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In this paper, we derive explicit determinantal representation formulas of general, Hermitian, and skew-Hermitian solutions to
the generalized Sylvester matrix equation involving ∗-Hermicity AXA∗ + BYB∗ = C over the quaternion skew field within the
framework of the theory of noncommutative column-row determinants.

1. Introduction

LetH�푚×�푛 and H�푚×�푛
�푟 stand for the set of all𝑚×𝑛matrices and

for its subset of matrices with rank 𝑟, respectively, over the
quaternion skew field

H = {𝑎0 + 𝑎1i + 𝑎2j + 𝑎3k | i2 = j2 = k2 = −1, ij = −ji
= k, 𝑎0, 𝑎1, 𝑎2, 𝑎3 ∈ R} , (1)

where R is the real number field. For A ∈ H�푚×�푛, the symbol
A∗ stands for conjugate transpose (Hermitian adjoint) of A.
A matrix A ∈ H�푛×�푛 is Hermitian if A∗ = A.

The Moore-Penrose inverse of A ∈ H�푚×�푛 is called the
unique matrix X ∈ H�푛×�푚 satisfying the following four equa-
tions

1. AXA = A,
2. XAX = X,

3. (AX)∗ = AX,
4. (XA)∗ = XA.

(2)

It is denoted by A†.
The two-sided generalized Sylvester matrix equation

AXB + CYD = E (3)

has been well studied in matrix theory. For instance, Huang
[1] obtained necessary and sufficient conditions for the
existence of solutions to (3) with X = Y over the quaternion
skewfield. Baksalary andKala [2] derived the general solution
to (3) expressed in terms of generalized inverses which has
been extended to an arbitrary division ring and on any regular
ring with identity in [3, 4]. Ranks and independence of
solutions to (3) were explored in [5]. In [6] expressions, as
well as necessary and sufficient conditions, were given for
the existence of the real and pure imaginary solutions to the
consistent quaternion matrix equation (3).

The high research activities on Sylvester-type matrix
equations can be observed lately. In particular, we note the
following papers concerning methods of their computing
solutions. Liao et al. [7] established a direct method for
computing its approximate solution using the generalized
singular value decomposition and the canonical correlation
decomposition. Efficient iterative algorithms were presented
to solve a system of two generalized Sylvester matrix equa-
tions in [8] and to solve the minimum Frobenius norm resid-
ual problem for a system of Sylvester-type matrix equations
over generalized reflexive matrix in [9].

Systems of periodic discrete-time coupled Sylvester
quaternion matrix equations [10], systems of quaternary cou-
pled Sylvester-type real quaternion matrix equations [11], and
optimal pole assignment of linear systems by the Sylvester
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matrix equations [12] have been explored. Some constraint
generalized Sylvester matrix equations [13, 14] were studied
recently.

Special solutions to Sylvester-type quaternion matrix
equations have been actively studied. Roth’s solvability crite-
ria for some Sylvester-type matrix equations were extended
over the quaternion skew field with a fixed involutive auto-
morphism in [15]. Şimşek et al. [16] established the precise
solutions on the minimum residual and matrix nearness
problems of the quaternion matrix equation (AXB,DXE) =(C,F) for centrohermitian and skew-centrohermitian matri-
ces. Explicit solutions to some Sylvester-type quaternion
matrix equations (with 𝑗-conjugation) were established by
means of Kronecker map and complex representation of a
quaternion matrix in [17, 18]. The expressions of the least
squares solutions to some Sylvester-type matrix equations
over nonsplit quaternion algebra [19] and Hermitian solu-
tions over a split quaternion algebra [20] were derived.
Solvability conditions and general solution for some general-
ized Sylvester real quaternion matrix equations involving 𝜂-
Hermicity were given in [21, 22].

Many authors have paid attention also to the Sylvester-
type matrix equation involving ∗-Hermicity

AXA∗ + BYB∗ = C. (4)

Chang and Wang [23] derived expressions for the general
symmetric solution and the general minimum-2-norm sym-
metric solution to the matrix equation (4) within the real
settings. Xu et al. [24] have given a representation of the
least-squares Hermitian (skew-Hermitian) solution to the
matrix equation (4). Zhang [25] obtained a representation
of the general Hermitian nonnegative-definite (respectively
positive-definite) solution to (4) within the complex settings.
Yuan et al. [26] derived the expression of Hermitian solution
for the matrix nearness problem associated with the quater-
nion matrix equation (4). Wang et al. [27] gave a necessary
and sufficient condition for the existence and an expression
for the re-nonnegative definite solution to (4) over H by
using the decomposition of pairwise matrices. Wang et al.
[28] established the extreme ranks for the general (skew-
)Hermitian solution to (4) over H.

Motivated by the vast application of quaternion matrices
and the latest interest of Sylvester-type quaternion matrix
equations, the main goal of the paper is to derive explicit
determinantal representation formulas of the general,Hermi-
tian, and skew-Hermitian solutions to (4) based on determi-
nantal representations of the Moore-Penrose inverse.

Determinantal representation of a solution gives a direct
method of its finding analogous to classical Cramer’s rule
that has important theoretical and practical significance.
However, determinantal representations are not so unam-
biguous even for generalized inverses within the complex
or real settings. Through looking for their more applicable
explicit expressions, there are various determinantal rep-
resentations of generalized inverses (see, e.g., [29–31]). By
virtue of noncommutativity of quaternions, the problem
for determinantal representation of generalized quaternion
inverses is even more complicated, and only now it can

be solved due to the theory of column-row determinants
introduced in [32, 33]. Within the framework of the theory of
row-column determinants, determinantal representations of
various generalized quaternion inverses, namely, the Moore-
Penrose inverse [34], the Drazin inverse [35], theW-weighted
Drazin inverse [36], and the weightedMoore-Penrose inverse
[37], have been derived by the author. These determinantal
representations were used to obtain explicit representation
formulas for the minimum norm least squares solutions
[38] and weighted Moore-Penrose inverse solutions [39] to
somequaternionmatrix equations and explicit determinantal
representation formulas of both Drazin and W-weighted
Drazin inverse solutions to some restricted quaternionmatrix
equations and quaternion differential matrix equations [40–
42]. Recently, determinantal representations of solutions to
some systems of quaternion matrix equations [43, 44] and,
in [45], two-sided generalized Sylvester matrix equation (3)
have been derived by the author as well.

Other researchers also used the row-column determi-
nants in their developments. In particular, Song derived
determinantal representations of the generalized inverse A2

�푇,�푆
[46] and the Bott-Duffin inverse [47]. Song et al. obtained the
Cramer rules for the solutions of restricted matrix equations
[48] and for the generalized Stein quaternion matrix equation
[49], and so forth. Moreover, Song et al. [50] have just
recently considered determinantal representations of the
general solution to the generalized Sylvester matrix equation
(3) over H using row-column determinants as well. But
their approach differs from ours because for determinantal
representations of solutions we use only coefficient matrices
of the equation, while in [50] supplementary matrices have
been constructed and used.

The paper is organized as follows. In Section 2, we start
with some remarkable results which have significant role
during the construction of the main results of this paper.
Elements of the theory of row-columndeterminants are given
in Section 2.1, determinantal representations of the Moore-
Penrose inverse and of the general solution to the quaternion
matrix equationAXB = C and its special cases are considered
in Section 2.2, and the explicit determinantal representation
of the general solution to (3) previously obtained within
the framework of the theory of row-column determinants
is in Section 2.3. The main results of the paper, namely,
explicit determinantal representation formulas of the general,
Hermitian, skew-Hermitian solutions to (4), are derived in
Section 3. In Section 4, a numerical example to illustrate
the main results is considered. Finally, in Section 5, the
conclusions are drawn.

2. Preliminaries

We commence with the following preliminaries which have
crucial function in the construction of the chief outcomes of
the following sections.

2.1. Elements of the Theory of Row-Column Determinants.
Due to noncommutativity of quaternions, a problem of defin-
ing a determinant of matrices with noncommutative entries
(which is also defined as noncommutative determinants) has
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been unsolved for a long time. There are several versions of
the definition of noncommutative determinant (see, e.g., [51–
56]). But any of the previous noncommutative determinants
has not fully retained those properties which it has owned for
matrices with commutative entries. Moreover, if functional
properties of noncommutative determinant over a ring are
satisfied, then it takes on a value in its commutative subset.
This dilemma can be avoided thanks to the theory of row-
column determinants.

Suppose 𝑆�푛 is the symmetric group on the set 𝐼�푛 ={1, . . . , 𝑛}. Let A ∈ H�푛×�푛. Row determinants of A along each
row can be defined as follows.

Definition 1 (see [32]). The 𝑖th row determinant ofA = (𝑎�푖�푗) ∈
H�푛×�푛 is defined for all 𝑖 = 1, . . . , 𝑛 by putting

r det�푖A = ∑
�휎∈�푆�푛

(−1)�푛−�푟

⋅ (𝑎�푖�푖�푘1 𝑎�푖�푘1 �푖�푘1+1 . . . 𝑎�푖�푘1+�푙1 �푖) . . . (𝑎�푖�푘�푟 �푖�푘�푟+1 . . . 𝑎�푖�푘�푟+�푙�푟 �푖�푘�푟 ) ,
𝜎 = (𝑖𝑖�푘1𝑖�푘1+1 . . . 𝑖�푘1+�푙1) (𝑖�푘2𝑖�푘2+1 . . . 𝑖�푘2+�푙2)

. . . (𝑖�푘�푟 𝑖�푘�푟+1 . . . 𝑖�푘�푟+�푙�푟) ,

(5)

where 𝑖�푘2 < 𝑖�푘3 < ⋅ ⋅ ⋅ < 𝑖�푘�푟 and 𝑖�푘�푡 < 𝑖�푘�푡+�푠 for all 𝑡 = 2, . . . , 𝑟
and 𝑠 = 1, . . . , 𝑙�푡.

Similarly, for a column determinant along an arbitrary
column, we have the following definition.

Definition 2 (see [32]). The 𝑗th column determinant of A =(𝑎�푖�푗) ∈ H�푛×�푛 is defined for all 𝑗 = 1, . . . , 𝑛 by putting
c det�푗A = ∑

�휏∈�푆�푛

(−1)�푛−�푟

⋅ (𝑎�푗�푘�푟 �푗�푘r+�푙�푟 . . . 𝑎�푗�푘�푟+1�푗�푘�푟 ) . . . (𝑎�푗�푗�푘1+�푙1 . . . 𝑎�푗�푘1+1�푗�푘1𝑎�푗�푘1 �푗) ,
𝜏 = (𝑗�푘�푟+�푙�푟 . . . 𝑗�푘�푟+1𝑗�푘�푟) . . . (𝑗�푘2+�푙2 . . . 𝑗�푘2+1𝑗�푘2)

⋅ (𝑗�푘1+�푙1 . . . 𝑗�푘1+1𝑗�푘1𝑗) ,

(6)

where 𝑗�푘2 < 𝑗�푘3 < ⋅ ⋅ ⋅ < 𝑗�푘�푟 and 𝑗�푘�푡 < 𝑗�푘�푡+�푠 for 𝑡 = 2, . . . , 𝑟 and𝑠 = 1, . . . , 𝑙�푡.
So an arbitrary 𝑛 × 𝑛 quaternion matrix inducts a set

from 𝑛 row determinants and 𝑛 column determinants that are
different in general. Only for Hermitian A, we have [32],

r det1A = ⋅ ⋅ ⋅ = r det�푛A = c det1A = ⋅ ⋅ ⋅ = c det�푛A

∈ R, (7)

which enables defining the determinant of aHermitianmatrix
by putting

detA fl r det�푖A = c det�푖A (8)

for all 𝑖 = 1, . . . , 𝑛.

Its properties are similar to the properties of an usual
(commutative) determinant and they have been completely
explored in [32] by using row and column determinants that
are so defined only by construction. We note the following
that will be required below.

Lemma 3. LetA ∈ H�푚×�푛.Then c det�푖A∗ = r det�푖A, r det�푖A∗ =
c det�푖A.

2.2. Determinantal Representations of the Moore-Penrose
Inverse with Applications to Some Quaternion Matrix Equa-
tions. For introducing determinantal representations of the
Moore-Penrose inverse, the following notations will be used.

Let 𝛼 fl {𝛼1, . . . , 𝛼�푘} ⊆ {1, . . . , 𝑚} and 𝛽 fl {𝛽1, . . . , 𝛽�푘} ⊆{1, . . . , 𝑛} be subsets of the order 1 ≤ 𝑘 ≤ min{𝑚, 𝑛}. A�훼
�훽

denotes a submatrix ofAwhose rows are indexed by𝛼 and the
columns indexed by 𝛽. So A�훼

�훼 denotes a principal submatrix
of A with rows and columns indexed by 𝛼. If A ∈ H�푛×�푛

is Hermitian, then |A|�훼�훼 denotes the corresponding principal
minor of detA.

Let 𝐿�푘,�푛 fl {𝛼 : 𝛼 = (𝛼1, . . . , 𝛼�푘), 1 ≤ 𝛼1 < ⋅ ⋅ ⋅ < 𝛼�푘 ≤𝑛} denote the collection of strictly increasing sequences of 𝑘
integers chosen from {1, . . . , 𝑛} for all 1 ≤ 𝑘 ≤ 𝑛. Then, for
fixed 𝑖 ∈ 𝛼 and 𝑗 ∈ 𝛽, the collection of sequences of row
indexes that contain the index 𝑖 is denoted by 𝐼�푟,�푚{𝑖} fl {𝛼 :𝛼 ∈ 𝐿�푟,�푚, 𝑖 ∈ 𝛼}; similarly, the collection of sequences of
column indexes that contain the index 𝑗 is denote by 𝐽�푟,�푛{𝑗} fl{𝛽 : 𝛽 ∈ 𝐿�푟,�푛, 𝑗 ∈ 𝛽}.

Let a.�푗 be the 𝑗th column and a�푖. be the 𝑖th row of
A. Suppose A.�푗(b) denote the matrix obtained from A by
replacing its 𝑗th column with the column b andA�푖.(b) denote
the matrix obtained from A by replacing its 𝑖th row with the
row b. Denote by a∗.�푗 and a∗�푖. the 𝑗th column and the 𝑖th row
of A∗, respectively.

Theorem 4 (see [34]). If A ∈ H�푚×�푛
�푟 , then the Moore-Penrose

inverse A† = (𝑎†�푖�푗) ∈ H�푛×�푚 have the following determinantal
representations,

𝑎†�푖�푗 =
∑�훽∈�퐽�푟,�푛{�푖}

c det�푖 ((A∗A).�푖 (a∗.�푗))�훽�훽
∑�훽∈�퐽�푟,�푛

|A∗A|�훽�훽 , (9)

𝑎†�푖�푗 = ∑�훼∈�퐼�푟,�푚{�푗}
r det�푗 ((AA∗)�푗. (a∗�푖.))�훼�훼∑�훼∈�퐼�푟,�푚

|AA∗|�훼�훼 . (10)

Remark 5. For an arbitrary full-rank matrix A ∈ H�푚×�푛
�푟 , a

column vector b ∈ H�푛×1 and a row vector c ∈ H1×�푚 we put

c det�푖 ((A∗A).�푖 (b)) = ∑
�훽∈�퐽�푛,�푛{�푖}

c det�푖 ((A∗A).�푖 (b))�훽�훽 ,
det (A∗A) = ∑

�훽∈�퐽�푛,�푛

󵄨󵄨󵄨󵄨A∗A󵄨󵄨󵄨󵄨�훽�훽 when 𝑟 = 𝑛,
r det�푗 ((AA∗)�푗. (c)) = ∑

�훼∈�퐼�푚,�푚{�푗}

r det�푗 ((AA∗)�푗. (c))�훼�훼 ,
det (AA∗) = ∑

�훼∈�퐼�푚,�푚

󵄨󵄨󵄨󵄨AA∗󵄨󵄨󵄨󵄨�훼�훼 when 𝑟 = 𝑚.

(11)
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Remark 6. First note that (A∗)† = (A†)∗. Because of symbol
equivalence, we shall use the denotation A†,∗ fl (A∗)† aswell.
So by Lemma 3, for the Hermitian adjoint matrix A∗ ∈ H�푛×�푚

�푟

determinantal representations of its Moore-Penrose inverse(A∗)† = ((𝑎∗�푖�푗)†) ∈ H�푚×�푛 are

(𝑎∗�푖�푗)† = (𝑎�푗�푖)† = ∑�훼∈�퐼�푟,�푛{�푗}
r det�푗 ((A∗A)�푗. (a�푖.))�훼�훼∑�훼∈�퐼�푟,�푛

|A∗A|�훼�훼 , (12)

(𝑎∗�푖�푗)† = ∑�훽∈�퐽�푟,�푚{�푖}
c det�푖 ((AA∗).�푖 (a.�푗))�훽�훽
∑�훽∈�퐽�푟,�푚

|AA∗|�훽�훽 . (13)

Since the projection matrices A†A š P�퐴 = (𝑝�푖�푗) and
AA† š Q�퐴 = (𝑞�푖�푗) are Hermitian, then 𝑝�푖�푗 = 𝑝�푗�푖 and 𝑞�푖�푗 = 𝑞�푗�푖
for all 𝑖 ̸= 𝑗. So due to Theorem 4 and Remark 6 we have
evidently the following corollaries.

Corollary 7. If A ∈ H�푚×�푛
�푟 , then the projection matrix P�퐴 =(𝑝�푖�푗)�푛×�푛 has the determinantal representations

𝑝�푖�푗 = ∑�훽∈�퐽�푟,�푛{�푖}
c det�푖 ((A∗A).�푖 (ȧ.�푗))�훽�훽
∑�훽∈�퐽�푟,�푛

|A∗A|�훽�훽
= ∑�훼∈�퐼�푟,�푛{�푗}

r det�푗 ((A∗A)�푗. (ȧ�푖.))�훼�훼∑�훼∈�퐼�푟,�푛
|A∗A|�훼�훼 ,

(14)

where ȧ.�푗 and ȧ�푖. are the 𝑗th column and 𝑖th row ofA∗A ∈ H�푛×�푛,
respectively.

Corollary 8. If A ∈ H�푚×�푛
�푟 , then the projection matrix AA† š

Q�퐴 = (𝑞�푖�푗)�푚×�푚 has the determinantal representation

𝑞�푖�푗 = ∑�훼∈�퐼�푟,�푚{�푗}
r det�푗 ((AA∗)�푗. (ä�푖.))�훼�훼∑�훼∈�퐼�푟,�푚

|AA∗|�훼�훼
= ∑�훽∈�퐽�푟,�푚{�푖}

c det�푖 ((AA∗).�푖 (ä.�푗))�훽�훽
∑�훼∈�퐽�푟,�푚

|AA∗|�훽�훽 ,
(15)

where ä�푖. and ä�푗. are the 𝑖th row and the 𝑗th column of AA∗ ∈
H�푚×�푚.

Determinantal representations of orthogonal projectors
L�퐴 fl I − A†A and R�퐴 fl I − AA† induced from A can be
derived similarly.

Theorem 9 (see [3]). Let A ∈ H�푚×�푛, B ∈ H�푟×�푠, C ∈ H�푚×�푠 be
known and X ∈ H�푛×�푟 be unknown. Then the matrix equation

AXB = C (16)

is consistent if and only if AA†CB†B = C. In this case, its
general solution can be expressed as

X = A†CB† + L�퐴V +WR�퐵, (17)

where V,W are arbitrary matrices over H with allowable
dimensions.

Theorem 10 (see [35]). Let A ∈ H�푚×�푛
�푟1

, B ∈ H�푟×�푠
�푟2

. Then the
partial solution X0 = A†CB† = (𝑥0�푖�푗) ∈ H�푛×�푟 to (16) has
determinantal representations,

𝑥0�푖�푗 =
∑�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (d�퐵.�푗))�훽�훽
∑�훽∈�퐽�푟1 ,�푛

|A∗A|�훽�훽 ∑�훼∈�퐼�푟2,�푟
|BB∗|�훼�훼 , (18)

or

𝑥0�푖�푗 = ∑�훼∈�퐼�푟2,�푟{�푗}
r det�푗 ((BB∗)�푗. (d�퐴�푖. ))�훼�훼

∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 ∑�훼∈�퐼�푟2,�푟

|BB∗|�훼�훼 , (19)

where

d�퐵.�푗 = [
[

∑
�훼∈�퐼�푟2 ,�푟{�푗}

r det�푗 ((BB∗)�푗. (c̃�푘.))�훼�훼]]
∈ H

�푛×1,
𝑘 = 1, . . . , 𝑛,

d�퐴�푖. = [
[

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (c̃.�푙))�훽�훽]]
∈ H

1×�푟,
𝑙 = 1, . . . , 𝑟,

(20)

are the column vector and the row vector, respectively. c̃�푖. and
c̃.�푗 are the 𝑖th row and the 𝑗th column of C̃ = A∗CB∗.

Corollary 11. Let A ∈ H�푚×�푛
�푘 , C ∈ H�푚×�푠 be known and

X ∈ H�푛×�푠 be unknown. Then the matrix equation AX = C is
consistent if and only if AA†C = C. In this case, its general
solution can be expressed as X = A†C + L�퐴V, where V is
an arbitrary matrix over H with an allowable dimension. The
partial solution X0 = A†C has the following determinantal
representation,

𝑥0�푖�푗 =
∑�훽∈�퐽�푘,�푛{�푖}

c det�푖 ((A∗A).�푖 (ĉ.�푗))�훽�훽
∑�훽∈�퐽�푘,�푛

|A∗A|�훽�훽 . (21)

where ĉ.�푗 is the 𝑗th column of Ĉ = A∗C.

Corollary 12. Let B ∈ H�푟×�푠
�푘 , C ∈ H�푛×�푠 be given and X ∈ H�푛×�푟

be unknown. Then the equation XB = C is solvable if and only
if C = CB†B and its general solution isX = CB†+WR�퐵, where
W is any matrix with an allowable dimension. Moreover, its
partial solutionX = CB† has the determinantal representation,

𝑥�푖�푗 = ∑�훼∈�퐼�푘,�푟{�푗}
r det�푗 ((BB∗)�푗. (ĉ�푖.))�훼�훼∑�훼∈�퐼�푘,�푟

|BB∗|�훼�훼 . (22)

where ĉ�푖. is the 𝑖th row of Ĉ = CB∗.
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2.3. Determinantal Representations of the General Solution to
the Sylvester Matrix Equation (3)

Lemma 13 (see [3]). Let A ∈ H�푚×�푛, B ∈ H�푟×�푠, C ∈ H�푚×�푝,
D ∈ H�푞×�푠, E ∈ H�푚×�푠. Put M = R�퐴C, N = DL�퐵, S = CL�푀.
Then the following results are equivalent.

(i) Eq. (3) has a pair solution (X,Y), where X ∈ H�푛×�푟, Y ∈
H�푝×�푞.

(ii) R�푀R�퐴E = 0, R�퐴EL�퐷 = 0, EL�퐷L�푁 = 0, R�퐶EL�퐵 = 0.
(iii) Q�푀R�퐴EP�퐷 = R�퐴E, Q�퐶EL�퐵P�푁 = EL�퐵.
(iv) rank [A C E] = rank [A C], rank [B∗ D∗ E∗] =

rank [B∗ D∗], rank [ A E
0 D ] = rank [ A 0

0 D ], rank [ C E
0 B ]= rank [ C 0

0 B ].
In that case, the general solution to (3) can be expressed as

X = A†EB† − A†CM†R�퐴EB
† − A†SC†EL�퐵N

†DB†

− −A†SVR�푁DB
† + L�퐴U + ZR�퐵,

(23)

Y = M†R�퐴ED
† + L�푀S†SC†EL�퐵N

†

+ L�푀 (V − S†SVNN†) +WR�퐷, (24)

where U, V, Z, and W are arbitrary matrices over H obeying
agreeable dimensions.

Some simplifications of (23) and (24) can be derived due
to the quaternionic analog of the following proposition.

Lemma 14 (see [57]). If A ∈ H�푛×�푛 is Hermitian and idempo-
tent, then for any matrix B ∈ H�푚×�푛 the following equations
hold

A (BA)† = (BA)† ,
(AB)† A = (AB)† . (25)

Since R�퐴, L�퐵, and L�푀 are projectors, then by Lemma 14
the simplifications of (23) and (24) are as follows:

X = A†EB† − A†CM†EB† − A†SC†EN†DB†

− A†SVR�푁DB
† + +L�퐴U + ZR�퐵,

Y = M†ED† + P�푆C
†EN† + L�푀 (V − P�푆VQ�푁)

+WR�퐷.
(26)

By putting U,V,Z, and W as zero-matrices, we obtain the
partial solution to (3),

X = A†EB† − A†CM†EB† − A†SC†EN†DB†, (27)

Y = M†ED† + P�푆C
†EN†. (28)

The following theoremgives determinantal representations of
(27)-(28).

Theorem 15 (see [45]). Let A ∈ H�푚×�푛
�푟1

, B ∈ H�푟×�푠
�푟2

, C ∈ H�푚×�푝
�푟3

,
D ∈ H�푞×�푠

�푟4
, rankM = 𝑟5, rankN = 𝑟6, rank S = 𝑟7. Then the

pair solution (27)-(28), X = (𝑥�푖�푗) ∈ H�푛×�푟, Y = (𝑥�푔�푓) ∈ H�푝×�푞,
to (3) by the components

𝑥�푖�푗 = 𝑥(1)�푖�푗 − 𝑥(2)�푖�푗 − 𝑥(3)�푖�푗 ,
𝑦�푔�푓 = 𝑦(1)

�푔�푓 + 𝑦(2)
�푔�푓 ,

(29)

has the determinantal representation, as follows.
(i)

𝑥(1)�푖�푗 = ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (d�퐵.�푗))�훽�훽

∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 ∑�훼∈�퐼�푟2 ,�푟

|BB∗|�훼�훼 , (30)

or

𝑥(1)�푖�푗 = ∑�훼∈�퐼�푟2 ,�푟{�푗}
r det�푗 ((BB∗)�푗. (d�퐴�푖. ))�훼�훼

∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 ∑�훼∈�퐼�푟2,�푟

|(BB∗ |�훼�훼 , (31)

where

d�퐵.�푗 = [
[

∑
�훼∈�퐼�푟2 ,�푟{�푗}

r det�푗 ((BB∗)�푗. (e(1)�푘. ))�훼�훼]]
∈ H

�푛×1,
𝑘 = 1, . . . , 𝑛,

d�퐴�푖. = [
[

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (e(1).�푙 ))�훽
�훽
]
]

∈ H
1×�푟,

𝑙 = 1, . . . , 𝑟,

(32)

are the column vector and the row vector, respectively. e(1)
�푘.

and
e(1).�푙 are the 𝑘th row and the 𝑙th column of E1 fl A∗EB∗.

(ii)

𝑥(2)�푖�푗

= ∑�푞
�푡=1 𝜑�푖�푞 ∑�훼∈�퐼�푟2 ,�푟{�푗}

r det�푗 ((BB∗)�푗. (e(2)�푞. ))�훼�훼
∑�훽∈�퐽�푟1 ,�푛

|A∗A|�훽�훽 ∑�훽∈�퐼�푟5 ,�푚
|MM∗|�훼�훼 ∑�훼∈�퐼�푟2,�푟

|BB∗|�훼�훼 ,
(33)

where e(2)�푞. is 𝑞th row of E2 fl EB∗.

𝜑�푖�푞 = ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (𝜓�푀
.�푞 ))�훽�훽

= ∑
�훼∈�퐼�푟5,�푚{�푞}

r det�푞 ((MM∗)�푞. (𝜓�퐴
�푖. ))�훼�훼 ,

𝜓�푀
.�푞 = [

[
∑

�훼∈�퐼�푟5 ,�푚{�푞}

r det�푞 ((MM∗)�푞. (c(1)�푓. ))�훼�훼]]
∈ H

�푛×1,
𝑓 = 1, . . . , 𝑛,
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𝜓�퐴
�푖. = [

[
∑

�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (c(1).�푠 ))�훽
�훽
]
]

∈ H
1×�푚,

𝑠 = 1, . . . , 𝑚,
(34)

are the column vector and the row vector, respectively. c(1)
�푓.

and
c(1).�푠 are the 𝑓th row and the 𝑠th column of C1 fl A∗CM∗.

(iii)

𝑥(3)�푖�푗 == ∑�푝
�푡=1 ∑�푞

�푓=1
∑�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (s(1).�푡 ))�훽
�훽
∑�훽∈�퐽�푟3 ,�푝{�푡}

c det�푡 ((C∗C).�푡 (e(3).�푓
))�훽

�훽
𝜂�푓�푗

∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 ∑�훽∈�퐽�푟3 ,�푝

|C∗C|�훽�훽 ∑�훼∈�퐽�푟6,�푠
|N∗N|�훽�훽 ∑�훼∈�퐼�푟2,�푟

|BB∗|�훼�훼 , (35)

where s(1).�푡 is the 𝑡th column of S1 fl A∗S, e(3)
.�푓

is the 𝑓th column
of E3 fl C∗E, and

𝜂�푓�푗 = ∑
�훼∈�퐼�푟2,�푟{�푡}

r det�푗 ((BB∗)�푗. (𝜁�푁�푓. ))�훼�훼
= ∑

�훽∈�퐽�푟6 ,�푠{�푓}

c det�푓 ((N∗N).�푓 (𝜁�퐵.�푗))�훽�훽 ,

𝜁�푁�푓. = [
[

∑
�훽∈�퐽�푟6 ,�푠{�푓}

c det�푓 ((N∗N).�푓 (d(1).�푘 ))�훽
�훽
]
]

∈ H
1×�푟,

𝑘 = 1, . . . , 𝑟,
𝜁�퐵.�푗 = [

[
∑

�훼∈�퐼�푟2 ,�푟{�푗}

r det�푗 ((BB∗)�푗. (d(1)�푙. ))�훼
�훼
]
]

∈ H
�푠×1,

𝑙 = 1, . . . , 𝑠,

(36)

are the row vector and the column vector, respectively. d(1).�푘 and
d(1)
�푙.

are the 𝑘th column and the 𝑙th row of D1 = N∗DB∗.
(iv)

𝑦(1)
�푔�푓 = ∑�훽∈�퐽�푟5 ,�푝{�푔}

c det�푔 ((M∗M).�푔 (d�퐷.�푓))�훽�훽
∑�훽∈�퐽�푟5 ,�푝

|M∗M|�훽�훽 ∑�훼∈�퐼�푟4 ,�푞
|DD∗|�훼�훼 , (37)

or

𝑦(1)
�푔�푓 = ∑�훼∈�퐼�푟4,�푞{�푓}

r det�푓 ((DD∗)�푓. (d�푀�푔. ))�훼�훼
∑�훽∈�퐽�푟5 ,�푝

|M∗M|�훽�훽 ∑�훼∈�퐼�푟4 ,�푞
|DD∗|�훼�훼 , (38)

where

d�퐷.�푓 = [
[

∑
�훼∈�퐼�푟4 ,�푞{�푓}

r det�푓 ((DD∗)�푓. (e(4)�푘. ))�훼�훼]]
∈ H

�푝×1,
𝑘 = 1, . . . , 𝑝,

d�푀�푔. = [
[

∑
�훽∈�퐽�푟5 ,�푝{�푔}

c det�푔 ((M∗M).�푔 (e(4).�푙 ))�훽
�훽
]
]

∈ H
1×�푞,

𝑙 = 1, . . . , 𝑞,

(39)

are the column vector and the row vector, respectively. e(4)
�푘.

and
e(4)
.�푙

are the 𝑘th row and the 𝑙th column of E4 fl M∗ED∗.
(v)

𝑦(2)
�푔�푓 = ∑�푝

�푡=1 ∑�훽∈�퐽�푟7 ,�푝{�푔}
c det�푔 ((S∗S).�푔 ( ̈s.�푡))�훽�훽 𝜉�푡�푓

∑�훽∈�퐽�푟7 ,�푝
|S∗S|�훽�훽 ∑�훽∈�퐽�푟3 ,�푝

|C∗C|�훽�훽 ∑�훼∈�퐼�푟6,�푞
|NN∗|�훼�훼 ,

(40)

where
𝜉�푡�푓 = ∑

�훼∈�퐼�푟6,�푞{�푡}

r det�푓 ((NN∗)�푓. (𝜙�퐶�푡. ))�훼�훼
= ∑

�훽∈�퐽�푟3 ,�푝{�푡}

c det�푡 ((C∗C).�푡 (𝜙�푁.�푓))�훽�훽 ,

𝜙�퐶�푡. = [
[

∑
�훽∈�퐽�푟3 ,�푝{�푡}

c det�푡 ((C∗C).�푡 (e(5).�푘 ))�훽
�훽
]
]

∈ H
1×�푞,

𝑘 = 1, . . . , 𝑞,
𝜙�푁.�푓 = [

[
∑

�훼∈�퐼�푟6,�푞{�푗}

r det�푓 ((NN∗)�푓. (e(5)�푙. ))�훼
�훼
]
]

∈ H
�푠×1,

𝑙 = 1, . . . , 𝑝,

(41)

are the row vector and the column vector, respectively. e(5)
.�푘

and
e(5)
�푙.

are the 𝑘th column and the 𝑙th row of E5 = C∗EN∗.

3. Determinantal Representations of
the General and (Skew-)Hermitian
Solutions to (4)

Now consider (4). Since for an arbitrary matrix A it is evident
that P�퐴∗ = (A∗)†A∗ = (AA†)∗ = Q�퐴, so Q�퐴∗ = P�퐴, L�퐴∗ =
I − P�퐴∗ = I − Q�퐴 = R�퐴, and R�퐴∗ = L�퐴. Due to the above,
M = R�퐴B and N = B∗L�퐴∗ = B∗R�퐴 = (R�퐴B)∗ = M∗, and we
obtain the following analog of Lemma 13.

Lemma 16. Let A ∈ H�푚×�푛, B ∈ H�푚×�푘, C ∈ H�푚×�푚. Put M =
R�퐴B, S = BL�푀. Then the following results are equivalent.

(i) Equation (4) has a pair solution (X,Y), where X ∈
H�푛×�푛, Y ∈ H�푘×�푘.
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(ii) R�푀R�퐴C = 0, R�퐴CR�퐵 = 0, CR�퐵R�푀 = 0, R�퐵CR�퐴 = 0.

(iii) Q�푀R�퐴CQ�퐵 = R�퐴C, Q�퐵CR�퐴Q�푀 = CR�퐴.

(iv) rank [A B C] = rank [A B], rank [ A C
0 B∗ ] =

rank [ A 0
0 B∗ ], rank [ B C

0 A∗ ] = rank [ B 0
0 A∗ ].

In that case, the general solution to (4) can be expressed as
follows:

X = A†CA∗,† − A†BM†CA∗,†

− A†SB∗,†CM∗,†B∗A∗,† − A†SVL�푀B∗A∗,†

+ L�퐴U + ZL�퐴,
Y = M†CB∗,† + P�푆B

†CM∗,† + L�푀 (V − P�푆VP�푀)
+WL�퐵.

(42)

where U, V, Z, and W are arbitrary matrices over H with
allowable dimensions.

By putting U,V, Z, andW as zero-matrices with compat-
ible dimensions, we obtain the following partial solution to
(4),

X = A†CA∗,† − A†BM†CA∗,†

− A†SB†CM∗,†B∗A∗,†, (43)

Y = M†CB∗,† + P�푆B
†CM∗,†. (44)

The following theoremgives determinantal representations of
(43)-(44).

Theorem 17. LetA ∈ H�푚×�푛
�푟1

,B ∈ H�푚×�푘
�푟2

, rankM = 𝑟3, rank S =𝑟4. Then the partial pair solution (43)-(44) to (4), X = (𝑥�푖�푗) ∈
H�푛×�푛, Y = (𝑦�푝�푔) ∈ H�푘×�푘, by the components

𝑥�푖�푗 = 𝑥(1)�푖�푗 − 𝑥(2)�푖�푗 − 𝑥(3)�푖�푗 ,
𝑦�푝�푔 = 𝑦(1)

�푝�푔 + 𝑦(2)
�푝�푔 ,

(45)

possesses the following determinantal representations:
(i)

𝑥(1)�푖�푗 = ∑�훼∈�퐼�푟1 ,�푛{�푗}
r det�푗 ((A∗A)�푗. (k�푖.))�훼�훼

(∑�훼∈�퐼�푟1 ,�푛
|A∗A|�훼�훼)2

(46)

or

𝑥(1)�푖�푗 = ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (k.�푗))�훽�훽

(∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽)2

, (47)

where

k�푖. = [
[

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (c(1).�푠 ))�훽
�훽
]
]

∈ H
1×�푛,

𝑠 = 1, . . . , 𝑛,
(48)

k.�푗 = [
[

∑
�훼∈�퐼�푟1,�푛{�푗}

r det�푗 ((A∗A)�푗. (c(1)�푓. ))�훼�훼]]
∈ H

�푛×1,
𝑓 = 1, . . . , 𝑛

(49)

are the row vector and the column vector, respectively; c(1).�푠 and
c(1)
�푓.

are the 𝑠th column and the 𝑓th row of C1 = A∗CA.
(ii)

𝑥(2)�푖�푗 = ∑�훼∈�퐼�푟1 ,�푛{�푗}
r det�푗 ((A∗A)�푗. (𝜙�푖.))�훼�훼

(∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽)2 ∑�훼∈�퐼�푟3 ,�푚

|MM∗|�훼�훼
, (50)

where 𝜙�푖. is the 𝑖th row of Φ̃ fl ΦCA and Φ = (𝜙�푖�푞) ∈ H�푛×�푚 is
such that

𝜙�푖�푞 = ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (𝜂�푀.�푞 ))�훽�훽
= ∑

�훼∈�퐼�푟3 ,�푚{�푞}

r det�푞 ((MM∗)�푞. (𝜂�퐴�푖. ))�훼�훼 ,
(51)

𝜂�푀.�푞 = [
[

∑
�훼∈�퐼�푟3 ,�푚{�푞}

r det�푞 ((MM∗)�푞. (b(1)�푓. ))�훼�훼]]
∈ H

�푛×1,
𝑓 = 1, . . . , 𝑛,

𝜂�퐴�푖. = [
[

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (b(1).�푠 ))�훽
�훽
]
]

∈ H
1×�푚,

𝑠 = 1, . . . , 𝑚,

(52)

are the column vector and the row vector, respectively. b(1)
�푓.

and
b(1).�푠 are the 𝑓th row and the 𝑠th column of B1 = A∗BM∗ and
c(2)�푞. is the 𝑞th row of C2 = CA.

(iii)

𝑥(3)�푖�푗

= ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (𝜐.�푗))�훽�훽

(∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽)2 ∑�훽∈�퐽�푟2 ,�푘

|B∗B|�훽�훽 ∑�훽∈�퐽�푟3 ,�푚
|MM∗|�훽�훽

, (53)

where 𝜐.�푗 is the 𝑗th column of Υ̃ = A∗SΥ, the matrix Υ =
(𝜐�푝�푗) ∈ H�푘×�푛 such that

𝜐�푝�푗 = ∑
�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c̃.�푗))�훽�훽 , (54)
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where c̃.�푗 is the 𝑗th column of C̃ = B∗CΦ∗ andΦ∗ is Hermitian
adjoint to Φ = (𝜙�푖�푞) from (51).

(iv)

𝑦(1)
�푝�푔 = ∑�훽∈�퐽�푟3 ,�푘{�푝}

c det�푝 ((M∗M).�푝 (d�퐵.�푔))�훽�훽
∑�훽∈�퐽�푟3 ,�푘

|M∗M|�훽�훽 ∑�훼∈�퐼�푟2,�푘
|B∗B|�훼�훼 , (55)

or

𝑦(1)
�푝�푔 = ∑�훼∈�퐼�푟2,�푘{�푔}

r det�푔 ((B∗B)�푔. (d�푀�푝. ))�훼�훼
∑�훽∈�퐽�푟3 ,�푘

|M∗M|�훽�훽 ∑�훼∈�퐼�푟2,�푘
|B∗B|�훼�훼 , (56)

where

d�퐵.�푔 = [
[

∑
�훼∈�퐼�푟2 ,�푘{�푔}

r det�푔 ((B∗B)�푔. (c(4)�푞. ))�훼�훼]]
∈ H

�푘×1,
𝑞 = 1, . . . , 𝑘,

d�푀�푝. = [
[

∑
�훽∈�퐽�푟3 ,�푘{�푝}

c det�푝 ((M∗M).�푝 (c(4).�푙 ))�훽
�훽
]
]

∈ H
1×�푘,

𝑙 = 1, . . . , 𝑘,

(57)

are the column vector and the row vector, respectively. c(4)�푞. and
c(4)
.�푙

are the 𝑞th row and the 𝑙th column of C4 fl M∗CB.
(v)

𝑦(2)
�푝�푔 = ∑�훽∈�퐽�푟4 ,�푘{�푝}

c det�푝 ((S∗S).�푝 (𝜔̃.�푔))�훽�훽
∑�훽∈�퐽�푟4 ,�푘

|S∗S|�훽�훽 ∑�훽∈�퐽�푟2 ,�푘
|B∗B|�훽�훽 ∑�훼∈�퐼�푟3 ,�푘

|M∗M|�훼�훼 ,
(58)

where Ω̃ = S∗SΩ andΩ = (𝜔�푡�푔) such that
𝜔�푡�푔 = ∑

�훽∈�퐽�푟2 ,�푘{�푡}

c det�푡 ((B∗B).�푡 (d�푀.�푔 ))�훽�훽
= ∑

�훼∈�퐼�푟3 ,�푘{�푔}

r det�푔 ((M∗M)�푔. (d�퐵�푡.))�훼�훼 ,

d�푀.�푔 = [
[

∑
�훼∈�퐼�푟3,�푘{�푔}

r det�푔 ((M∗M)�푔. (c(4,∗)�푞. ))�훼
�훼
]
]

∈ H
�푘×1,

𝑞 = 1, . . . , 𝑘,
d�퐵�푡. = [

[
∑

�훽∈�퐽�푟3 ,�푘{�푡}

c det�푡 ((B∗B).�푡 (c(4,∗).�푙 ))�훽
�훽
]
]

∈ H
1×�푘,

𝑙 = 1, . . . , 𝑘,

(59)

are the column vector and the row vector, respectively. c(4,∗)�푞. and
c(4,∗)
.�푙

are the 𝑞th row and the 𝑙th column of C∗
4 fl M∗CB.

Proof. The proof evidently follows from the proof of
Theorem 15 by substitution corresponding matrices. For a
better understanding more complete proof will be made in
some points, and a few comments will be done in others.

(i) For the first term of (43), X1 = A†C(A∗)† = (𝑥(1)�푖�푗 ), we
have

𝑥(1)�푖�푗 = �푚∑
�푙=1

�푚∑
�푡=1

𝑎†�푖�푙𝑐�푙�푡𝑎∗,†�푡�푗 . (60)

By using determinantal representations (9) and (13) of the
Moore-Penrose inversesA† and (A∗)†, respectively, we obtain

𝑥(1)�푖�푗 = ∑�푚
�푙=1∑�푚

�푡=1 ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (a∗.�푙 ))�훽�훽 𝑐�푙�푡∑�훼∈�퐼�푟1,�푛{�푗}

r det�푗 ((A∗A)�푗. (a�푡.))�훼�훼
∑�훼∈�퐼�푟1 ,�푛

|A∗A|�훼�훼 ∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 . (61)

Suppose e�푙. and e.�푙 are the unit row vector and the unit column
vector, respectively, such that all their components are 0, except the 𝑙th components, which are 1. Denote C1 fl A∗CA.

Since ∑�푚
�푙=1 ∑�푚

�푡=1 𝑎∗�푓�푙𝑐�푙�푡𝑎�푡�푠 = 𝑐(1)
�푓�푠
, then

𝑥(1)�푖�푗 = ∑�푛
�푓=1 ∑�푛

�푠=1 ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (e.�푓))�훽�훽 𝑐(1)�푓�푠

∑�훼∈�퐼�푟1 ,�푛{�푗}
r det�푗 ((A∗A)�푗. (e�푠.))�훼�훼

∑�훼∈�퐼�푟1,�푛
|A∗A|�훼�훼 ∑�훽∈�퐽�푟1 ,�푛

|A∗A|�훽�훽
(62)

If we denote by

V�푖�푠 fl
�푛∑

�푓=1

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (e.�푓))�훽�훽 𝑐(1)�푓�푠

= ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (c(1).�푠 ))�훽
�훽

(63)

the 𝑠th component of a row vector k�푖. = [V�푖1, . . . , V�푖�푛], then
�푚∑
�푠=1

V�푖�푠 ∑
�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (e�푠.))�훼�훼
= ∑

�훼∈�퐼�푟1,�푛{�푗}

r det�푗 ((A∗A)�푗. (k�푖.))�훼�훼 .
(64)
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Further, it is evident that ∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽

�훽
= ∑�훼∈�퐼�푟1 ,�푛

|A∗A|�훼�훼,
so the first term of (43) has the determinantal representation
(46), where k�푖. is (48).

If we denote by

V(2)�푓�푗 fl
�푛∑
�푠=1

𝑐(1)�푓�푠 ∑
�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (e�푠.))�훼�훼
== ∑

�훼∈�퐼�푟1,�푛{�푗}

r det�푗 ((A∗A)�푗. (c(1)�푓. ))�훼�훼
(65)

the 𝑓th component of a column vector k.�푗 = [V1�푗, . . . , V�푛�푗],
then

�푛∑
�푓=1

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (e.�푓))�훽�훽 V�푓�푗

= ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (k.�푗))�훽�훽 .
(66)

So another determinantal representation of the first term of
(43) is (47), where k.�푗 is (49).

(ii) For the second term A†BM†CA∗,† fl X2 = (𝑥(2)�푖�푗 ) of
(43), we have

𝑥(2)�푖�푗 = �푚∑
�푙=1

�푘∑
�푝=1

�푚∑
�푞=1

�푚∑
�푡=1

𝑎†�푖�푙𝑏�푙�푝𝑚†
�푝�푞𝑐�푞�푡𝑎∗,†�푡�푗 . (67)

Using determinantal representations (9) for the Moore-
Penrose inverse A†, (10) for M† = (𝑚†

�푝�푞), and (13) for (A∗)†,
respectively, we obtain

𝑥(2)�푖�푗 = �푚∑
�푙=1

�푘∑
�푝=1

�푚∑
�푞=1

�푚∑
�푡=1

∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (a∗.�푙 ))�훽�훽 𝑏�푙�푝∑�훼∈�퐼�푟3 ,�푚{�푞}

r det�푞 ((MM∗)�푞. (m∗
�푝.))�훼�훼

∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽 | ∑�훼∈�퐼�푟3 ,�푚

|MM∗|�훼�훼
× ×𝑐�푞�푡 ∑�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (a�푡. )�훼�훼∑�훼∈�퐼�푟1 ,�푛
|A∗A|�훼�훼 .

(68)

Further, thinking as above in the point (i), we obtain

𝜙�푖�푞 fl
�푚∑
�푙=1

�푘∑
�푝=1

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (a∗.�푙))�훽�훽 𝑏�푙�푝
⋅ ∑
�훼∈�퐼�푟3,�푚{�푞}

r det�푞 ((MM∗)�푞. (m∗
�푝.))�훼�훼

= ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (𝜂�푀.�푞 ))�훽�훽
= ∑

�훼∈�퐼�푟3,�푚{�푞}

r det�푞 ((MM∗)�푞. (𝜂�퐴�푖. ))�훼�훼 ,

(69)

where

𝜂�푀.�푞 = [
[

∑
�훼∈�퐼�푟3 ,�푚{�푞}

r det�푞 ((MM∗)�푞. (b(1)�푓. ))�훼�훼]]
∈ H

�푛×1,
𝑓 = 1, . . . , 𝑛,

𝜂�퐴�푖. = [
[

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (b(1).�푠 ))�훽
�훽
]
]

∈ H
1×�푚,

𝑠 = 1, . . . , 𝑚,
(70)

are the column vector and the row vector, respectively. b(1)
�푓.

and b(1).�푠 are the 𝑓th row and the 𝑠th column of B1 = A∗BM∗.
Construct the matrix Φ = (𝜙�푖�푞) ∈ H�푛×�푚 such that 𝜙�푖�푞 are
obtained by (69), and denote Φ̃ fl ΦCA. Since

�푚∑
�푞=1

�푚∑
�푡=1

𝜙�푖�푞𝑐�푞�푡 ∑
�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (a�푡. )�훼�훼
= ∑

�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (𝜙�푖.))�훼�훼 ,
(71)

where 𝜙�푖. is the 𝑖th row of Φ̃, then we have (50).
(iii) For the third termA†SB†CM∗,†B∗A∗,† fl X3 = (𝑥(3)�푖�푗 )

of (43), we use the determinantal representation (9) toA† and(B)†. Then by Corollary 11 and taking into account the fact
thatM∗,†B∗A∗,† = (A†BM†)∗, we have

𝑥(3)�푖�푗 == ∑�푘
�푝=1 ∑�푚

�푡=1 ∑�훽∈�퐽�푟1 ,�푛{�푖}
c det�푖 ((A∗A).�푖 (s(1).�푝 ))�훽

�훽
∑�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c(3).�푡 ))�훽
�훽
𝜙∗�푡�푗

(∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽)2 ∑�훽∈�퐽�푟2 ,�푘

|B∗B|�훽�훽 ∑�훽∈�퐽�푟3 ,�푚
|MM∗|�훽�훽

, (72)
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where s(1).�푝 is the 𝑝th column of S1 fl A∗S, c(3).�푡 is the 𝑡th
column of C3 fl B∗C, 𝜙∗�푡�푗 is the 𝑡𝑗th entry of Φ∗ that is
Hermitian adjoint to Φ = (𝜙�푖�푞) from (51). Denote C3Φ∗ =
B∗CΦ∗ = C̃. Then,

�푚∑
�푡=1

∑
�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c(3).�푡 ))�훽
�훽
𝜙∗�푡�푗

= ∑
�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c̃.�푗))�훽�훽 .
(73)

Construct the matrix Υ = (𝜐�푝�푗) ∈ H�푘×�푛 such that

𝜐�푝�푗 = ∑
�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c̃.�푗))�훽�훽 . (74)

Denote S1Υ = A∗SΥ š Υ̃ = (𝜐�푖�푗) ∈ H�푛×�푛. Since

∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (s(1).�푝 ))�훽
�훽
𝜐�푝�푗

= ∑
�훽∈�퐽�푟1 ,�푛{�푖}

c det�푖 ((A∗A).�푖 (𝜐.�푗))�훽�훽 ,
(75)

it follows (53).
(iv) Due to Theorem 10 and similarly as above for the

first term Y1 = M†CB∗,† = (𝑦(1)
�푝�푔 ) of (44), we have the

determinantal representations (55) and (56).
(v) Finally, for the second term Y2 = P�푆B†CM∗,† = (𝑦(2)

�푝�푔 )
of (44) using (14) for a determinantal representation of P�푆,
and due toTheorem 10 for B†CM∗,†, we obtain

𝑦(2)
�푝�푔 = ∑�푘

�푡=1 ∑�훽∈�퐽�푟4 ,�푘{�푝}
c det�푝 ((S∗S).�푝 ( ̈s.�푡))�훽�훽 𝜔�푡�푔

∑�훽∈�퐽�푟4 ,�푘
|S∗S|�훽�훽 ∑�훽∈�퐽�푟2 ,�푘

|B∗B|�훽�훽 ∑�훼∈�퐼�푟3 ,�푘
|M∗M|�훼�훼 ,

(76)

where 𝜙�푡�푔 are
𝜔�푡�푔 = ∑

�훽∈�퐽�푟2 ,�푘{�푡}

c det�푡 ((B∗B).�푡 (d�푀.�푔 ))�훽�훽
= ∑

�훼∈�퐼�푟3,�푘{�푔}

r det�푔 ((M∗M)�푔. (d�퐵�푡.))�훼�훼 ,
(77)

d�푀.�푔 = [
[

∑
�훼∈�퐼�푟3 ,�푘{�푔}

r det�푔 ((M∗M)�푔. (c(4,∗)�푞. ))�훼
�훼
]
]

∈ H
�푘×1,

𝑞 = 1, . . . , 𝑘,
d�퐵�푡. = [

[
∑

�훽∈�퐽�푟3 ,�푘{�푡}

c det�푡 ((B∗B).�푡 (c(4,∗).�푙 ))�훽
�훽
]
]

∈ H
1×�푘,

𝑙 = 1, . . . , 𝑘,

(78)

are the column vector and the row vector, respectively. c(4,∗)�푞.

and c(4,∗)
.�푙

are the 𝑞th row and the 𝑙th column of C∗
4 fl M∗CB.

Construct the matrix Ω = (𝜔�푡�푔) ∈ H�푘×�푘 such that 𝜔�푡�푔 are
obtained by (77), and denote Ω̃ fl S∗SΩ. Since

�푘∑
�푡=1

∑
�훽∈�퐽�푟4 ,�푘{�푝}

c det�푝 ((S∗S).�푝 ( ̈s.�푡))�훽�훽 𝜔�푡�푔

= ∑
�훽∈�퐽�푟4 ,�푘{�푝}

c det�푝 ((S∗S).�푝 (𝜔̃.�푔))�훽�훽 ,
(79)

it follows (58).

Due to [24], the following lemma can be generalized toH.

Lemma 18. Suppose that matrices A ∈ H�푚×�푛 and B ∈ H�푚×�푚

andC ∈ H�푚×�푚 are given withC = C∗ = (−C∗).Then when (4)
is solvable, itmust haveHermitian (skew-Hermitian) solutions.

The general Hermitian solution to (4) can be expressed as
X̂ = (1/2)(X + X∗), Ŷ = (1/2)(Y + Y∗), where (X,Y) is an
arbitrary solution to (4). Since by Lemma 18 the existence of
Hermitian solutions to (4) needs that C is Hermitian, then

X∗ = A†CA∗,† − A†CM∗,†B∗A∗,†

− A†BM†CB∗,†S∗A∗,†,
Y∗ = B†CM∗,† +M†CB∗,†P�푆.

(80)

It is evident that the determinantal representations of X̂ =(𝑥�푖�푗) and Ŷ = (𝑦�푖�푗) can be obtained as 𝑥�푖�푗 = (1/2)(𝑥�푖�푗 + 𝑥�푗�푖)
for all 𝑖, 𝑗 = 1, . . . , 𝑛 and 𝑦�푝�푔 = (1/2)(𝑦�푝�푔 + 𝑦�푔�푝) for all 𝑝, 𝑔 =1, . . . , 𝑘, where 𝑥�푖�푗 and 𝑦�푝�푔 are determined byTheorem 15 and

𝑥�푗�푖 = 𝑥(1)�푗�푖 − 𝑥(2)�푗�푖 − 𝑥(3)�푗�푖 ,
𝑦�푔�푝 = 𝑦(1)

�푔�푝 + 𝑦(2)
�푔�푝 .

(81)

Moreover, 𝑥(�훾)�푗�푖 for all 𝛾 = 1, 2, 3 has the following determi-
nantal representations.

(i) 𝑥(1)�푗�푖 = 𝑥(1)�푖�푗 .
(ii)

𝑥(2)�푗�푖 = ∑�훽∈�퐽�푟1 ,�푛{�푗}
c det�푖 ((A∗A).�푖 (𝜙∗.�푗))�훽�훽

(∑�훽∈�퐽�푟1 ,�푛
|A∗A|�훽�훽)2 ∑�훽∈�퐽�푟3 ,�푘

|M∗M|�훽�훽
, (82)

where𝜙∗.�푗 is the 𝑗th column of Φ̃∗ = A∗CΦ∗ that is Hermitian
adjoint to Φ̃ from the point (i) of Theorem 17, and Φ∗ =(𝜙∗�푞�푗) ∈ H�푛×�푚 is such that

𝜙∗�푞�푗 = ∑
�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (𝜁�푀�푞. ))�훼�훼
= ∑

�훽∈�퐽�푟3 ,�푚{�푞}

c det�푞 ((MM∗).�푞 (𝜁�퐴.�푗))�훽�훽 ,
(83)
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𝜁�푀�푞. = [
[

∑
�훽∈�퐽�푟3 ,�푚{�푞}

c det�푞 ((MM∗).�푞 (b(1,∗).�푓 ))�훽
�훽
]
]

∈ H
1×�푛,

𝑓 = 1, . . . , 𝑛,
𝜁�퐴.�푗 = [

[
∑

�훼∈�퐼�푟1 ,�푛{�푗}

r det�푗 ((A∗A)�푗. (b(1,∗)�푠. ))�훼
�훼
]
]

∈ H
1×�푚,

𝑠 = 𝑚, . . . , 1,

(84)

are the row vector and the column vector, respectively. b(1,∗)
.�푓

and b(1)�푠. are the 𝑓th column and the 𝑠th row of B∗
1 = MB∗A.

(iii)

𝑥(3)�푗�푖

= ∑�훼∈�퐼�푟1 ,�푛{�푗}
r det�푗 ((A∗A)�푗. (𝜐∗�푖. ))�훼�훼

(∑�훼∈�퐼�푟1 ,�푛
|A∗A|�훼�훼)2 ∑�훽∈�퐼�푟2 ,�푘

|B∗B|�훼�훼 ∑�훽∈�퐼�푟3 ,�푚
|MM∗|�훼�훼

, (85)

where 𝜐∗�푖. is the 𝑖th row of Υ̃
∗ = Υ∗S∗A, the matrix Υ∗ =(𝜐∗�푖�푝) ∈ H�푛×�푘 such that

𝜐∗�푖�푝 = ∑
�훼∈�퐼�푟2 ,�푘{�푝}

r det�푝 ((B∗B)�푝. (c̃∗�푖. ))�훼�훼 , (86)

where c̃∗�푖. is the 𝑖th row of C̃∗ = ΦCB, and Φ is obtained by
(51).

Similarly, 𝑦(�훿)
�푔�푝 for all 𝛿 = 1, 2 has the following determi-

nantal representations.
(i)

𝑦(1)
�푔�푝 = ∑�훼∈�퐼�푟3 ,�푘{�푔}

r det�푔 ((M∗M)�푔. (d�퐵�푝.))�훼�훼
∑�훼∈�퐼�푟3 ,�푘

|M∗M|�훼�훼 ∑�훽∈�퐽�푟2 ,�푘
|B∗B|�훽�훽

= ∑�훽∈�퐽�푟2 ,�푘{�푝}
c det�푝 ((B∗B).�푝 (d�푀.�푔 ))�훽�훽

∑�훼∈�퐼�푟3 ,�푘
|M∗M|�훼�훼 ∑�훽∈�퐽�푟2 ,�푘

|B∗B|�훽�훽 ,
(87)

where

d�퐵�푝. = [
[

∑
�훽∈�퐽�푟2 ,�푘{�푝}

c det�푝 ((B∗B).�푝 (c(4,∗).�푞 ))�훽
�훽
]
]

∈ H
1×�푘,

𝑞 = 1, . . . , 𝑘,
d�푀.�푔 = [

[
∑

�훼∈�퐼�푟3 ,�푘{�푔}

r det�푔 ((M∗M)�푔. (c(4,∗)�푙. ))�훼
�훼
]
]

∈ H
�푘×1,

𝑙 = 1, . . . , 𝑘,

(88)

are the row vector and the column vector, respectively. c(4,∗).�푞

and c(4,∗)
�푙.

are the 𝑞th column and the 𝑙th row of C∗
4 fl B∗CM.

(ii)

𝑦(2)
�푔�푝

= ∑�훼∈�퐼�푟4 ,�푘{�푝}
r det�푝 ((S∗S)�푝. (𝜔̃∗

�푔.))�훼�훼
∑�훼∈�퐼�푟4 ,�푘

|S∗S|�훼�훼 ∑�훽∈�퐽�푟2 ,�푚
|B∗B|�훽�훽 ∑�훼∈�퐼�푟3 ,�푚

|MM∗|�훼�훼 ,
(89)

where Ω̃
∗ = Ω∗S∗S andΩ∗ = (𝜔∗

�푔�푡) such that

𝜔∗
�푔�푡 = ∑

�훽∈�퐽�푟3 ,�푘{�푔}

c det�푔 ((M∗M).�푔 (d�퐵.�푡))�훽�훽
= ∑

�훼∈�퐼�푟2,�푘{�푡}

r det�푡 ((B∗B)�푡. (d�푀�푔. ))�훼�훼 ,

d�퐵.�푡 = [
[

∑
�훼∈�퐼�푟2 ,�푘{�푡}

r det�푡 ((B∗B)�푡. (c(4)�푞. ))�훼�훼]]
∈ H

1×�푘,

𝑞 = 1, . . . , 𝑘,

d�푀�푔. = [
[

∑
�훽∈�퐽�푟3 ,�푘{�푝}

c det�푔 ((M∗M).�푔 (c(4).�푙 ))�훽
�훽
]
]

∈ H
�푘×1,

𝑙 = 1, . . . , 𝑘,

(90)

are the row vector and the column vector, respectively. c(4).�푞

and c(4)
�푙.

are the 𝑞th column and the 𝑙th row of C4 fl M∗CB.

Remark 19. By Lemma 18, ifC = −C∗ and (4) is solvable, then
it has skew-Hermitian solutions.Thegeneral skew-Hermitian
solution to (4) can be expressed as X̃ = (1/2)(X − X∗),
Ỹ = (1/2)(Y − Y∗), where (X,Y) is an arbitrary solution to
(4). So due to the above one we can obtain corresponding
determinantal representations of skew-Hermitian solution.

4. An Example

In this section, we give an example to illustrate our results.
Let us consider the matrix equation

AXA∗ + BYB∗ = C. (91)

where

A = [
[
−j + k 1 + i

1 + i j − k
]
]
,

B = [
[
1 − k

2 + i
]
]
,

C = [
[
k i

−i k
]
]
.

(92)
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Since detA∗A = det [ 4 −4k
4k 4

] = 0, then rankA = 1, and,
evidently, rank B = 1. By Theorem 4, one can find

A† = 1
8 [j − k 1 − i

1 − i −j + k
] ,

B† = 1
7 [1 + k 2 − i] ,

M = 1
8 [0.5 + j − k

1 + i − 0.5j] ,
(93)

and S = 0. It is easy to check that (91) is consistent. First, we
can find the solution to (91) by direct calculation. By (43),

X = A†CA∗,† − A†BM†CA∗,† − A†SB†CM∗,†B∗A∗,†

= 0 − 1
72 [−2 + 4i + 3j − 4k −2 − 3i + 2j + 2k

4 − 3i + 4j − 2k −2 − 4i − 3j − 4k]

− 0 = 1
72 [ 2 − 4i − 3j + 4k 2 + 3i − 2j − 2k

−4 + 3i − 4j + 2k 2 + 4i + 3j + 4k] ,
(94)

and by (43) Y = M†CB∗,† + P�푆B†CM∗,† = (1/63)[−4 + 8j +10k].
Now, we find the solution to (91) by determinantal

representations. So,

MM∗ = 9
4 [ 1 j

−j 1] ,

C2 fl CA = 2[−1 + i j + k
j + k 1 − i

] ,
B1 = A∗BM∗

= 1
2 [ 6 − 2i + j + 7k −1 − 7i + 6j − 2k

−7 − i − 2j + 6k 2 − 6i − 7j − k
] .

(95)

Since

𝜑11 = 3 − i + 0.5j + 3.5k,
𝜑12 = −0.5 − 3.5i + 3j − k, (96)

and (∑�훽∈�퐽1,2
|A∗A|�훽

�훽
)2 = 64, ∑�훼∈�퐼1,2

|MM∗|�훼�훼 = 4.5, then
𝑥11
= −(6 − 2i + j + 7k) (−1 + i) + (−1 − 7i + 6j − 2k) (j + k)

288
= 136 − i18 − j

24 + k18 .
(97)

So 𝑥11 obtained by Cramer’s rule and the matrix method (94)
are equal.

Similarly, we can obtain for all 𝑥�푖�푗, 𝑖, 𝑗 = 1, 2 and 𝑦11.

5. Conclusions

Within the framework of the theory of row-column determi-
nants, we have derived explicit determinantal representation
formulas (analogs of Cramer’s rule) of the general,Hermitian,
and skew-Hermitian solutions to the Sylvester-type matrix
equation AXA∗ + BYB∗ = C over the quaternion skew
field. To accomplish that goal, we have used determinantal
representations of the Moore-Penrose matrix inverse, which
were previously introduced by the author.
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