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Sequence of 𝑞-Bleimann, Butzer, and Hahn operators which is based on a continuously differentiable function 𝜏 onR+, with 𝜏(0) =
0, inf 𝜏(𝑥) ≥ 1, has been considered. Uniform approximation by such a sequence has been studied and degree of approximation
by the operators has been obtained. Moreover, shape preserving properties of the sequence of operators have been investigated.

1. Introduction

In 1987, Lupaş [1] introduced the first 𝑞-analogue of Bernstein
operators and investigated its approximation and shape pre-
serving properties. Another 𝑞-generalization of the classical
Bernstein polynomials is due to Phillips [2]. After that
many generalizations of positive linear operators based on
𝑞-integers were introduced and studied by several authors.
Some are in [3–13].

Bleimann et al. [14] proposed a sequence of positive linear
operators 𝐿

𝑛
defined by

𝐿
𝑛
(𝑓; 𝑥) =

1

(1 + 𝑥)
𝑛

𝑛

∑

𝑘=0

𝑓(
𝑘

𝑛 − 𝑘 + 1
)(
𝑛

𝑘
)𝑥
𝑘

,

𝑥 ≥ 0, 𝑛 ∈ N

(1)

for 𝑓 ∈ 𝐶[0,∞), where 𝐶[0,∞) denote the space of all
continuous and real valued functions defined on [0,∞).Also
the authors proved that 𝐿

𝑛
(𝑓; 𝑥) → 𝑓(𝑥) as 𝑛 → ∞

pointwise on [0,∞) for any 𝑓 ∈ 𝐶
𝐵
[0,∞), where 𝐶

𝐵
[0,∞)

denote the space of all bounded functions from 𝐶[0,∞). It is
well known that

𝑓
𝐶𝐵
= sup
𝑥≥0

𝑓 (𝑥)
 (2)

defines a norm on 𝐶
𝐵
[0,∞). Moreover, they showed that

the convergence is uniform on each compact subset of
[0,∞). In [15], using test functions (𝑡/(1 + 𝑡))V for V =
0, 1, 2, Gadjiev and Çakar stated a Korovkin-type theorem

for the uniform approximation of functions belonging to
some suitable function spaces by some linear positive oper-
ators. As an application of this result, they proved uniform
approximation by Bleimann, Butzer, and Hahn operators.
Further results concerning such a sequence of operators and
its generalizations may be found in [16–19].

Now, we recall some notations from 𝑞-analysis [20, 21].
The 𝑞-integer [𝑛] and the 𝑞-factorial [𝑛]! are defined by

[𝑛] fl [𝑛]
𝑞
=
{

{

{

1 − 𝑞
𝑛

1 − 𝑞
, 𝑞 ̸= 1

𝑛, 𝑞 = 1,

for 𝑛 ∈ N (3)

[0] = 0, and

[𝑛]! fl
{

{

{

[1]
𝑞
[2]
𝑞
⋅ ⋅ ⋅ [𝑛]

𝑞
, 𝑛 = 1, 2, . . .

1, 𝑛 = 0,

for 𝑛 ∈ N, [0]! = 1,

(4)

respectively, where 𝑞 > 0. For integers 𝑛 ≥ 𝑟 ≥ 0 the 𝑞-
binomial coefficient is defined as

[
𝑛

𝑟
]

𝑞

=
[𝑛]
𝑞
!

[𝑟]
𝑞
! [𝑛 − 𝑟]

𝑞
!
. (5)

Moreover, Euler identity is given by

𝑛−1

∏

𝑠=0

(1 + 𝑞
𝑠

𝑥) =

𝑛

∑

𝑘=0

𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
]

𝑞

𝑥
𝑘

. (6)
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Aral and Doğru [22] constructed the 𝑞-Bleimann, Butzer,
and Hahn operators as

𝐿
𝑛,𝑞
(𝑓; 𝑥)

=
1

ℓ
𝑛
(𝑥)

𝑛

∑

𝑘=0

𝑓(
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝑥
𝑘

,

(7)

where

ℓ
𝑛
(𝑥) =

𝑛−1

∏

𝑠=0

(1 + 𝑞
𝑠

𝑥) (8)

and 𝑓 is defined on the semiaxis [0,∞).The authors studied
Korovkin-type approximation properties by using the test
functions (𝑡/(1 + 𝑡))V for V = 0, 1, 2. Moreover, they obtained
rate of convergence of the operators and proved that rate of
the 𝑞-Bleimann, Butzer, and Hahn operators is better than
the classical one. A generalization of the 𝑞-Bleimann, Butzer,
and Hahn operators was introduced by Agratini and Nowak
in [23]. In this paper, the authors gave representation of the
operators in terms of 𝑞-differences and investigated some
approximation properties.

A Voronovskaja-type result and monotonicity properties
of these operators are investigated in [24].

In [25], the authors introduced a new generalization of
Bernstein polynomials denoted by 𝐵𝜏

𝑛
and defined as

𝐵
𝜏

𝑛
(𝑓; 𝑥) fl 𝐵

𝑛
(𝑓 ∘ 𝜏

−1

; 𝜏 (𝑥))

=

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝜏
𝑘

(𝑥) (1 − 𝜏 (𝑥))
𝑛−𝑘

(𝑓 ∘ 𝜏
−1

) (
𝑘

𝑛
) ,

(9)

where 𝐵
𝑛
is the 𝑛th Bernstein polynomial, 𝑓 ∈ 𝐶[0, 1], 𝑥 ∈

[0, 1], and 𝜏 is a function that is continuously differentiable
of infinite order on [0, 1] such that 𝜏(0) = 0, 𝜏(1) = 1, and
𝜏

(𝑥) > 0 for 𝑥 ∈ [0, 1]. Also, the authors studied some

shape preserving and convergence properties concerning the
generalized Bernstein operators 𝐵𝜏

𝑛
(𝑓; 𝑥).

In [26], Aral et al. constructed sequences of Szasz-
Mirakyan operators which are based on a function 𝜌.
They studied weighted approximation properties and
Voronovskaja-type results for these operators. They also
showed that the sequence of the generalized Szász-Mirakyan
operators is monotonically nonincreasing under the 𝜌-
convexity of the original function. A similar generalization
for Bleimann, Butzer, and Hahn operators is studied by
Söylemez [27]. Also the class 𝐻𝜏

𝜔
was defined, a Korovkin-

type theorem was given for the functions in this class, and
uniform convergence of the generalized Bleimann, Butzer,
and Hahn operators was obtained [27]. Moreover, the
monotonicity properties of the operators were investigated.

Now we recall the definition of 𝐻𝜏
𝜔
that is a subspace of

𝐶
𝐵
[0,∞) [27].
Let 𝜔 be a general modulus of continuity, satisfying the

following properties:

(a) 𝜔 is continuous, nonnegative, and increasing func-
tion on [0,∞),

(b) 𝜔(𝛿
1
+ 𝛿
2
) ≤ 𝜔(𝛿

1
) + 𝜔(𝛿

2
),

(c) lim
𝛿→0
𝜔(𝛿) = 0.

The space of all real valued functions 𝑓 defined on [0,∞)
satisfying

𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜔



𝜏 (𝑥)

1 + 𝜏 (𝑥)
−
𝜏 (𝑦)

1 + 𝜏 (𝑦)



(10)

for all 𝑥, 𝑦 ∈ [0,∞) is denoted by𝐻𝜏
𝜔
.

It is clear from condition (b) that we have

𝜔 (𝑛𝛿) ≤ 𝑛𝜔 (𝛿) , 𝑛 ∈ N (11)

and one can get from the condition (a) that for any 𝜆 > 0

𝜔 (𝜆𝛿) ≤ 𝜔 ((1 + [|𝜆|]) 𝜆) ≤ 1 + 𝜆𝜔 (𝛿) , (12)

where [|𝜆|]denotes the greatest integer that is not greater than
𝜆.

Now we define a new generalization of 𝑞-Bleimann,
Butzer, and Hahn operators for 𝑓 ∈ 𝐶[0,∞) by

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) =

1

ℓ𝜏
𝑛
(𝑥)

𝑛

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
)

⋅ 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘

,

(13)

where

ℓ
𝜏

𝑛
(𝑥) =

𝑛−1

∏

𝑠=0

(1 + 𝑞
𝑠

𝜏 (𝑥)) , (14)

and 𝜏 is a continuously differentiable function on [0,∞) such
that

𝜏 (0) = 0,

inf
𝑥∈[0,∞)

𝜏


(𝑥) ≥ 1.
(15)

An example of such a function 𝜏 is given in [26]. Note that, in
the setting of the operators (13), we have

𝐿
𝜏

𝑛,𝑞
𝑓 fl 𝐿

𝑛,𝑞
(𝑓 ∘ 𝜏

−1

) ∘ 𝜏, (16)

where the operators 𝐿
𝑛,𝑞

are defined by (7). If 𝜏 = 𝑒
1
, then

𝐿
𝜏

𝑛,𝑞
= 𝐿
𝑛,𝑞
. Obviously, we have

𝐿
𝜏

𝑛,𝑞
(1; 𝑥) = 1,

𝐿
𝜏

𝑛,𝑞
(
𝜏

1 + 𝜏
; 𝑥) =

[𝑛]

[𝑛 + 1]

𝜏 (𝑥)

1 + 𝜏 (𝑥)
,

𝐿
𝜏

𝑛,𝑞
((
𝜏

1 + 𝜏
)

2

; 𝑥)

=
[𝑛] [𝑛 − 1]

[𝑛 + 1]
2
𝑞
2 𝜏

2

(𝑥)

(1 + 𝜏 (𝑥)) (1 + 𝑞𝜏 (𝑥))

+
[𝑛]

[𝑛 + 1]
2

𝜏 (𝑥)

1 + 𝜏 (𝑥)
.

(17)
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In this study, we consider a generalization of 𝑞-Bleimann,
Butzer, andHahnoperators in the sense of [26], we investigate
uniform convergence of {𝐿𝜏

𝑛,𝑞
(𝑓; 𝑥)}

𝑛∈N to 𝑓(𝑥) on [0,∞)
for 𝑓 ∈ 𝐻𝜏

𝜔
, and we obtain the degree of approximation.

Moreover, we study shape preserving properties under 𝜏-
convexity of the function. Our results show that the new
operators are sensitive to the rate of convergence to 𝑓,
depending on the selection of 𝜏. For the particular case
𝜏(𝑥) = 𝑥, the previous results for 𝑞-Bleimann Butzer and
Hahn operators are obtained.

In order to ensure that the convergence properties holds,
the author will assume 𝑞 = 𝑞

𝑛
is a sequence such that 𝑞

𝑛
→ 1

as 𝑛 → ∞ for 0 < 𝑞
𝑛
< 1, as in [22].

Definition 1. Let 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
be distinct points in the

domain of 𝑓. Denote

𝑓 [𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
] =

𝑛

∑

𝑟=0

𝑓 (𝑥
𝑟
)

∏
𝑛

𝑗 ̸=𝑟
(𝑥
𝑟
− 𝑥
𝑗
)
, (18)

where 𝑟 remains fixed and 𝑗 takes all values from 0 to 𝑛,
excluding 𝑟.

Definition 2. A continuous, real valued function 𝑓 is said to
be convex in𝐷 ⊆ [0,∞), if

𝑓(

𝑚

∑

𝑖=1

𝛼
𝑖
𝑥
𝑖
) ≤

𝑚

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑥
𝑖
) (19)

for every 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
∈ 𝐷 and for every nonnegative

number of 𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑚
such that 𝛼

1
+ 𝛼
2
+ ⋅ ⋅ ⋅ + 𝛼

𝑚
= 1.

In [25] Cárdenas-Morales et al. introduced the following
definition of 𝜏-convexity of a continuous function.

Definition 3. A continuous, real valued function 𝑓 is said
to be 𝜏-convex in 𝐷, if 𝑓 ∘ 𝜏−1 is convex in the sense of
Definition 2.

2. Approximation Properties

In this section we deal with the promised approximation
properties of the sequence of 𝑞-Bleimann, Butzer, and Hahn
operators. In [27], the following Korovkin-type theorem was
given.

Theorem 4. Let {𝑇𝜏
𝑛
(𝑓)}
𝑛∈N be a sequence of linear positive

operators from𝐻𝜏
𝜔
to 𝐶
𝐵
[0,∞). If

lim
𝑛→∞


𝑇
𝜏

𝑛
((
𝜏 (𝑡)

1 + 𝜏 (𝑡)
)

V

; 𝑥) − (
𝜏 (𝑥)

1 + 𝜏 (𝑥)
)

V𝐶𝐵
= 0 (20)

is satisfied for V = 0, 1, 2, then for 𝑓 ∈ 𝐻𝜏
𝜔
one has

lim
𝑛→∞

𝑇
𝜏

𝑛
𝑓 − 𝑓
𝐶𝐵
= 0. (21)

Now we are ready to give the following theorem.

Theorem 5. Suppose that 𝑞 = 𝑞
𝑛
, 0 < 𝑞

𝑛
< 1, and let 𝑞

𝑛
→ 1

as 𝑛 → ∞. If 𝐿𝜏
𝑛,𝑞

is the operator defined by (13), then for any
𝑓 ∈ 𝐻

𝜏

𝜔
one has

lim
𝑛→∞


𝐿
𝜏

𝑛,𝑞
𝑓 − 𝑓
𝐶𝐵
= 0. (22)

Proof. According to Theorem 4 we will show that (20) holds
for 𝐿𝜏
𝑛,𝑞
. Obviously, from (17) we easily obtain that

𝐿
𝜏

𝑛,𝑞
(1; 𝑥) = 1.


𝐿
𝜏

𝑛,𝑞
(
𝜏 (𝑡)

1 + 𝜏 (𝑡)
; 𝑥) −

𝜏 (𝑥)

1 + 𝜏 (𝑥)

𝐶𝐵

=



[𝑛]

[𝑛 + 1]
− 1



≤



1

𝑞
𝑛

−
1

𝑞
𝑛
[𝑛 + 1]

− 1


,



𝐿
𝜏

𝑛,𝑞
((
𝜏 (𝑡)

1 + 𝜏 (𝑡)
)

2

; 𝑥) − (
𝜏 (𝑥)

1 + 𝜏 (𝑥)
)

2𝐶𝐵

= sup
𝑥≥0

(
𝜏 (𝑥)

1 + 𝜏 (𝑥)
)

2

⋅ (
[𝑛] [𝑛 − 1]

[𝑛 + 1]
2
𝑞
2

𝑛

(1 + 𝜏 (𝑥))

(1 + 𝑞
𝑛
𝜏 (𝑥))

− 1) +
[𝑛]

[𝑛 + 1]
2

⋅
𝜏 (𝑥)

1 + 𝜏 (𝑥)
≤
1

𝑞2
𝑛

(1 − 𝑞
2

𝑛
−
2

[𝑛 + 1]
+
1

[𝑛 + 1]
2
) .

(23)

Therefore, the conditions (20) are satisfied. ByTheorem 4, the
proof is completed.

Theorem 6. Let 𝑞 = 𝑞
𝑛
, 0 < 𝑞

𝑛
< 1, and let 𝑞

𝑛
→ 1 as

𝑛 → ∞.Then one has

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓 (𝑥)


≤ 2𝜔 (√𝜇𝜏

𝑛
(𝑥)) , (24)

for all 𝑓 ∈ 𝐻𝜏
𝜔
. Here,

𝜇
𝜏

𝑛
(𝑥) = (

𝜏 (𝑥)

1 + 𝜏 (𝑥)
)

2

⋅ (1 − 2
[𝑛]

[𝑛 + 1]
+
[𝑛] [𝑛 − 1]

[𝑛 + 1]
2
𝑞
2

𝑛

(1 + 𝜏 (𝑥))

(1 + 𝑞
𝑛
𝜏 (𝑥))
)

+
[𝑛]

[𝑛 + 1]
2

𝜏 (𝑥)

1 + 𝜏 (𝑥)
.

(25)

Proof. Firstly, from (12) and (10) we can write

𝑓 (𝑡) − 𝑓 (𝑥)
 ≤ 𝜔(



𝜏 (𝑡)

1 + 𝜏 (𝑡)
−
𝜏 (𝑥)

1 + 𝜏 (𝑥)


)

≤ (1 +
|𝜏 (𝑡) / (1 + 𝜏 (𝑡)) − 𝜏 (𝑥) / (1 + 𝜏 (𝑥))|

𝛿
)𝜔 (𝛿)

(26)

and considering (17), we get

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓 (𝑥)


≤ 𝐿
𝜏

𝑛,𝑞
(
𝑓 (𝑡) − 𝑓 (𝑥)

 ; 𝑥) . (27)
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Equations (27) and (26) together imply that


𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓 (𝑥)



≤ 𝜔 (𝛿) (1 +
1

𝛿
𝐿
𝜏

𝑛,𝑞



𝜏 (𝑡)

1 + 𝜏 (𝑡)
−
𝜏 (𝑥)

1 + 𝜏 (𝑥)


; 𝑥) .

(28)

Using the Cauchy-Schwarz inequality, we obtain


𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓 (𝑥)


≤ 𝜔 (𝛿)(1

+
1

𝛿
[𝐿
𝜏

𝑛,𝑞
((
𝜏 (𝑡)

1 + 𝜏 (𝑡)
−
𝜏 (𝑥)

1 + 𝜏 (𝑥)
)

2

; 𝑥)]

1/2

) .

(29)

By choosing 𝛿 = √𝜇𝜏
𝑛
(𝑥) = [𝐿

𝜏

𝑛,𝑞
((𝜏(𝑡)/(1 + 𝜏(𝑡)) − 𝜏(𝑥)/(1 +

𝜏(𝑥)))
2
; 𝑥)]
1/2, we get


𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓 (𝑥)


≤ 2𝜔 (√𝜇𝜏

𝑛
(𝑥)) , (30)

where

sup
𝑥≥0

𝜇
𝜏

𝑛
(𝑥) ≤

1

[𝑛 + 1]
2

(31)

which concludes the proof.

3. Shape Preserving Properties

Theorem7. Let𝑓 be a 𝜏-convex function that is nonincreasing
on [0,∞); then one has

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) ≥ 𝐿

𝜏

𝑛+1,𝑞
(𝑓; 𝑥) (32)

for 𝑛 ∈ N.

Proof. From (13), one can write

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝐿

𝜏

𝑛+1,𝑞
(𝑓; 𝑥) =

1

∏
𝑛

𝑠=0
(1 + 𝑞𝑠𝜏 (𝑥))

⋅

𝑛

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘

⋅ (1 + 𝑞
𝑛

𝜏 (𝑥)) −
1

∏
𝑛

𝑠=0
(1 + 𝑞𝑠𝜏 (𝑥))

𝑛+1

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

)

⋅ (
[𝑘]

[𝑛 − 𝑘 + 2] 𝑞𝑘
) 𝑞
𝑘(𝑘−1)/2

[
𝑛 + 1

𝑘
] 𝜏 (𝑥)

𝑘

=
(𝜏 (𝑥))

𝑛+1

ℓ
𝜏

𝑛+1
(𝑥)
𝑞
𝑛(𝑛+1)/2

[(𝑓 ∘ 𝜏
−1

) (
[𝑛]

𝑞𝑛
)

− (𝑓 ∘ 𝜏
−1

) (
[𝑛 + 1]

𝑞𝑛+1
)] +

1

ℓ
𝜏

𝑛+1
(𝑥)

𝑛

∑

𝑘=1

(𝑓 ∘ 𝜏
−1

)

⋅ (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘

+
1

ℓ
𝜏

𝑛+1
(𝑥)

⋅

𝑛−1

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
)

⋅ 𝑞
𝑘(𝑘−1)/2

𝑞
𝑛

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘+1

−
1

ℓ
𝜏

𝑛+1
(𝑥)

𝑛

∑

𝑘=1

(𝑓 ∘ 𝜏
−1

)

⋅ (
[𝑘]

[𝑛 − 𝑘 + 2] 𝑞𝑘
) 𝑞
𝑘(𝑘−1)/2

[
𝑛 + 1

𝑘
] 𝜏 (𝑥)

𝑘

=
(𝜏 (𝑥))

𝑛+1

ℓ
𝜏

𝑛+1
(𝑥)
𝑞
𝑛(𝑛+1)/2

[(𝑓 ∘ 𝜏
−1

) (
[𝑛]

𝑞𝑛
)

− (𝑓 ∘ 𝜏
−1

) (
[𝑛 + 1]

𝑞𝑛+1
)] +

1

ℓ
𝜏

𝑛+1
(𝑥)

𝑛−1

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

)

⋅ (
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
) 𝑞
𝑘(𝑘−1)/2

𝑞
𝑘

[
𝑛

𝑘 + 1
] 𝜏 (𝑥)

𝑘+1

+
1

ℓ
𝜏

𝑛+1
(𝑥)

𝑛−1

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
)

⋅ 𝑞
𝑘(𝑘−1)/2

𝑞
𝑛

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘+1

−
1

ℓ
𝜏

𝑛+1
(𝑥)

𝑛−1

∑

𝑘=0

(𝑓 ∘ 𝜏
−1

)

⋅ (
[𝑘 + 1]

[𝑛 − 𝑘 + 1] 𝑞𝑘+1
) 𝑞
𝑘(𝑘−1)/2

𝑞
𝑘

[
𝑛 + 1

𝑘 + 1
] 𝜏 (𝑥)

𝑘+1

.

(33)

Moreover, we have the following equalities that are proved in
Lemma 3.1 of [24]:

[
𝑛 + 1

𝑘 + 1
] =

[𝑛] [𝑛 + 1]

[𝑛 − 𝑘] [𝑘 + 1]
[
𝑛 − 1

𝑘
] ,

[
𝑛

𝑘
] =

[𝑛]

[𝑛 − 𝑘]
[
𝑛 − 1

𝑘
] ,

[
𝑛

𝑘 + 1
] =

[𝑛]

[𝑘 + 1]
[
𝑛 − 1

𝑘
] ,

(34)

which imply

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝐿

𝜏

𝑛+1,𝑞
(𝑓; 𝑥) =

(𝜏 (𝑥))
𝑛+1

ℓ
𝜏

𝑛+1
(𝑥)

⋅ 𝑞
𝑛(𝑛+1)/2

[(𝑓 ∘ 𝜏
−1

) (
[𝑛]

𝑞𝑛
)
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− (𝑓 ∘ 𝜏
−1

) (
[𝑛 + 1]

𝑞𝑛+1
)] +

1

ℓ
𝜏

𝑛+1
(𝑥)

⋅

𝑛−1

∑

𝑘=0

𝑞
𝑘

𝑞
𝑘(𝑘−1)/2

[
𝑛 − 1

𝑘
] 𝜏 (𝑥)

𝑘+1

⋅ {(𝑓 ∘ 𝜏
−1

) (
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
)
[𝑛]

[𝑘 + 1]

+ (𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) 𝑞
𝑛−𝑘 [𝑛]

[𝑛 − 𝑘]

− (𝑓 ∘ 𝜏
−1

) (
[𝑘 + 1]

[𝑛 − 𝑘 + 1] 𝑞𝑘+1
)
[𝑛] [𝑛 + 1]

[𝑛 − 𝑘] [𝑘 + 1]
}

=
1

ℓ
𝜏

𝑛+1
(𝑥)

⋅

𝑛−1

∑

𝑘=0

𝑞
𝑘

𝑞
𝑘(𝑘−1)/2 [𝑛] [𝑛 + 1]

[𝑛 − 𝑘] [𝑘 + 1]
[
𝑛 − 1

𝑘
] 𝜏 (𝑥)

𝑘+1

⋅ {(𝑓 ∘ 𝜏
−1

) (
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
)
[𝑛 − 𝑘]

[𝑛 + 1]

+ (𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) 𝑞
𝑛−𝑘 [𝑘 + 1]

[𝑛 + 1]

− (𝑓 ∘ 𝜏
−1

) (
[𝑘 + 1]

[𝑛 − 𝑘 + 1] 𝑞𝑘+1
)} .

(35)

From [𝑛 + 1]/𝑞𝑛+1 − [𝑛]/𝑞𝑛 = 1/𝑞𝑛+1 > 0 and by hypothesis,
we have

(𝑓 ∘ 𝜏
−1

) (
[𝑛]

𝑞𝑛
) − (𝑓 ∘ 𝜏

−1

) (
[𝑛 + 1]

𝑞𝑛+1
) > 0. (36)

Since 𝑓 is 𝜏-convex, by using Lemma 3.2 in [24] we obtain

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝐿

𝜏

𝑛+1,𝑞
(𝑓; 𝑥) ≥ 0 (37)

for 𝑥 ∈ [0,∞) and 𝑛 ∈ N.This proves the theorem.

Theorem 8. Suppose that 𝑥 ∈ [0,∞) \ {[𝑘]/[𝑛−𝑘+1]𝑞𝑘 : 𝑘 =
0, 1, . . . , 𝑛}, and 𝜏 is linear. Then one has

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓(

𝑥

𝑞
) = −

𝜏 (𝑥)
𝑛+1

ℓ𝜏
𝑛
(𝑥)
[
𝜏 (𝑥)

𝑞
,
[𝑛]

𝑞𝑛
; (𝑓

∘ 𝜏
−1

)] 𝑞
𝑛(𝑛−1)/2−1

+
𝜏 (𝑥)

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛−1

∑

𝑘=0

[
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
,
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
; (𝑓 ∘ 𝜏

−1

)]

⋅
𝑞
𝑘(𝑘−1)/2−𝑘−2

[𝑛 − 𝑘]
[
𝑛 + 1

𝑘
] 𝜏 (𝑥)

𝑘

.

(38)

Proof. From (17), we have

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓(

𝑥

𝑞
) =

1

∏
𝑛−1

𝑠=0
(1 + 𝑞𝑠𝜏 (𝑥))

⋅

𝑛

∑

𝑘=0

[(𝑓 ∘ 𝜏
−1

) (
[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
) − 𝑓(

𝑥

𝑞
)]

⋅ 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘

= −
1

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛

∑

𝑘=0

(
𝜏 (𝑥)

𝑞
−

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
)

⋅ [
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
; (𝑓 ∘ 𝜏

−1

)]

⋅ 𝑞
𝑘(𝑘−1)/2

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘

.

(39)

Using the equality ([𝑘]/[𝑛 − 𝑘 + 1]) [ 𝑛
𝑘
] = [

𝑛

𝑘−1
], we now get

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓(

𝑥

𝑞
) = −

1

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛

∑

𝑘=0

[
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
; (𝑓 ∘ 𝜏

−1

)]

⋅ 𝑞
𝑘(𝑘−1)/2−1

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘+1

+
1

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛

∑

𝑘=1

[
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
; (𝑓 ∘ 𝜏

−1

)]

⋅ 𝑞
𝑘(𝑘−1)/2−𝑘

[
𝑛

𝑘 − 1
] 𝜏 (𝑥)

𝑘

= −
𝜏 (𝑥)
𝑛+1

ℓ𝜏
𝑛
(𝑥)
[
𝜏 (𝑥)

𝑞
,

[𝑛]

𝑞𝑛
; (𝑓 ∘ 𝜏

−1

)] 𝑞
𝑛(𝑛−1)/2−1

+
1

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛−1

∑

𝑘=0

{[
𝜏 (𝑥)

𝑞
,
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
; (𝑓 ∘ 𝜏

−1

)]

− [
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
; (𝑓 ∘ 𝜏

−1

)]}

⋅ 𝑞
𝑘(𝑘−1)/2−1

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘+1

.

(40)

On the other hand we can write

[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
−

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘

=
[𝑛 + 1]

[𝑛 − 𝑘] [𝑛 − 𝑘 + 1] 𝑞𝑘+1
,

(41)
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which implies

[
𝜏 (𝑥)

𝑞
,
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
; (𝑓 ∘ 𝜏

−1

)]

− [
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
; (𝑓 ∘ 𝜏

−1

)]

= [
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
,
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
; (𝑓 ∘ 𝜏

−1

)]

⋅
[𝑛 + 1]

[𝑛 − 𝑘] [𝑛 − 𝑘 + 1] 𝑞𝑘+1
.

(42)

Now taking (42) in (40), we have

𝐿
𝜏

𝑛,𝑞
(𝑓; 𝑥) − 𝑓(

𝑥

𝑞
) = −

𝜏 (𝑥)
𝑛+1

ℓ𝜏
𝑛
(𝑥)
[
𝜏 (𝑥)

𝑞
,
[𝑛]

𝑞𝑛
; (𝑓

∘ 𝜏
−1

)] 𝑞
𝑛(𝑛−1)/2−1

+
𝜏 (𝑥)

ℓ𝜏
𝑛
(𝑥)

⋅

𝑛−1

∑

𝑘=0

[
𝜏 (𝑥)

𝑞
,

[𝑘]

[𝑛 − 𝑘 + 1] 𝑞𝑘
,
[𝑘 + 1]

[𝑛 − 𝑘] 𝑞𝑘+1
; (𝑓 ∘ 𝜏

−1

)]

⋅
[𝑛 + 1]

[𝑛 − 𝑘] [𝑛 − 𝑘 + 1] 𝑞𝑘+1
𝑞
𝑘(𝑘−1)/2−1

[
𝑛

𝑘
] 𝜏 (𝑥)

𝑘+1

.

(43)

Thus the proof is completed.

Now, from Theorem 8, we have the following corollary
immediately.

Corollary 9. Let 𝑓 be a 𝜏-convex, nonincreasing function on
[0,∞) and 𝜏 is linear. Then one has

𝑓(
𝑥

𝑞
) ≤ 𝐿

𝜏

𝑛,𝑞
(𝑓; 𝑥) (44)

for any 𝑥 ∈ [0,∞)\ {[𝑘]/[𝑛−𝑘+1]𝑞𝑘 : 𝑘 = 0, 1, . . . , 𝑛}, 𝑛 ∈ N.
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