝑡) , 𝐼 (𝑡) , 𝑅 (𝑡)} ∈ R
5
+ : 0≤ 𝑆 (𝑡) , 𝑉 (𝑡) , 𝐸 (𝑡) , 𝐶 (𝑡) , 𝐼 (𝑡) ;𝑆 (𝑡) + 𝑉 (𝑡) + 𝐸 (𝑡) + 𝐶 (𝑡) + 𝐼 (𝑡) ≤ 𝑏𝜇 (10)

is positively invariant and absorbing with respect to the set of
DDEs (1).

Proof. Summing all equations in system (1) yields𝑑𝑁𝑑𝑡 = 𝑏 − 𝜇𝑁 (𝑡) − 𝛿𝑒−𝜇𝜏2𝐼 (𝑡) . (11)

Therefore, 𝑑𝑁/𝑑𝑡 ≤ 𝑏 − 𝜇𝑁(𝑡) which implies that 𝑑𝑁/𝑑𝑡 ≤0 if 𝑁(𝑡) ≥ 𝑏/𝜇. Using the standard comparison test in
[42], we get 𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡 + (𝑏/𝜇)(1 − 𝑒−𝜇𝑡). Particularly,

𝑁(𝑡) ≤ 𝑏/𝜇 if 𝑁(0) ≤ 𝑏/𝜇 for all time 𝑡 > 0; hence Ω𝑑 is
positively invariant. Further, if 𝑁(𝑡) ≥ 𝑏/𝜇, then either the
solution enters at finite time nor 𝑁(𝑡) is close to 𝜋/𝜇 and
the infected variables 𝐸, 𝐶, and 𝐼 tend to zero. Therefore, Ω𝑑
is attracting implying that all solutions in R5

+ finally enterΩ𝑑. Consequently, in Ω𝑑, system (1) is mathematically and
epidemiologically well-posed.

2.3. The Control Reproduction Ratio. The basic reproduction
ratio identifies the number of secondary infections from the
infected source and plays an important role in understanding
the development of epidemics with a vaccination program in
place. The control reproduction ratio 𝑅0 is computed using
an approach in [43] and is given by𝑅0 = 𝑅𝑢

0 + 𝑅V
0, (12)

where 𝑅𝑢
0 = 𝛽𝛾𝑒−𝜇𝜏1𝑆0(𝜇 + 𝛾𝑒−𝜇𝜏1) (𝜙 + 𝜇 + 𝛿𝑒−𝜇𝜏2) ,𝑅V
0 = 𝛽𝜌𝜗𝑉0(𝜌 + 𝜇) (𝜙 + 𝜇 + 𝛿𝑒−𝜇𝜏2) , (13)

provided the validity of (𝜇 + 𝜁)(] + 𝜇) > 𝜁] holds.
The quantity 𝑅𝑢

0 measures the expected number of sec-
ondary cases generated by an index case for the susceptible
individuals and 𝑅V

0 represents new cases arising from the
vaccination program.

Remark 3. The control reproduction ratio with no delays
(𝜏1 = 0, 𝜏2 = 0) is given by𝑅𝑢

0 = 𝛽𝛾𝑆0(𝜇 + 𝛾) (𝜙 + 𝜇 + 𝛿) ,𝑅V
0 = 𝛽𝜌𝜗𝑉0(𝜌 + 𝜇) (𝜙 + 𝜇 + 𝛿) . (14)

3. Stability of Equilibria

Let (𝑆∗, 𝑉∗, 𝐸∗, 𝐶∗, 𝐼∗) be the corresponding partial pop-
ulations at the eventual equilibrium point. Given that the
values of the partial populations at the equilibrium are stable,
the delay-dependency vanishes so that lim𝑡→∞𝐼(𝑡 − 𝜏2) =
lim𝑡→∞𝐼(𝑡) = 𝐼∗ and lim𝑡→∞𝐸(𝑡−𝜏1) = lim𝑡→∞𝐸(𝑡) = 𝐸∗,
such that, at equilibrium, we have𝑏 + 𝜁𝑉∗ + 𝜙𝐼∗ − (] + 𝜇 + 𝛽𝐼∗) 𝑆∗ = 0,

]𝑆∗ − (𝜇 + 𝜁)𝑉∗ − 𝛽1𝐼∗𝑉∗ = 0,𝛽𝐼∗𝑆∗ − (𝛾𝑒−𝜇𝜏1 + 𝜇)𝐸∗ = 0,𝛽1𝐼∗𝑉∗ − (𝜌 + 𝜇)𝐶∗ = 0,𝜌𝐶∗ + 𝛾𝑒−𝜇𝜏1𝐸∗ − (𝜇 + 𝛿𝑒−𝜇𝜏2 + 𝜙) 𝐼∗ = 0,̇𝑆∗ + �̇�∗ + �̇�∗ + �̇�∗ + ̇𝐼∗ = 𝑏 − 𝜇𝑁∗ − 𝛿𝑒−𝜇𝜏2𝐼∗ = 0.
(15)
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Hence, from system (15), we obtain the disease-free equilib-
rium 𝑃0 = (𝑆0, 𝑉0, 0, 0, 0), where𝑆0 = 𝑏 (𝜇 + 𝜁)(𝜇 + 𝜁) (] + 𝜇) − 𝜁] ,𝑉0 = 𝑏](𝜇 + 𝜁) (] + 𝜇) − 𝜁] , (16)

provided (𝜇 + 𝜁)(] + 𝜇) > 𝜁].
It should be noted that, for ] > 0, the disease-free equilib-

rium is biologically feasible for any epidemiological param-
eters, whereas in the absence of vaccination strategy, i.e., for
] = 0,𝐸0 is only feasible for epidemiological parameters in the
susceptible class. From system (15) the endemic equilibrium𝑃∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐶∗, 𝐼∗) is given as𝑆∗ = 𝑏 + 𝜁𝑉∗ + 𝜙𝐼∗

] + 𝜇 + 𝛽𝐼∗ ,
𝑉∗ = ] (𝑏 + 𝜙𝐼∗)(] + 𝜇 + 𝛽𝐼∗) (𝜇 + 𝜁 + 𝛽1𝐼∗) − ]𝜁 ,
𝐸∗ = 𝛽 (𝜁] + 𝑎1) (𝑏𝐼∗ + 𝜙𝐼∗2)𝑎1 (𝛾𝑒−𝜇𝜏1 + 𝜇) (] + 𝜇 + 𝛽𝐼∗) ,𝐶∗ = ]𝛽1𝐼∗ (𝑏 + 𝜙𝐼∗)𝑎1 (𝜌 + 𝜇) ,𝐼∗ = 𝐼∗,

(17)

where 𝑎1 = (] + 𝜇 + 𝛽𝐼∗)(𝜇 + 𝜁 + 𝛽1𝐼∗) − ]𝜁
3.1. Local Stability of the Disease-Free Equilibrium Point.
Suppose that𝑃0 = (𝑆0, 𝑉0, 0, 0, 0) is a disease-free equilibrium
point of system (1), then the linearization matrix 𝐽𝑃0 is given
by𝐽𝑃0

=

− (𝜇 + ]) 𝜁 0 0 𝜙 − 𝛽𝑆0

] − (𝑚𝑢 + 𝜁) 0 0 −𝛽𝜗𝑉00 0 −𝜇 0 𝛽𝑆00 0 0 − (𝜌 + 𝜇) 𝛽𝜗𝑉00 0 0 𝜌 − (𝜇 + 𝜙)

= 0.
(18)

Clearly 𝑦1 = −𝜇 is one of the negative roots (eigenvalues)
that guarantee local stability of the disease-free equilibrium𝑃0. The remaining eigenvalues are obtained from the charac-
teristic polynomial given by𝑔 (𝑦) = 𝑦4 + 𝑒3𝑦3 + 𝑒2𝑦2 + 𝑒1𝑦 + 𝑒0 = 0, (19)
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Figure 2: Simulation ofmodel (1), the disease-free equilibrium,with
populations parameters: 𝜙 = 3.57144 × 10−1, 𝛽 = 1.0102 × 10−5, ] =2.53 × 10−2, and 𝛾 = 3.3333 × 10−2 (with 𝑅0 = 0.7873, 𝑅𝑢

0 = 0.1382,
and 𝑅V

0 = 0.6490).
where 𝑒3 = 4𝜇 + ] + 𝜁 + 𝜌 + 𝜙, 𝑒2 = (𝜇 + 𝜁)(2𝜇 + 𝜌 + ]) + (𝜇 +𝜙)(2𝜇 + ] + 𝜁) − 𝛽𝜗𝜌𝑉0, 𝑒1 = (𝜇 + 𝜁)(𝜇 + 𝜌)(2𝜇 + ] + 𝜙) + (𝜇 +
])(𝜇+𝜙)(2𝜇+𝜁+𝜌)−𝜁](2𝜇+𝜌+𝜙)−𝛽𝜌𝜗(2𝜇+]+𝜁), and 𝑒0 =(𝜇+])(𝜇+𝜁)((𝜌+𝜇)(𝜇+𝜙)−𝛽𝜌𝜗𝑉0)+𝜁](𝛽𝜌𝜗𝑉0−(𝜌+𝜇)(𝜇+𝜙).

Thus computing the roots of polynomial (19) gives𝑦2 = −𝜇,𝑦3 = − (𝜇 + 𝜁 + ]) ,𝑦4 = −12 ((2𝜇 + 𝜌 + 𝜙) + √(𝜌 − 𝜙)2 + 4𝛽𝜌𝜗𝑉0) ,𝑦5 = −12 ((2𝜇 + 𝜌 + 𝜙) − √(𝜌 − 𝜙)2 + 4𝛽𝜌𝜗𝑉0) .
(20)

Since the rest of the roots are negative, root 𝑦5 is negative
provided (𝜇 + 𝜙)(𝜌 + 𝜇) > 𝛽𝜌𝜗𝑉0 holds implying that 𝑅V

0 =𝛽𝜌𝜗𝑏]/(𝜇 + 𝜙)(𝜌 + 𝜇)((𝜇 + 𝜁)(] + 𝜇) − 𝜁]) < 1.
Thus we have the result below

Proposition 4. The disease-free equilibrium 𝑃0 is locally
asymptotically stable if the control reproduction ratio 𝑅0 < 1,
whenever conditions (𝜇+𝜁)(𝜇+]) > 𝜁] and𝑅V

0 < 1 are satisfied
and unstable otherwise.

To illustrate the stability of disease-free equilibrium, we
use parameter values in Table 2 with corresponding popula-
tion estimates of 𝑆(0) = 10604, 𝑉(0) = 103, 𝐸(0) = 𝐶(0) =𝐼(0) = 0, and the resulting simulation is given in Figure 2.

The biological implication of Proposition 4 means that
in the long run the vaccinated and susceptible populations
will be stable and pneumococcal pneumonia will be under
control.
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3.2. The Transcendental Equation. We obtain the expression
for the transcendental equation by linearizing system (1)
around 𝑃∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐶∗, 𝐼∗), to obtain

(
(

̇𝑆 (𝑡)�̇� (𝑡)�̇� (𝑡)�̇� (𝑡)̇𝐼 (𝑡)))
=(𝑎1 𝑎2 0 0 𝑎3𝑎4 𝑎5 0 0 𝑎6𝑎7 0 𝑎8 0 𝑎90 𝑎10 0 𝑎11 𝑎120 0 0 𝑎13 𝑎14)(𝑆(𝑡)𝑉 (𝑡)𝐸 (𝑡)𝐶 (𝑡)𝐼 (𝑡))

+((
(

0 0 0 0 00 0 0 0 00 0 𝑎15 0 00 0 0 0 00 0 𝑎16 0 𝑎17
))
)

((
(

00𝐸𝜏10𝐼𝜏2
))
)

,
(21)

𝑎1 = −((𝜇+])+𝛽𝐼∗), 𝑎2 = 𝜁, 𝑎3 = 𝜙−𝛽𝑆∗, 𝑎4 = ], 𝑎5 = −((𝜇+𝜁) + 𝛽𝜗𝐼∗), 𝑎6 = −𝛽𝜗𝑉∗, 𝑎7 = 𝛽𝐼∗, 𝑎8 = −𝜇, 𝑎9 = 𝛽𝑆∗, 𝑎10 =𝛽𝜗𝐼∗, 𝑎11 = −(𝜌 + 𝜇), 𝑎12 = 𝛽𝜗𝑉∗, 𝑎13 = 𝜌, 𝑎14 = −(𝜇 + 𝜙),𝑎15 = −𝛾𝑒−𝜇𝜏1 , 𝑎16 = 𝛾𝑒−𝜇𝜏1 , 𝑎17 = −𝛿𝑒−𝜇𝜏2 , 𝐸𝜏1 = 𝐸(𝑡 − 𝜏1),
and 𝐼𝜏2 = 𝐼(𝑡 − 𝜏2).

The variational matrix of (21) is given by

𝑔 (𝜆, 𝑒−𝜆𝜏1 , 𝑒−𝜆𝜏2) =

𝑎1 − 𝜆 𝑎2 0 0 𝑎3𝑎4 𝑎5 − 𝜆 0 0 𝑎6𝑎7 0 𝑎8 − 𝛾𝑒−(𝜇+𝜆)𝜏1 − 𝜆 0 𝑎90 0 0 𝑎11 − 𝜆 𝑎120 0 𝛾𝑒−(𝜇+𝜆)𝜏1 𝑎13 𝑎14 − 𝛿𝑒−(𝜇+𝜆)𝜏2 − 𝜆


= 0. (22)

Then, we obtain the transcendental equation of the linearized
system at 𝑃∗:𝑔 (𝜆, 𝑒−𝜆𝜏1 , 𝑒−𝜆𝜏2)= 𝜆5 + 𝑘4𝜆4 + 𝑘3𝜆3 + 𝑘2𝜆2 + 𝑘1𝜆 + 𝑘0+ (𝜆4 + 𝑙3𝜆3 + 𝑙2𝜆2 + 𝑙1𝜆 + 𝑙0) 𝛾𝑒−(𝜇+𝜆)𝜏1+ (𝜆4 + 𝑚3𝜆3 + 𝑚2𝜆2 + 𝑚1𝜆 + 𝑚0) 𝛿𝑒−(𝜇+𝜆)𝜏2+ (𝜆3 + 𝑛2𝜆2 + 𝑛1𝜆 + 𝑛0) 𝛾𝛿𝑒−(𝜇+𝜆)(𝜏1+𝜏2) = 0,

(23)

with coefficients of the transcendental equation (23) given in
Appendix A.

3.3. Delay-Free System. Here, to show the local stability of𝑃∗,
we consider a situation where there are no delays during the
latent period (𝜏1 = 0) and in seeking medical care (𝜏2 = 0).
By letting 𝜏1 = 𝜏2 = 0, (23) reduces to𝑔 (𝜆) = 𝜆5 + 𝑏4𝜆4 + 𝑏3𝜆3 + 𝑏2𝜆2 + 𝑏1𝜆 + 𝑏0 = 0, (24)

with coefficients of polynomial equation in Appendix A.

Proposition 5. The endemic equilibrium 𝑃∗ is locally
asymptotically stable in the absence of delays 𝜏1 = 𝜏2 = 0,

iff the following Routh–Hurwitz conditions are satis-
fied: 𝑏0 > 0,𝑏4𝑏3 − 𝑏2 > 0,𝑏2 (𝑏4𝑏3 − 𝑏2) − 𝑏4 (𝑏4𝑏1 − 𝑏0) > 0,𝑏1 (𝑏2 (𝑏4𝑏3 − 𝑏2) − 𝑏4 (𝑏4𝑏1 − 𝑏0))− 𝑏0 (𝑏3 (𝑏4𝑏3 − 𝑏2) − (𝑏4𝑏1 − 𝑏0)) > 0,

(25)

with 𝑏4, 𝑏3, 𝑏2, 𝑏1, and 𝑏0 defined in Appendix A.2.
Numerically, using parameter values in Table 2 the char-

acteristic equation (24) is given as𝜆5 + 0.7364𝜆4 − 148.4𝜆3 − 4.9408𝜆2 − 0.3965𝜆− 0.0001806 = 0. (26)

The resulting eigenvalues are given by 𝜆1 = 11.8, 𝜆2 =−0.0005, 𝜆3 = −12.5357, and 𝜆4,5 = −0.01641 ± 0.4885𝑖.
Since there exists a positive root for model (1), there is a

stability change from unstable to stable of the endemic equi-
librium point 𝑃∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐶∗, 𝐼∗) = (2099, 6, 54, 2, 100)
that gives rise to a Hopf-bifurcation.

4. Existence of Hopf-Bifurcation

Under this subsection, we discuss the stability of the endemic
equilibrium point of model (1). We use the approach of Song
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and Wei [44] to prove the conditions for continuation of
unstable or stable switches at the endemic equilibrium point,
by choosing time delay 𝜏 = max = {𝜏1, 𝜏2} as the bifurcation
parameter.

4.1. Delay Only in Latent Period (𝜏1 > 0, 𝜏2 = 0). In such a
situation the characteristic equation (23) reduces to𝜆5 + 𝑘4𝜆4 + 𝑘3𝜆3 + 𝑘2𝜆2 + 𝑘1𝜆 + 𝑘0+ (𝛾𝜆4 + ℎ3𝜆3 + ℎ2𝜆2 + ℎ1𝜆 + ℎ0) 𝑒−(𝜇+𝜆)𝜏1 = 0, (27)

where 𝑞 = 𝑒−𝜇𝜏1 ,ℎ0 = 𝑞𝛾 (𝑙0 + 𝑛0𝛿) ,ℎ1 = 𝑞𝛾 (𝑙1 + 𝑛1𝛿) ,ℎ2 = 𝑞𝛾 (𝑙2 + 𝑛2𝛿) ,ℎ3 = 𝑞𝛾 (𝑙3 + 𝛿) .
(28)

Suppose the endemic equilibrium of system (1) is stable
in the absence of delay (𝜏2) to seek medical care, implying
that Re(𝜆) = 𝜉(0) < 0. The bifurcation value of 𝜏10 > 0 occurs
when𝜆(𝜏10) = 𝜉(𝜏10)+𝑖𝑤(𝜏10) is purely imaginary, for 𝜉(𝜏10) =0. Hence, defining the eigenvalue 𝜆 = 𝑤𝑖, with infection rate
oscillation frequency (𝑤 > 0) and making a substitution in
(27) and expressing the exponential in terms of trigonometric
ratios, we get

Im fl 𝑎1 cos𝑤𝜏1 + 𝑎2 sin𝑤𝜏1 = 𝑅1,
Re : 𝑎2 cos𝑤𝜏1 − 𝑎1 sin𝑤𝜏1 = 𝑅2, (29)

where 𝑎1 = 𝑤 (ℎ1 − ℎ3𝑤2) ,𝑎2 = 𝑤 (𝛾𝑤3 − ℎ2𝑤) + ℎ0,

𝑅1 = 𝑤 (𝑘3𝑤2 − (𝑤4 + 𝑘1)) ,𝑅2 = 𝑘2𝑤2 − (𝑘4𝑤4 + 𝑘0) .
(30)

By eliminating 𝜏1 from (27), squaring and adding these
two equations, and putting 𝑤2 = 𝑧, we obtain the Hopf
frequency below:𝐻(𝑧) = 𝑧5 + 𝐵4𝑧4 + 𝐵3𝑧3 + 𝐵2𝑧2 + 𝐵1𝑧 + 𝐵0 = 0, (31)

where𝐵4 = 𝑘4 − 2 (𝑘3 + 𝛾) ,𝐵3 = 𝑘23 + 2 [(𝑘1 + 2ℎ2𝛾) − (𝑘2𝑘4 + ℎ23)] ,𝐵2 = 𝑘2 + 2 [(2ℎ1ℎ3 + 𝑘4𝑘0) − (𝑘1𝑘3 + 2ℎ0𝛾 + ℎ22)] ,𝐵1 = 𝑘21 + 2 [2ℎ0ℎ2 − (ℎ21 + 𝑘2𝑘0)] ,𝐵0 = 2ℎ20 + 𝑘20.
(32)

The two propositions about stability and critical delay in
Wesley et al. [45] are written as lemmas

Lemma 6. If the 𝐵𝑖 (𝑖 = 0, 1, 2, 3, 4) guarantee the
Routh–Hurwitz criteria, then all eigenvalues of (31) have
negative real parts for all delay 𝜏1 ≥ 0. Thus the endemic
equilibrium 𝑃∗ if it exists is locally asymptotically stable
whenever 𝜏1 ≥ 0, provided the endemic steady state is stable
in the absence of the latent period delay; specifically 𝜏1 will not
affect the stability of the dynamical system, for (31) without
positive real roots.

Lemma7. If𝐵𝑖 (𝑖 = 0, 1, 2, 3, 4) do not satisfy Routh–Hurwitz
criteria, thus 𝐵0 < 0 or 𝐵0 > 0 implies that (47) has at least one
positive root and suppose that it has a pair of imaginary roots
say ±𝑖𝑤10 for such a value of 𝑤10 .

Consequently to obtain the main results in this paper, we
assume (31) has at least one positive root𝑤10 . By squaring and
summing together the imaginary and real parts in (29), we get

𝜏1 = 1𝑤 arccos(𝑤2 (ℎ1 − ℎ3𝑤2) (𝑘3𝑤2 − (𝑤4 + 𝑘1)) + (𝑤 (𝛾𝑤3 − ℎ2𝑤) + ℎ0) (𝑘2𝑤2 − (𝑘4𝑤4 + 𝑘0))𝑤 (ℎ1 − ℎ3𝑤2)2 + (𝑤 (𝛾𝑤3 − ℎ2𝑤) + ℎ0)2 ) + 2𝑛𝜋𝑤 . (33)

By denoting

𝜏(𝑚)
1�푛 = 1𝑤1�푛

arccos(𝑤2
1�푛 (ℎ1 − ℎ3𝑤2

1�푛) (𝑘3𝑤2
1�푛 − (𝑤4

1�푛 + 𝑘1)) + (𝑤1�푛 (𝛾𝑤3
1�푛 − ℎ2𝑤1�푛) + ℎ0) (𝑘2𝑤2

1�푛 − (𝑘4𝑤4
1�푛 + 𝑘0))𝑤1�푛 (ℎ1 − ℎ3𝑤2

1�푛)2 + (𝑤1�푛 (𝛾𝑤3
1�푛 − ℎ2𝑤1�푛) + ℎ0)2 )

+ 2𝑛𝜋𝑤1�푛
, 𝑚 = 1, 2, . . . , �̃�, 𝑛 ∈ N

(34)
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this allows us to define𝜏10 = 𝜏(0)𝑛0 = min
1≤𝑛≤5

{𝜏(0)1�푛 } ,𝑤10 = 𝑤𝑛0

(35)

and state the result as follows.

Lemma 8. If 𝜏10 and𝑤10 are defined as (35) and𝐻(𝑧 = 𝑤2) >0. The endemic equilibrium point 𝑃∗ is linearly asymptotically
stable for 𝜏1 < 𝜏10 and unstable for 𝜏1 > 𝜏10 and undergoes a
Hopf-bifurcation at 𝜏1 = 𝜏10 .

To ensure the occurrence of the Hopf-bifurcation, it
is desirable to verify the transversality condition. Without
loss of generality, the delay 𝜏1 is chosen as the bifurcation
parameter. The essential condition for existence of the Hopf-
bifurcation is that the threshold eigenvalues traverse the
imaginary axis with nonzero velocity.

Proposition 9. If Φ2(𝑤10) > 0, where Φ2(𝑤10) satisfies
(47), system (1) undergoes a Hopf-bifurcation at the endemic
equilibrium as 𝜏1 increases through 𝜏10 .
Proof (transversality condition for Hopf-bifurcation). Differ-
entiating (27) with respect to 𝜏1 we obtain

𝑑𝜏1𝑑𝜆 = (5𝜆4 + 4𝑘4𝜆3 + 3𝑘3𝜆2 + 𝑘1) 𝑒𝜆𝜏1 + (4𝛾𝜆3 + 3ℎ3𝜆2 + 2ℎ2𝜆 + ℎ1)𝛾𝜆5 + ℎ3𝜆4 + ℎ2𝜆3 + ℎ1𝜆2 + ℎ0𝜆 − 𝜏1𝜆 , (36)

sign [(dRe𝜆)
d𝜏1 ]

𝜏1=𝜏10

= sign [Re( d𝜆
d𝜏1)−1]

𝜆=iw10

= sign [ReN1] + sign [ReN2]
= sign [c3 (c1 cos w𝜏1 + c2 sin w𝜏1) + c4 (c1 sin w𝜏1 + c2 cos w𝜏1) + (h1 − 3h3w2) + c4w (2h2 − 4𝛾w3)

c23 + c24
] . (37)

with

𝑁1 = 𝑐3 (𝑐1 cos𝑤𝜏10 + 𝑐2 sin𝑤𝜏10) + 𝑐4 (𝑐1 sin𝑤𝜏10 + 𝑐2 cos𝑤𝜏10)𝑐23 + 𝑐24+ 𝑖(𝑐3 (𝑐2 cos𝑤𝜏1 + 𝑐10 sin𝑤𝜏10) − 𝑐4 (𝑐2 sin𝑤𝜏10 + 𝑐1 cos𝑤𝜏10)𝑐23 + 𝑐24 ,
𝑁2 = (ℎ1 − 3ℎ3𝑤2) + 𝑐4𝑤(2ℎ2 − 4𝛾𝑤3) + 𝑖 (𝑐3𝑤(2ℎ2 − 4𝛾𝑤2) + (ℎ1 − 3ℎ3𝑤2))𝑐23 + 𝑐24 .

(38)

Remark 10. Any linear combination of a sine and cosine of
equal periods is equal to a single sine with the same period,
however, with an infection rate oscillation phase shiftΨ [46].

Therefore, we get

sign [(dRe𝜆)
d𝜏1 ]

𝜏1=𝜏10

= sign [Re( d𝜆
d𝜏1)−1]

𝜆=iw10= D0 sin (w𝜏1 + Ψ2) + (h1 − 3h3w2) + c4w (2h2 − 4𝛾w3)
c23 + c24

, (39)

where 𝑐1 = 5𝑤4 − 3𝑘3𝑤2 + 𝑘1,𝑐2 = 4𝑘4𝑤3,𝑐3 = 𝑤 (𝛾𝑤4 − ℎ2𝑤2 + ℎ0) ,𝑐4 = 𝑤2 (ℎ3𝑤2 − ℎ1) ,

𝐷0 = √(𝑐3𝑐1 + 𝑐2𝑐1)2 + (𝑐3𝑐2 + 𝑐4𝑐1)2,𝐷1
0 = 𝑐4𝑤10 (2ℎ2 − 4𝛾𝑤3

10) ,Ψ2 = arctan 𝑐3𝑐1 + 𝑐4𝑐2𝑐3𝑐2 + 𝑐4𝑐1
(40)

LetΦ2(𝑤10) = 𝐷0 sin(𝑤10𝜏10 +Ψ)+(ℎ1−3ℎ3𝑤2
10)+𝑐4𝑤10(2ℎ2−4𝛾𝑤3

10) > 0, if conditions (𝑤10𝜏10 + Ψ2) ∈ (𝜋, 𝜋/2), ℎ1 >3ℎ3𝑤2
10 , and ℎ2 > 2𝛾𝑤2

10 hold. Clearly

sign [(dRe𝜆)
d𝜏1 ]

𝜏1=𝜏10

= sign [Re( d𝜆
d𝜏1)−1]

𝜆=iw10= D0 sin (w10𝜏10 + Ψ2) + (h1 − 3h3w2
10) +D1

0

c23 + c24

(41)

has the same sign as Φ2(𝑤10). This completes the proof.
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Therefore, Proposition 9 implies that given 𝑚 > 0, the
eigenvalue 𝜆𝑚(𝜏1) of the characteristic equation (27) close to𝜏1�푚 crosses the imaginary axis from the left to the right as 𝜏1
continuously changes froma value less than 𝜏1�푚 to one greater
than 𝜏1�푚 .
4.2. Delay Only in SeekingMedical Care by the Infectious (𝜏1 =0, 𝜏2 > 0). To understand the influence of time delay in
seeking medical care, we set 𝜏1 = 0 in (23) yielding𝑔 (𝜆, 𝑒−𝜆𝜏2)= 𝜆5 + 𝑝4𝜆4 + 𝑝3𝜆3 + 𝑝2𝜆2 + 𝑝1𝜆 + 𝑝0+ (𝑞4𝜆4 + 𝑞3𝜆3 + 𝑞2𝜆2 + 𝑞1𝜆 + 𝑞0) 𝑝𝛾𝛿𝑒−𝜆𝜏2= 0, (42)

where 𝑝 = 𝑒−𝜇𝜏2 ,𝑝4 = 𝑘4 + 𝛾,

𝑝3 = 𝑘3 + 𝑙3𝛾,𝑝2 = 𝑘2 + 𝛾,𝑝1 = 𝑘1 + 𝑙1𝛾,𝑝0 = 𝑘0 + 𝑙0𝛾𝑞4 = 𝛿𝑝,𝑞3 = (𝑚3 + 𝛾 + 𝛿) 𝑝,𝑞2 = (𝑚2𝛿 + 𝑛2𝛾𝛿) ,𝑞1 = (𝑚1 + 𝑛1𝛾𝛿)𝑝,𝑞0 = (𝑚0 + 𝑛0𝛾𝛿)𝑝
(43)

Proposition 11. The endemic equilibrium point 𝑃∗ is locally
asymptotically stable (LAS) for 𝜏2 < 𝜏20 where 𝜏20 is the
minimum positive value of

𝜏20 = 1𝑤20
arccos((𝑝2𝑤2

20 − 𝑝4𝑤4
20 − 𝑝0) (𝑞4𝑤4

20 − 𝑞2𝑤2
20 + 𝑞0) + (𝑞3𝑤3

20 − 𝑞1𝑤20)) (𝑝3𝑤3
20 − 𝑤5

20 − 𝑝1𝑤20)𝑝𝛾𝛿 ((𝑞4𝑤4
20
− 𝑞2𝑤2

20
+ 𝑞0)2 − (𝑞1𝑤20 − 𝑞3𝑤3

20
)2) ) . (44)

Proof. Let 𝜆 = 𝑖𝑤, 𝑤 > 0 be a root of (42) to obtain
𝑃 (𝜆, 𝜏2)= 𝑤5𝑖 + 𝑝4𝑤4 − 𝑝3𝑤3𝑖 − 𝑝2𝑤2 + 𝑝1𝑤𝑖 + 𝑝0+ (𝑞4𝑤4 − 𝑞3𝑤3𝑖 − 𝑞2𝑤2 + 𝑞1𝑤𝑖 + 𝑞0) 𝑝𝛾𝛿𝑒−𝑖𝑤𝜏2 . (45)

Using Euler expansion and separating real and imaginary
parts, we obtain

𝑝𝛾𝛿 ((𝑞4𝑤4 − 𝑞2𝑤2 + 𝑞0) cos𝑤𝜏2+ (𝑞1𝑤 − 𝑞3𝑤3) sin𝑤𝜏2) = 𝑝2𝑤2 − 𝑝4𝑤4 − 𝑝0,𝑝𝛾𝛿 ((𝑞1𝑤 − 𝑞3𝑤3) cos𝑤𝜏2+ (𝑞4𝑤4 − 𝑞2𝑤2 + 𝑞0) sin𝑤𝜏2) = 𝑝3𝑤3 − 𝑤5− 𝑝1𝑤.
(46)

Eliminating 𝜏2 from (46), by squaring and adding these
two equations and putting 𝑤2 = 𝑧, we obtain the Hopf
frequency below:𝑧5 + 𝐴4𝑧4 + 𝐴3𝑧3 + 𝐴2𝑧2 + 𝐴1𝑧 + 𝐴0 = 0, (47)

with coefficients in (47) in Appendix A.
Let us denote 𝑔(𝑧) = 𝑧5+𝐴4𝑧4+𝐴3𝑧3+𝐴2𝑧2+𝐴1𝑧+𝐴0 .

Since lim𝑧→+∞𝑔(𝑧) = +∞ and 𝐴0 < 0, then (47) has at least
one positive root. Assuming (47) has 𝑛 positive roots, given
by 𝑛 (1 ≤ 𝑛 ≤ 5), denote by 𝑧1 < 𝑧2 < . . . 𝑧𝑛, respectively.
Then, (47) has 𝑛 positive roots if𝑤1 = √𝑧1,𝑤2 = √𝑧2,...𝑤𝑛 = √𝑧𝑛.

(48)

From (46), the corresponding 𝜏2�푛 > 0, for which the
characteristic equation (23) has a pair of purely imaginary
roots, is derived to have

cos (𝑤𝜏2) = (𝑝2𝑤2 − 𝑝4𝑤4 − 𝑝0) (𝑞4𝑤4 − 𝑞2𝑤2 + 𝑞0) + (𝑞3𝑤3 − 𝑞1𝑤) (𝑝3𝑤3 − 𝑤5 − 𝑝1𝑤)(𝑞4𝑤4 − 𝑞2𝑤2 + 𝑞0)2 + (𝑞3𝑤3 − 𝑞1𝑤) (𝑞1𝑤 − 𝑞3𝑤3) 𝑝𝛾𝛿 . (49)
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Thus, denoting

𝜏(𝑘)2�푛 = 1𝑤𝑛
arccos((𝑝2𝑤2

𝑛 − 𝑝4𝑤4
𝑛 − 𝑝0) (𝑞4𝑤4

𝑛 − 𝑞2𝑤2
𝑛 + 𝑞0) + (𝑞3𝑤3

𝑛 − 𝑞1𝑤𝑛) (𝑝3𝑤3
𝑛 − 𝑤5

𝑛 − 𝑝1𝑤𝑛)(𝑞4𝑤4
𝑛 − 𝑞2𝑤2

𝑛 + 𝑞0)2 + (𝑞3𝑤3
𝑛 − 𝑞1𝑤𝑛) (𝑞1𝑤𝑛 − 𝑞3𝑤3

𝑛) 𝑝𝛾𝛿 ) + 2𝜋 (𝑘 − 1)𝑤𝑛
, (50)

where 𝑛 = 1, 2, . . . 𝑛, 𝑘 = 1, 2, . . ., then ±𝑖𝑤𝑛 are a
pair of purely imaginary roots of (23). This allows us

to define the Hopf-bifurcation threshold time delay value
as

𝜏20 = 1𝑤20
arccos((𝑝2𝑤2

20 − 𝑝4𝑤4
20 − 𝑝0) (𝑞4𝑤4

20 − 𝑞2𝑤2
20 + 𝑞0) + (𝑞3𝑤3

20 − 𝑞1𝑤20) (𝑝3𝑤3
20 − 𝑤5

20 − 𝑝1𝑤20)𝑝𝛾𝛿 ((𝑞4𝑤4
20
− 𝑞2𝑤2

20
+ 𝑞0)2 − (𝑞1𝑤20 − 𝑞3𝑤3

20
)2) ) . (51)

This completes the proof.

Proposition 12. If conditions5𝑤4
20 (𝑞1 + 2𝑞2𝑤20)+ (3𝑝3𝑤2

20 + 𝑝1) (3𝑞3𝑤2
20 + 4𝑞3𝑤3

20)> 5𝑤4
20 (3𝑞3𝑤2

20 + 4𝑞4𝑤3
20)+ (𝑞1 + 2𝑞2𝑤20) (3𝑝3𝑤2
20 + 𝑝1) ,𝑞3𝑤2

20𝑞1 > 1,𝑤4
20𝑞4 + 𝑞0𝑞2𝑤2

20

> 1
(52)

hold, such that Φ1(𝑤20) > 0, then system (1) undergoes
a Hopf-bifurcation at the endemic equilibrium point as 𝜏2
increases through 𝜏20 , where expressions of Φ1(𝑤20) satisfy
(58).

Proof (transversality condition for Hopf-bifurcation). In order
to establish whether the endemic equilibrium point 𝑃∗

actually undergoes a Hopf-bifurcation at 𝜏2 = 𝜏20 , we let𝜆(𝜏2) = 𝛽(𝜏2) + 𝑖𝑤(𝜏2) be a root of (23) near 𝜏2 = 𝜏(𝑘)20 and𝛽(𝜏2)(𝑘) = 0, as𝑤(𝜏2)(𝑘) = 𝑤20 . Making a substitution into the
L.H.S. of (23) and taking a derivative with respect to 𝜆, we
have𝑑𝜏2𝑑𝜆 = (5𝜆4 + 4𝑝4𝜆3 + 3𝑝3𝜆2 + 2𝑝2𝜆 + 𝑝1) 𝑒𝜇𝜆𝜏2(𝑞4𝜆5 + 𝑞3𝜆4 + 𝑞2𝜆3 + 𝑞1𝜆2 + 𝑞0𝜆) 𝑝𝛾𝛿+ (4𝑞4𝜆3 + 3𝑞3𝜆2 + 2𝑞2𝜆 + 𝑞1)𝑝𝛾𝛿 (𝑞4𝜆5 + 𝑞3𝜆4 + 𝑞2𝜆3 + 𝑞1𝜆2 + 𝑞0𝜆)− 𝜏2𝜆 .

(53)

Computing the Sign of 𝑑[Re(𝜆)]/𝑑𝜏2, by differentiat-
ing the characteristic equation (23) with respect to 𝜏2
and evaluating (53) at 𝜏2 = 𝜏20 with 𝜆 = 𝑖𝑤20
and expressing sin(𝑤20𝜏20) and cos(𝑤20𝜏20), we obtain
sign[d(Re𝜆)/d𝜏2]𝜏2=𝜏20 = sign[Re(d𝜆/d𝜏2)−1]𝜆=iw20 ,

= sign [Re f1 cos d0 + f2 sin d0
g1 + ig2

+ Re
i (f3 cos d0 + f4 sin d0)(g1 + ig2) + Re f5

g1 + ig2
− Re 𝜏2

iw20
] , (54)

= sign [Re g1 (f1 cos d0 + f2 sin d0) − ig2 (f1 cos d0 + f2 sin d0)
g21 + g22

]
+ sign [Re g2 (f2 cos d0 + f4 sin d0) + ig1 (f3 cos d0 + f4 sin d0)

g21 + g22
] + sign [Re f5g1

g21 + g22
] , (55)

with coefficients in Appendix A. By Remark 10, (55) gives

sign[[[g1 (√f21 + f22 (sin (d0 + Ψ0))) + g2√f22 + f24 (sin (d0 + Ψ1)) + f5g1
g21 + g22

]]] , (56)
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with Ψ0 = arctan
𝑓1𝑓2 ,Ψ1 = arctan
𝑓2𝑓4 , 𝑓2 ̸= 0, 𝑓4 ̸= 0 (57)

LetΦ1 (𝑤20) = 𝑔1√𝑓2
1 + 𝑓2

2 (sin (𝑑0 + Ψ0))+ 𝑔2√𝑓2
2 + 𝑓2

4 (sin (𝑑0 + Ψ1)) + 𝑓5𝑔1. (58)

If Φ1(𝑤20) > 0, with (𝑑0 + Ψ{𝑖=0,1}) ∈ (𝜋, 𝜋/2], then
sign[d(Re𝜆)/d𝜏2]𝜏2=𝜏20 > 0, and hence the transversality con-
dition holds and the system undergoes Hopf-bifurcation.

4.3. Delay in Latent Period and Seeking Medical Care (𝜏1 =𝜏2 = 𝜏 > 0). Making a substitution of 𝜏1 = 𝜏2 = 𝜏 in (23), we
get 𝑔 (𝜆, 𝑒−𝜆𝜏)= 𝜆5 + 𝑘4𝜆4 + 𝑘3𝜆3 + 𝑘2𝜆2 + 𝑘1𝜆 + 𝑘0+ ((𝑠4) 𝜆4 + 𝑠3𝜆3 + 𝑠2𝜆2 + 𝑠1𝜆 + 𝑠0) 𝑒−𝜆𝜏+ (𝑠3𝜆3 + 𝑠2𝜆2 + 𝑠1𝜆 + 𝑠0) 𝑒−2𝜆𝜏 = 0

(59)

with 𝑠4 = (𝛾 + 𝛿) 𝑒−𝜇𝜏,𝑠3 = (𝛾𝑙3 + 𝑚3𝛿) 𝑒−𝜇𝜏,𝑠2 = (𝑙2𝛾 + 𝑚2𝛿) 𝑒−𝜇𝜏,𝑠1 = (𝑙1𝛾 + 𝑚1𝛿) 𝑒−𝜇𝜏,𝑠0 = (𝑙0𝛾 + 𝑚0𝛿) 𝑒−𝜇𝜏,𝑠3 = (𝛾𝛿) 𝑒−2𝜇𝜏,𝑠2 = 𝑛2𝛿𝛾𝑒−2𝜇𝜏,𝑠1 = 𝑛1𝛾𝛿𝑒−2𝜇𝜏,𝑠0 = 𝑛0𝛾𝑒−2𝜇𝜏

(60)

In order to examine whether or not the endemic
equilibrium loses stability and undergoes Hopf-bifurcation
as an outcome with inclusion of the time delays, a pair
of purely imaginary root of the transcendental equation
(59) is found. Suppose the pair of the imaginary root is
given as 𝜆 = 𝑖V with infection rate oscillation frequency
(V > 0), using Euler’s expansion and making a substi-

tution into (59), separating real and imaginary parts, we
obtain 𝑔0 cos V𝜏 + 𝑔1 sin V𝜏 + 𝑔2 sin 2V𝜏 = 𝐺1, (61)−𝑔1 cos V𝜏 + 𝑔0 sin V𝜏 + 𝑔3 sin 2V𝜏 = 𝐺2, (62)

where 𝑔0 = 𝑠1V − 𝑠3V3,𝑔1 = 𝑠2V2 − 𝑠4V4 − 𝑠0,𝑔2 = 𝑠2V2,𝑔3 = 𝑠3V3 + 𝑠1V,𝐺1 = V5 + (𝑘3 + 𝑠3 + 𝑠3) V3 − (𝑘1 + 𝑠1) V,𝐺2 = (𝑘2 + 𝑠2) V2 − (𝑘4V4 + 𝑘0 + 𝑠0) .
(63)

Squaring and adding (61) and (62), we get following equation:

𝑔20 + 𝑔21 − 𝐺2
1 − 𝐺2

2 = −12 (𝑔22 + 𝑔23) (1 − cos 4V𝜏) . (64)

Supposing ‖ cos 4V𝜏‖ < 1, (64) leads to𝐺2
1 + 𝐺2

2 − (𝑔20 + 𝑔21) = 0, (65)

which reduces to

V10 + (2 (𝑘3 + 𝑠3 + 𝑠3) + 𝑘24 − 𝑠24) V8+ ((𝑘3 + 𝑠3 + 𝑠3)2 + 2 (𝑘1 + 𝑠1) − 2𝑘4 (𝑘2 + 𝑠2)+ 2𝑠2𝑠4 − 𝑠23) V6 + (2 (𝑘1 + 𝑠1) (𝑘3 + 𝑠3 + 𝑠3)+ 2𝑘4 (𝑘0 + 𝑠0) + 2𝑠1𝑠3 − (𝑠22 + 2𝑠0𝑠4)) V4+ ((𝑘1 + 𝑠1)2 + 2𝑠0𝑠2 − 2 (𝑘2 + 𝑠2) (𝑘0 + 𝑠0) − 𝑠21)⋅ V2 + (𝑘0 + 𝑠0)2 = 0.
(66)

Let 𝑧 = V2 such that we obtain (66) in terms of 𝑧:𝐿 (𝑧) = 𝑧5 + 𝑢4𝑧4 + 𝑢3𝑧3 + 𝑢2𝑧2 + 𝑢1𝑧 + 𝑢0, (67)

with 𝑢4 = 2 (𝑘3 + 𝑠3 + 𝑠3) + 𝑘24 − 𝑠24,𝑢3 = (𝑘3 + 𝑠3 + 𝑠3)2 + 2 (𝑘1 + 𝑠11) − 2𝑘4 (𝑘2 + 𝑠12)



12 Abstract and Applied Analysis+ (2𝑠2𝑠4 − 𝑠23) ,𝑢2 = 2 (𝑘1 + 𝑠1) (𝑘3 + 𝑠3 + 𝑠3) + 2𝑘4 (𝑘0 + 𝑠0)+ 2𝑠1𝑠3 − (𝑠22 + 2𝑠0𝑠4) ,𝑢0 = (𝑘0 + 𝑠0)2𝑢1 = (𝑘1 + 𝑠1)2 + 2𝑠0𝑠2 − 2 (𝑘2 + 𝑠2) (𝑘0 + 𝑠0) − 𝑠21.
(68)

Since (67) has a high degree polynomial we compute the
eigenvalues numerically by using parameter values in Table 2.
The resulting polynomial is𝑧5 − 295.18𝑧4 − 130.18𝑧3 + 92.52𝑧2 − 0.15038𝑧 + 2.6× 10−12 = 0. (69)

Therefore, the following eigenvalues are obtained:𝑧1 = 295.62,𝑧2 = 0,𝑧3 = 0.001629,𝑧4 = 0.38024,𝑧5 = −0.8212.
(70)

We observe that there is only one negative real root which
does not guarantee stability of model (1) in the presence of
time delays 𝜏 = 𝜏1 = 𝜏2 > 0; thus by Lemma 7 there
exists a pure imaginary root𝑤𝑐 such that a critical time delay𝜏𝑐 is achieved for which there is death or birth of period
oscillations (Hopf-bifurcation).

Equation (64) yields𝜏𝑐= ( 14V0 arccos 𝑔22 + 𝑔23 + 2 (𝑔20 + 𝑔21 − (𝐺2
1 + 𝐺2

2))𝑔22 + 𝑔23 )
+ 𝑗𝜋2V0 ; 𝑗 = 0, 1, 3, . . . (71)

with 𝜆 = 𝑖V (a purely imaginary root of (59)), if condition𝑔20 + 𝑔21 = 𝐺2
1 + 𝐺2

2 and 𝜏 ∈ [0, 𝜏𝑐) holds. Without loss of
generality, let V0 represent the value V0 corresponding to 𝜏𝑐.
We thus state the result below.

Proposition 13. If condition 𝑔20 + 𝑔21 = 𝐺2
1 + 𝐺2

2 holds, then
the chronic steady state 𝑃∗ is locally asymptotically stable for𝜏 ∈ [0, 𝜏𝑐) and unstable when 𝜏 > 𝜏𝑐 and undergoes a Hopf-
bifurcation.

5. Numerical Simulation and Results

In this section, we use MATLAB dde23 function to
obtain numerical simulations and graphical representations
of model (1) to supplement the analytical solutions in
Section 4. Parameter values in Table 2 are used in the simula-
tion.

The positive endemic equilibrium is 𝑃∗ = (𝑆∗, 𝑉∗,𝐸∗, 𝐶∗, 𝐼∗) = (2099, 6, 54, 2, 100). In the absence of delays𝜏1 = 𝜏2 = 0, the characteristic polynomial equation (24)
is 𝜆5 + 0.7364𝜆4 − 148.4007𝜆3 − 4.9408𝜆2 − 0.3965𝜆− 0.0001806. (72)

The corresponding eigenvalues are 𝜆1 = 11.8366, 𝜆2 =−0.000472, 𝜆3 = −12.5357, and 𝜆4,5 = −0.01641 ± 04885𝑖.
Therefore, since the eigenvalues have one positive root and
four negative roots, the endemic equilibrium changes state
of stability from unstable to stable thus and undergoes a
Hopf-bifurcation (see Figure 3). This implies that, as time
approaches infinity, the partial populations are stable and
pneumococcal pneumonia can no longer cause harm to
individuals.

The numerical simulation of (27) yields the characteristic
roots as 𝜆1 = 0, 𝜆2 = 14.4621𝑖, 𝜆3 = −14.4416, 𝜆4 =±0.00041 + 0.3771𝑖, 𝜆5 = ±0.0579 + 0.1335𝑖. As 𝜏1 increases
from zero, there is a value 𝜏10 > 0 such that the endemic
equilibrium is stable for 𝜏1 = [0, 𝜏10] and unstable for 𝜏1 > 𝜏10 .
At this critical value, the endemic equilibrium loses stability
and Hopf-bifurcation arises. The real positive root is 𝑤10 =14.4621 and the critical time delay 𝜏10 = 0.109 of a day ≈ 3
hrs.

Figure 4 shows the evolution of the susceptible and
infected population of system (1). The low and high peaks in
the number of susceptible and infected individuals indicate
the season peak of the disease. If 𝜏1 < 𝜏10 = 0.109 of a day ≈ 3
hrs, the partial populations of the susceptible and the infected
are stable whereas if 𝜏1 > 𝜏10 = 0.109 of a day ≈ 3hrs, the
populations are unstable and it is hard to predict the future
pattern of the disease prevalence.

The numerical computation of (42) yields eigenvalues𝜆1 = 0, 𝜆2 = 0.06508𝑖, 𝜆3 = −0.06522, 𝜆4 = −12.038,
and 𝜆 = −12.3263. The positive root 𝑤20 = 0.06508 and
the critical time delay 𝜏20 = 26 days, and hence system (1)
is stable for 𝜏2 < 26 days and unstable for 𝜏2 > 𝜏20 . A
characteristic polynomial (59) corresponding to two delays
is solved to give the eigenvalues as 𝜆1 = 0, 𝜆2 = −17.1963,𝜆3 = −0.6166, 𝜆4 = −0.04036, 𝜆5 = 0.9026𝑖, the real positive
root 𝑤𝑐 = 0.9062, and the critical time delay 𝜏𝑐 = 2.069
days.

Figure 5 depicts the time series solution approaching
their equilibrium point as time approaches infinity. This
confirms the stability of the system when the value of time
delay is less than 𝜏𝑐 = 2.069 days and instability of the system
if 𝜏 > 𝜏𝑐 = 2.069 days (see Proposition 12).

To explore the effect of time delay 𝜏2 on pneumococcal
pneumonia, we fix time delay 𝜏1 = 3 days, and the
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Figure 3: (a and b) Stability of the endemic equilibrium showing Hopf-bifurcation, with initial variables: 𝑆(0) = 5586, 𝑉(0) = 22, 𝐶(0) = 64,𝐼(0) = 11, and 𝐸(0) = 100. (c and d) The evolution of the infected, the susceptible and corresponding I-S portrait, and 3D phase trajectories,
with 𝑅0 = 15.4, 𝑅𝑢

0 = 15.14, and 𝑅V
0 = 0.271 parameters: 𝜇 = 2.0547 × 10−4; 𝜙 = 3.574 × 10−2. The rest of the parameters remain fixed as in

Table 2.

parameter 𝜏2 is varied (Figure 6). The rate of convergence
to stability of the endemic equilibrium point is attained
with a reduction in the delay and a divergence is due
to an increase in the delay that results into instability of
the system. This gives rise to Hopf-bifurcation phenome-
non.

In Figure 7, time delay 𝜏2 is fixed at 2 days in order
to study the effect of time delay 𝜏1 on model (1). We
observe an increase in the magnitude of the amplitude of
oscillations as 𝜏1 increases; thus divergence from the endemic
equilibrium occurs leading to unstable state. This implies
that the disease will persist in the population with increased
delays if there is no intervention instituted to reduce the
delays. On the other hand a decrease in 𝜏1 guarantees

the asymptotic stability of the endemic equilibrium which
implies the disease can be eradicated from the popula-
tion.

6. Discussion

In this paper, we propose and analyze a mathematical model
of pneumococcal pneumonia with time delays. We derive the
control reproductive ratio 𝑅0. The results show that, without
delays (𝜏1 = 𝜏2 = 0), the disease-free equilibrium 𝑃0 is locally
asymptotically stable if the control reproductive ratio 𝑅0 < 1,
whenever conditions (𝜇+𝜁)(𝜇+]) > 𝜁] and 𝑅V

0 < 1 hold, and
unstable if 𝑅0 > 1.
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Figure 4: Simulation of model (1) for 𝜏2 = 0 and 𝜏1 > 0, with initial variable values: (𝑆(0), 𝑉(0), 𝐸(0), 𝐶(0), 𝐼(0)) = (3280, 30, 10, 10, 100). The
rest of the parameters are as in Table 2.

The analysis of model (1) is done. The results show that
the endemic equilibrium is locally stable without delays and
stable if the delays are under conditions. The transversality
conditions for the existence of Hopf-bifurcation are stated
and proved for three cases: (1) 𝜏1 = 0, 𝜏2 = 𝜏 > 0, (2)𝜏1 = 𝜏 > 0, 𝜏2 = 0, and (3) 𝜏1 = 𝜏2 = 𝜏 > 0. Critical
values at which Hopf-bifurcation occur have been obtained.
The results show that, at critical values 𝜏10 = 0.109 ≈ 3 hrs,𝜏20 = 26 days, and 𝜏𝑐 = 2.069 days, the endemic equilibrium
losses stability.

We investigated the effect of two delays 𝜏1 and 𝜏2 on the
stability of model (1). Based on the numerical simulations
obtained in this paper, we found out that when 𝜏1, 𝜏2 are
below the critical values 𝜏10 and 𝜏20 , respectively, model
(1) is asymptotically stable, which implies that the number
of individuals in the five subpopulations will be in ideal
equilibrium and prevalence of pneumococcal pneumonia can

easily be controlled. Conversely, if the values of the delays 𝜏1,𝜏2 are greater than the critical values 𝜏10 and 𝜏20 , respectively,
a Hopf-bifurcation arises and this phenomenon suggests
persistent of pneumococcal pneumonia in the population.
The number of individuals in the five subpopulations of
model (1) will fluctuate periodically; this is not helpful; effort
should be put to control such a phenomenon.

Longer time delays destabilize the system and give rise
to Hopf-bifurcations. This explains the oscillatory seasonal
change of pneumococcal pneumonia disease in human popu-
lation whose immune systems are weak. Therefore, measures
to reduce delays in latent and seeking medical care during
pneumococcal pneumonia epidemic should be prioritized.
The results herein could be helpful to direct future research
of bacterial infections that become severe in individuals that
have history of exposure to viral infections such as influenza
A virus.
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Figure 5: Stability of the endemic equilibrium 𝑃∗ for 𝜏1 = 𝜏2 = 2 days. The rest of the parameters are as in Table 2.
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Figure 6: The effect of varying 𝜏2 on the dynamics of model (1). The delay 𝜏2 was chosen as 𝜏2 = 2.5, 3, 3.5. All other parameters remain as
stated in Table 2.
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Figure 7:The effect of varying time delay 𝜏1 on the dynamics of model (1).The delay 𝜏1 was chosen as 𝜏1 = 0.5, 2, 8.5. All the parameter values
are the same as in Table 2.
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Appendix

A. Detailed Mathematical Coefficient
Terms in the Paper with Corresponding
Computed Values Obtained by Using
Parameters from Table 2

A.1. Coefficient Terms in the Transcendental Equation (23)𝑘4 = − (𝑎1 + 𝑎5 + 𝑎8 + 𝑎11 + 𝑎14) ,𝑘3 = (𝑎8 (𝑎1 + 𝑎5) + 𝑎11 (𝑎5 + 𝑎1 + 𝑎8 + 𝑎14)+ 𝑎14 (𝑎5 + 𝑎1 + 𝑎8) + 𝑎1𝑎5 − 𝑎12𝑎13 − 𝑎2𝑎4) ,𝑘2 = (𝑎2𝑎4 (𝑎8 + 𝑎11 + 𝑎14) + 𝑎12𝑎13 (𝑎1 + 𝑎5 + 𝑎8)− 𝑎1𝑎5 (𝑎8 + 𝑎11 + 𝑎14) − 𝑎1𝑎8 (𝑎11 + 𝑎14)− 𝑎11 (𝑎5𝑎8 + 𝑎1𝑎14) − 𝑎14 (𝑎5𝑎8 + 𝑎5𝑎11)+ 𝑎8𝑎11)) ,𝑘1 = (𝑎8𝑎11 (𝑎1𝑎5 − 𝑎2𝑎4) + 𝑎1𝑎5 (𝑎8𝑎14 + 𝑎11𝑎14)− 𝑎2𝑎4𝑎14 (𝑎8 + 𝑎11)+ 𝑎12𝑎13 (𝑎2𝑎4 − 𝑎1𝑎5 − 𝑎1𝑎8 − 𝑎5𝑎8)+ 𝑎11𝑎14 (𝑎1𝑎8 + 𝑎5𝑎8)) ,𝑘0 = 𝑎8 (𝑎11𝑎14 − 𝑎12𝑎13) (𝑎2𝑎4 − 𝑎1𝑎5) ,𝑙3 = − (𝑎5 + 𝑎11 + 𝑎14 + 𝑎1 + 𝑎9) ,𝑙2 = (𝑎1 (𝑎5 + 𝑎11 + 𝑎14) + 𝑎5 (𝑎11 + 𝑎14)) + (𝑎1𝑎9− 𝑎3𝑎7 + 𝑎5𝑎9 + 𝑎9𝑎11) ,𝑙1 = (𝑎2𝑎4 (𝑎14 + 𝑎11) − 𝑎1𝑎5 (𝑎11 − 𝑎14)− 𝑎11𝑎14 (𝑎1 − 𝑎5) + 𝑎12𝑎13 (𝑎5 + 𝑎1))+ (𝑎3𝑎7 (𝑎5 + 𝑎11) + 𝑎2 (𝑎4𝑎9 − 𝑎6𝑎7)− 𝑎9𝑎11 (𝑎1 + 𝑎5) − 𝑎1𝑎5𝑎9) ,𝑙0 = (𝑎12𝑎13 (𝑎2𝑎4 − 𝑎1𝑎5) − 𝑎11𝑎14 (𝑎2𝑎4 + 𝑎1𝑎5)) )+ 𝑎7𝑎11 (𝑎2𝑎6 − 𝑎3𝑎5) + 𝑎9𝑎11 (𝑎1𝑎5 − 𝑎2𝑎4) ),𝑚3 = (𝑎1 + 𝑎5 + 𝑎8 + 𝑎11) ,𝑚2 = (𝑎1𝑎5 − 𝑎2𝑎4 + 𝑎1𝑎8 + 𝑎1𝑎11 + 𝑎5𝑎8 + 𝑎5𝑎11+ 𝑎8𝑎11) ,𝑚1 = (𝑎2𝑎4𝑎8 − 𝑎1𝑎5𝑎11 + 𝑎2𝑎4𝑎11 − 𝑎1𝑎8𝑎11− 𝑎5𝑎8𝑎11 − 𝑎1𝑎5𝑎8) ),𝑚0 = 𝑎8𝑎11 (𝑎1𝑎5 − 𝑎2𝑎4) ,

𝑛2 = ((𝑎5 + 𝑎11 + 𝑎1) + 𝑎11𝑎14 − 𝑎12𝑎13 − 𝑎2𝑎4) ,𝑛1 = (𝑎11 (𝑎1 + 𝑎5) + 𝑎1𝑎5 − 𝑎2𝑎4) ,𝑛0 = 𝑎11 (𝑎2𝑎4 − 𝑎1𝑎5) ).
(A.1)

Hence 𝑎1 = −0.01218,𝑎2 = 5.479 × 10−4,𝑎3 = −0.1764,𝑎4 = 2.53 × 10−5,𝑎5 = 0.008057,𝑎6 = −0.0003596,𝑎7 = 0.0101,𝑎9 = 445,𝑎10 = 0.005455,𝑎11 = −0.01302,𝑎12 = 0.0003596,𝑎13 = 0.01096,𝑎14 = −0.03777,𝑎15 = −0.3319,𝑎16 = 0.33196,𝑎17 = 0.3279,𝑘4 = −0.07308,𝑘3 = 0.001759,𝑘2 = −0.00008172,𝑘1 = 0.0005897,𝑘0 = 9.833 × 10−11,𝑙3 = −445.2,𝑙2 = −14.81, −1.1915,𝑙0 = −0.0005686,𝑚3 = −0.03531,𝑚2 = 0.0004299,𝑚1 = 0.00006202,𝑚0 = 00002674,𝑛2 = −0.3277,



Abstract and Applied Analysis 19𝑛1 = 0.0003616,𝑛0 = 0.000001277.
(A.2)

A.2. Coefficient Terms in the Characteristic Equation (24)

𝑏4 = 𝑘4 + 𝛾 + 𝛿,𝑏3 = 𝑘3 + 𝑙3𝛾 + 𝑚3𝛿,𝑏2 = 𝑘2 + 𝑙2𝛾 + 𝑚2𝛿 + 𝑛2𝛾𝛿,𝑏1 = 𝑘1 + 𝑙1𝛾 + 𝑚1𝛿 + 𝑛1𝛾𝛿,𝑏0 = 𝑙𝑜𝛾 + 𝑚0𝛿 + 𝑛0𝛾𝛿,
(A.3)

and hence 𝑏4 = 0.7364,𝑏3 = −148.4007,𝑏2 = −4.9408,𝑏1 = −0.3965,𝑏0 = −0.0001806.
(A.4)

A.3. Coefficient Terms in (47)

𝐴4 = (𝑝22 − 𝑝2𝛾2𝛿2𝑞4 − 2𝑝3) ,𝐴3 = (2𝑝1 + 𝑝23 − 2𝑝2𝑝4 − 𝑝2𝛾𝛿2 (𝑞23 − 2𝑞4𝑞2)) ,𝐴2 = (𝑝22 − 2𝑝1𝑝2 − 𝑝2𝛾2𝛿2 (2𝑞4𝑞0 + 𝑞22 − 2𝑞1𝑞3)) ,𝐴1 = 𝑝1 − 𝑝2𝛾2𝛿2 (𝑞1 − 2𝑞2𝑞0) ,
(A.5)

𝐴0 = −𝑞20𝑝2𝛾2𝛿2, (A.6)

and hence 𝐴4 = 296.9,𝐴3 = 22018,𝐴2 = 0.3754,

𝐴1 = −0.3966,𝐴0 = −2585 × 10−11.
(A.7)

A.4. Coefficient Terms in Transversality Condition of (55)𝑑0 = 𝑤20𝜏2,𝑓1 = 5𝑤4
20 − (3𝑝3𝑤2

20 + 𝑝1) ,𝑓2 = 4𝑝4𝑤3
20 − 2𝑝2𝑤20 ,𝑓3 = 2𝑝2𝑤20 − 4𝑝4𝑤3

20 ,𝑓4 = 5𝑤4
20 − 3𝑝3𝑤2

20 ,𝑔1 = 𝑝𝛾𝛿 (𝑞3𝑤4
20 − 𝑞1𝑤2

20) ,𝑔2 = 𝑝𝛾𝛿 (𝑞4𝑤5
20 + 𝑞0𝑤20 − 𝑞2𝑤3

20) ,𝑓5 = 𝑞1 + 2𝑞2𝑤20 − (3𝑞3𝑤2
20 + 4𝑞4𝑤3

20) ,
(A.8)

and hence 𝑝 = 0.9939,𝑝4 = 0.4064,𝑝3 = −148.4,𝑝2 = 0.3333,𝑝1 = −0.3966,𝑝0 = −0.0001895,𝑞4 = 0.3279,𝑞3 = 0.6280,𝑞2 = −0.003463,𝑞1 = 0.00004153,𝑞0 = 0.00002672.

(A.9)

B. Computation of Critical Values

B.1. Critical Value for Seeking Medical Care 𝜏20 . By applying
L’Hopitals rule to the arccos function of (51), let

𝑦 = arccos (𝑍) , 𝑍 = (𝑝2𝑤2
20 − 𝑝4𝑤4

20 − 𝑝0) (𝑞4𝑤4
20 − 𝑞2𝑤2

20 + 𝑞0) + (𝑞3𝑤3
20 − 𝑞1𝑤20)) (𝑝3𝑤3

20 − 𝑤5
20 − 𝑝1𝑤20)𝑝𝛾𝛿 ((𝑞4𝑤4

20 − 𝑞2𝑤2
20 + 𝑞0)2 − (𝑞1𝑤20 − 𝑞3𝑤3

20)2) ,
𝑑 (𝑦)𝑑𝑤20

= −(2𝑝2𝑤20 − 4𝑝4𝑤3
20 − 𝑝0) (𝑞4𝑤4

20 − 𝑞2𝑤2
20 + 𝑞0) + (𝑝2𝑤2

20 − 𝑝4𝑤4
20 − 𝑝0) (4𝑞4𝑤3

20 − 2𝑞2𝑤20)𝑝𝛾𝛿 (2 (𝑞4𝑤4 − 𝑞2𝑤2 + 𝑞0)) (4𝑞4𝑤3 − 2𝑞2𝑤) − 2 (𝑞1𝑤 − 𝑞3𝑤3) (𝑞1 − 3𝑞3𝑤2)√1 − 𝑍2)− (𝑝3𝑤3
20 − 𝑤5

20 − 𝑝1𝑤20) (3𝑞3𝑤2
20 − 𝑞1) + (𝑞3𝑤3

20 − 𝑞1𝑤) (3𝑝3𝑤2
20 − 5𝑤4

20 − 𝑝1)𝑝𝛾𝛿 (2 (𝑞4𝑤4
20 − 𝑞2𝑤2

20 + 𝑞0)) (4𝑞4𝑤3
20 − 2𝑞2𝑤20) − 2 (𝑞1𝑤20 − 𝑞3𝑤3

20) (𝑞1 − 3𝑞3𝑤2
20)√1 − 𝑍2)

= 0.174
(B.1)
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