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This paper is devoted to the study of a wave equation with a boundary condition of many-point type. The existence of weak solutions
is proved by using the Galerkin method. Also, the uniqueness and the stability of solutions are established.

1. Introduction

Recently, initial-boundary value problems of wave equations
have appeared more and more in mechanics, they have been
deeply studied by many authors, and we can refer to the works
[1-13]. In this paper, we consider the following nonlinear
wave equation with a boundary condition of many-point

type:
Uy — Py + f6,u) =0, 0<x<1, 0<t<T,
u(l,t) =0,

pu, (0, 1)
= L k(t—s)h(u(&y,s),u(&,s),...,u(Ex.s))ds (1)

+g(u(pt) +a(),
u(x,0) =u, (x),
ut (x’ 0) = ul (x) >

where f, g, h,k,0,uy,u, are given real functions and p,§,,
&), ..., &y are positive constants such that 0 = &, < &, <--- <

&y < L

Dang and Alain [4] studied the global existence of the
following problem:

Uy — Uy + |u|” sign (1) = 0,
u(l,t) =0,
u, (0,t) = g(t), (2)
u(x,0) = u, (x),
u, (x,0) = uy (x),

where 0 < a < 1 is a constant and g,u,,u, are given
functions.
In [11], Santos considered the following problem:

Uy =P (t) Upx = 0,
u(0,t) =0,
u(l,t)+th(t—s)p(s)ux(l,s)ds=0, (3)
0
u(x,0) = u, (x),

ut (x’ 0) = ul (x) >

in which g, p,u,y,u; are given functions. He studied the
asymptotic behavior of the solutions of problem (3) with
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respect to the time variable. In this case, problem (3) is a
mathematical model for a linear one-dimensional motion of
an elastic bar connected with a viscoelastic element at an end
of the bar.

Applying the Mikusinski operational calculus, D. Takaci
and A. Takaci [12] gave the formula for finding the exact
solutions of the linear wave equation given by

Uy — Uy + Ku+ Ay, = f(x,1),
u, (0,6) =v (),
—u, (1,t) = 6u(1,t) + eu, (1,t), (4)
u(x,0) = ug (x),
u, (x,0) = u, (x),

where K, A,0,¢ h,w are given nonnegative constants and
f> g, uy, u; are given functions. Also, the unknown function
u(x,t) and the unknown boundary value v(t) satisfy the
following integral equation:

v(t) =g () +hu(0,t)

t (5)
- wh J sin (w (t — s)) u (0, s) ds.
0

It is worth noting that the function v(¢) is deduced from
a Cauchy problem for an ordinary differential equation at
the boundary condition ¢+ = 0. Indeed, if v(t) satisfies the
following Cauchy problem

V() +2pv () + pov ()
= quiy (0,1) + qou, (0,1) + qyu (0, 1),

(6)
v(0) = vy,

V, (0) = Vl)

2
where p, py, 9, 90> 91> Vo> Vi are constants such that p, > p°,
we can easily show that

t

v(t)=g(t)+hu(0,t)+J k(t-s)u(0,s)ds, (7)

0

where
g(t) = exp (=pt) [v; — pvo + pquty (0) — quy (0)] Sil:uwt
+exp (—pt) {[Vo - quq (0)] cos wt — %”o (0)} i
sin wt ®

k(t) = exp (-pt) {[q (p* - ) - pay +a,]
+(qo — 2pq) cos wt} ,

with = \[py = p%, h = g + go/w. In the special case of p =
qo = q; = 0, we obtain (5).
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Besides, Nguyen and Giang Vo [8] obtained the asymp-
totic behavior of the weak solution of the following initial-
boundary value problem ase — 0,:

Uy — U+ Ku+ Au, = f(x,1),
u(l,t) =0,

u, (0,t) = g (t) + hu (0,t) + eu, (0,1)

t )
- J k(t—s)u(0,s)ds,
0

u(x,0) =uy (x),
u, (x,0) = uy (x),

in which K,A\,h € R, & > 0 are given constants and
f> g, k, uy, u, are given functions. Problem (9) is said to be a
mathematical model describing a shock problem involving a
linear viscoelastic bar.

The organization of this paper is as follows. First of all,
we establish the global existence and uniqueness of weak
solutions of problem (1). The proof is based on the Galerkin
method associated with a priori estimates and the weak
compact method. Finally, here we prove that this solution is
stable in the sense of continuous dependence on the given
data (f, g, h, k, 0). This paper is a relative generalization of the
works [4, 6, 11, 12].

2. Preliminaries

For convenience, we denote by (-,-) and || - ||, respectively,
the scalar product and the norm in L*(0,1). Also, we define a
closed subspace of the Sobolev space H'(0, 1) as follows:

H={ueH (0,1):u(1)=0}, (10)
with the following scalar product and norm:

(V) = (U Vi)
(1)

loallr = ol

Then it is easy to show the following.
Lemma 1. The embedding H — C°([0, 1) is compact and

lellcoroyy < Nl < lutllgno,ny < \/EH”HH»
(12)
Yu € H.

On the other hand, we also have the following result.

Lemma 2. Let e > 0. Then

2 2 l) 2
Mo < vl + (145 ) WP, "

Yue H (0,1).

The proof of the lemma is straightforward; we omit the
details.
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Remark 3. Lete = 1, we get

2 1/2
Wleoqonn < (el +2101%) 7 < V2 IWlenoy)
(14)
Vue H (0,1).

Next, if W is a real Banach space with norm | - [,
LP(0, T; W) consists of equivalence classes of strongly mea-
surable functionsu : (0,7) — W such that [[ull1» 1wy < 00,
with

” u"LP (0,TsW)

1/p
(T ity de)”, if1<p<oco,  (3)

ess sup [lu ()l > if p = oo.

0<t<T

It is not difficult to prove that Lf (0, T; W) is a Banach space.

Let W,, W;, and W, be Banach spaces satistying W, ¢
W, c W,. We further assume that W, and W, are reflexive,
and the imbedding W, < W, is compact. Set

W (0,T)
(16)
={u:uelf(0,T;W,), u, € L1(0, T;W,)},

where 1 < p,g < 0o. Then W(0, T) is a Banach space with the
norm

Ny = NtllLoqorswy + [l “Lq(o,T;wz)‘ 17)
We also have the following lemma.

Lemma 4 (see [14]). Let 1 < p,q < oo. The embedding
W(0,T) — LF(0,T;W,) is compact.

3. Global Existence and Uniqueness of
Weak Solutions

To investigate the existence of a unique weak solution of
problem (1), the following assumptions are needed:

(A)) uy € Hand u, € L*(0, 1).

(A,) 0 € H'(0,T), k e W-'(0,T).

(A3) f,D,f € C°([0,1] x R) satisfy the following condi-

tions:

(i) There exist positive functions oy,0, € L'(0,1)
such that

Juf(x,s) ds > -0y (x) u - g, (x),
0 (18)

ae x€[0,1], Yu e R.

(ii) There exist positive functions & € L*(0,1) and
fe C%(R) such that

ID,f (x,u)| <& (x) f (), ae xe€[0,1], VueR. (19)

(A ge C?*(R); there exist constants a, b > 0 such that

J g(s)ds > —au’ -b, VuceR. (20)

0

(As) he CY(RN*1); there exist constants ¢, d > 0 such that

N
| (ug> s .. upn)| < CZ |u;] +d,
i=0 (21)

Vu, € R, i =0,N.

(Ag) For each M > 0, there exists a constant ¢, > 0 such
that

N
| (g, . ..o un) =B (vps...ovy))| SCMZ|u,»—vi|
i=0 (22)
Vlui| , |v1-| <M, i=0,N.

With these assumptions, we have the following theorem.

Theorem 5. Let assumptions (A;)-(Ag) hold. Then problem
(1) has a unique weak solution u such that

uel®(0,T;H),

u, € L (0,T; L2 (0, 1)), (23)

u(&,-) e H' (0,T), i=0,N.

Remark 6. In the special case of N = 0 and g'(t) > —1, for all
t € R, we have obtained the same results in the paper [6].

Proof of Theorem 5. The main tool of this proof is the Galerkin
method. The procedure includes four steps as follows:
(i) Galerkin approximation.
(ii) A priori estimates.
(iii) Limiting process.

(iv) Uniqueness of the weak solutions.

Step 1 (Galerkin approximation). We use a special orthonor-
mal base of H:

2
@ (x) = \]m cos (ex)
o= k=17, 24

k=1,2,....

Now we are looking for the approximate solution of problem
(1) in the form

W () = ) W (1) (%), (25)
k=1



where the coefficient functions w,,,;(t) satisfy the following
system of nonlinear differential equations

<M:;l (" t) > §0k> +p <um (') t) > §0k>H +Vy (t) Px (0)

_ (26)
+{(f(u" (1)) =0, k=1,m,
with
v, (t) = .[o k(t—s)
(U™ (Ers) ™ (81, 8) 5ot (Exy8)) ds 27)
+g " (§,1)) +0 (D),
u" (,0)=ug = Zamk(Pk — U
k=1 (28)
strongly in H'(0,1),
M:n (-) 0) = uT = mek(Pk — u;
k=1 (29)

strongly in L* (0,1).

By substituting p, = +/pgk, we can rewrite the system of (26)-
(29) as follows:

W (6) + PR (8) = ——— [v, (£) @ (0)
ol

+(f U G0)e]s
t
v, () = JO k(t-s)

(" (&, s),u™ (E,8),. . u" (8, s)) ds (30)
+gW"(&,t)+a(t),
Wk (0) = Qs

w:nk (0) = b

Therefore, we obtain

Wi (£) = @y €08 (Pt) + by

ot ,
sin(pt) 2 st

Px ¢ (0) Jo

. J‘S sin [py (t = 3)] k(s 1)
0 Pr
ch(W" (&, 1), ... u" (En,T))dT — q)kz(O)
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J’tw [U(S)+g(um (50,5))]615
0 P
2 ('sin [pe (t = 9)] o
@z (0) J-o (f (u™(5)), 9p) ds,
k=1,m.
(31

Applying the Schauder fixed-point theorem, it is not difficult
that system (31) has a solution (w,,;, @, ..>@,,,) on an
interval [0, T,,]. This implies that in system (26)-(29) there
exists a solution to 1™ (¢) on [0, T,,,]. Moreover, we can extend
the approximate solution u™ to the whole interval [0, T] (see

(15]).

Step 2 (a priori estimates). In (26), we replace ¢, (x) by
u;"(x,t). Then integrating from 0 to t, we have after some
calculations

'(0)

E,, (t) =E, (0) + 20 (0)uy (0) +2 J g(s)ds

0

ug' ()
+Zjldxj f(x,s)ds =20 @)u™ (0,t)
0

0

t u™(0,t)
+ZJ a'(s)um(O,s)ds—ZJ g(s)ds
0 0

1 ru"(xt) t
—ZJ J f(x,s)dsdx—ZJ uy (0,r)dr  (32)
0 Jo 0

.J'rk(r—s)h(um(Eo,s),...,um(EN,s))ds

0

ug'(0)

=E,, (0) +20 (0)uy (0)+2] g(s)ds

0

1 1y (x) 5
+ZJ de f(x,s)ds+ZIk(t),
0 k=1

0
where
E, (t) = | O+ pu™ ()] - (33)

We will estimate, respectively, the following terms on the
right-hand side of (32).

Estimating I, (t). Using (33) and Lemma 1, we infer that

[ (0,8)] < [lu™ (- t)||cg([0,1]) < " G0y

) (34)
<~ AE, ®.
VP
Hence,
I, (8) = 20 () u" (0,8) < e [u”™ (0,0 + 20* (¢)
‘ (35)

L2
<eE, (t)+ - ol Ve>0.
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Estimating I,(t). Using Lemmal and inequality (34), we
arrive at

t
Lt)=2 J o (s)u™ (0,5)ds
0
< Il) Lt |o" (s)| ds+p J-Ot 'a' (s)' [« (0, s)|2 ds  (36)

t
! 1 !
< | OB, ©ds+ P
Estimating I;(¢). From assumption (A ,), we have
u™(0,t) )
I (t) = —zj g(s)yds<2alu™(0,t) +2b.  (37)
0

On the other hand, we see that

t 2
[l s t)”2 = |luy + J uy (s)ds
’ (38)
t
<2 + 2t j E,, (s)ds.
0
It follows from (37), (38), and Lemma 2 that
a 1\ (f
L) < 262E,, (1) + 4at<1 + —) j E, (s)ds
€
: ' (39)

+da(14 1) " + 2.
&

Estimating 1,(t). Owing to assumption (A;)-(i), (38), and
Lemma 2, it is not difficult to show that

1 u™ (x,t)
I (t) = —ZJ dXJ f(x,s)ds
0 0
' 2
<2 L 0, () [ (6, O dx + 2l o
2
< 8;_) lloy "Ll(o,l) E, (1) (40)

1 t
w4t (142 ) ol L E,, (s) ds

1
e (1 D) P loulson + 20l

Estimating I(t). Applying integration by parts, it follows that

t
I (1) = -2 L u" (0,r)dr

.L’w—s)h(um<so,s>,...,um(eN,s>>ds
=-2u"(0,t)
.Ltku-s>h(um(so,s>,...,um(sN,s»ds
+ 2k (0) (41)
. Lt W0, B (U™ (&,5) .. " (xr ) ds

,
+2 L u™ (0,r)dr
. Lr K (r=s)h (" (E5),....u" (Ex.s))ds

=], O+, ) +T5(t).

We can estimate the integrals in the right-hand side of (41) as
follows:

J, (t) = =2u™ (0, 1)
t
: JO k(t—s)h(u™" (&y,s),....u" (Ex>s))ds

N -t
< 2c|u™(0,1)] Z L Ik (t = )l [u™ (&, 5)| ds
i=0

+2d | (0,1)] Lt k(t —s)|ds <2 (N + 1) %

-\E,, (t) Jot |k (t = )| \E,, (s)ds + 2%
-\E,, (t) Jot |k (s)|ds < 2¢E,, (t) + (N + 1)?

2 2

t
C 2 d 2
RS JE o ds+ k2o
S Wl [, B 9ds + S Ikt

(42)

J, (£) = 2k (0)

: JO "™ (0,s)h (U™ (&, 8),...,u" (Ey,8)) ds

c t d
<2(N+1) ; |k (0)] Jo E, (s)ds+ 2% |k (0)] (43)

-Jt E,, (s)ds < [1+2(N+ 1 <1k 0)]
0 p

t d2
J E,, (s)ds + Tk (0),
0 P



;) =2 Jo u™ (0,r)dr
-L K (r=s)h(u™ (&»s),...,u" (Enss)) ds

<2(N+ 1)5Jt E,, (r)dr
P Jo

.J'Or|k’(r_s)| Em(s)ds+2%£ E,, (r)dr (44)

~Jr|k'(r—s)|dssz(N+1)£ [JtEm(r)dr
0 plto

o <J§|k'<r—s>| b 0as)

t
¥ j E, (dr+ ! ||k hom-

Going in for the Cauchy-Schwartz inequality, we arrive at

([ 1€ -9 VB s )

< Jr |k’ (r- s)| ds Jr 'k' (r- s)' E,, (s)ds (45)
0 0
Wl [ I 9] Bu
Consequently,
t r 2
J (J K" (r = )| \En (s)ds) dr

o \Jo

< Jy i [[ ¥ 9] 2 01
o Jo (46)

- “k,"L‘(o,T) Jt E,, (s)ds Jt 'kl (r - S)’ dr

< ¥, J Ey, () s
It follows from (44) and (46) that

J5 ()
t
[1 +2(N+1) S (1 K[ OT))] L E,()dr
T
T "k,"fz_l(o,T) :
We deduce from the estimates of ], (¢), J,(t), J5(¢) that

t
I (t) < 2¢E,, (t) + Dy J E,, (s)ds + D3, (48)
0
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with
DL = (N+1)* < ||k||Lz(0 5
+2(N+1) = (||k “u«m +kOI+1)+2,  (49)
D2 = d; [T K1 o, + WKl iy + £TH ()]

On the other hand, by (28), (29), and assumptions (A)-(A ),

ug'(0)
E,, (0) + 20 (0)uy (0) +2 J. g(s)ds
0

Uy o (%)
J dxj f(x,8)ds <C,

where C is a positive constant depending only on
ety £.G.0.

Combining (32), (35), (36), (39), (40), (48), and (50), we
obtain after some rearrangements

(50)

t
B, (6) < eD}E, (0 + | DLOE,(ds+ D} (D
0
where
2 a
Dy = = oyl o + 2= + 3,
r= S loleny 25

D4T (s) = |0’ (5)| +4T (1 + é) (“P1“L1(0,1) + a) + D;"’

Dy = L lolen + 1o g +2loedieny
1
v 41+ ) (ol + @) b
+ D} +C+2b.
Choosing eD3. = 1/2, by Gronwall’s inequality, we have
t
E, (t) < ZD; exp <2 J D4T (s) ds) < Dy, (53)
0

where Dy is a positive constant depending on T'.
Next, we will require the following lemma.

Lemma 7. There exists a positive constant C depending only
on T such that

t
J | (&, s)[ds<Cp, VE€[0,T], i=0,N.  (54)
0
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Proof of Lemma 7. We put

s (1) = Y cos (1) Sm;’j ) (55)
k=1
Gmi (1) = i‘Pk (&) [amk c0s (pt) + by sin (p!)
k=1 P
() -

k=1 Pr (0)

) Lt sin [pr (£ = 9)] (f(u™(59), @) ds.

Pr

In view of (25) and (31), u™ (&;, t) can be rewritten as follows:
t
W Ea8) = 00 02| K t- 9, s (&)
0
In connection with g,,,;(¢), we have the following lemma.

Lemma 8. There exists a positive constant C depending only
on T such that

J |gmz (S)' ds < CT’ Vt € [O T] = N (58)

Proof of Lemma 8. We define

Goi () = =Py () + Qi () = 1 () =5, (1), (59)
with
P () = ) 91 (0) Pyt cos (&) sim (pyt) (60)
prs}
Gni (£) = ) 9 (0) by 05 (&) cos (pyt) (61)
k=1
o) =23 WSV () gy e
=1 Pk P
cos (k)
2
mi ()= kZ; @i (0)
. Jt sin [pe (¢ = 9)] (D, f (+u" (+9)) (63)
0 Pr
up" (8), @) ds.

On the other hand, use the inequality

(a+b+c+d)2§4(a2+b2+c2+d2),
(64)
Va,b,c,d € R,
Hence,
t
J 'gml(s)' ds<4 Z J |jmi(s)|2ds
jelpars 70 (65)

=K, () +K, (1) + K, () + K, (8).

We will estimate each term on the right-hand side of this
inequality.

Estimating K, (t) = 4 |, ; | p,i(5)|*ds. Thanks to (60) and (65),

K0=p {i«pk (0)
0 (k=1
< Wl {sin [y (\/ps + &)] + sin [y (V/ps - 51)]}} ds

t [ m 2
<2p L 12% (0) g By sin [t (Vs + Ei)]} ds

P
(66)

+2PI {i‘f’k ) Uiy, kSln[ﬂk(\/_PS—fi)]]’ ds

k=1

3
&

m 2
[Z‘Pk (0) ety sin (#ks)] ds
k=

\/ﬁt_gx m 2
+2+/p J [Z‘Pk (0) @ty sin (Hks)] ds

Now, we will need the following lemma.

Lemma?9. Leta,beR, a<bandq € R, k=1,m. Then

b[m z
J [ ch sin (yks)] ds
k=1 (67)

1[m 2
< 2 (max {|al, |b]} + 2) L |:ch sin (yks)] ds.
k=1

The proof of this lemma is simple; we omit the details.
Applying Lemma 9, we deduce from (28), (66), and
assumption (A,) that

Ky (t) < 8+/p (VPT +§; +2)

1 m
'JO [Z(Pk (0) i aesin (pyes) | ds (68)

k=1

<8p(\VPT +& +2) “uOm”iI <Cr,

where C; always indicates a constant depending on T'.

Estimating K,(t) = 4 _[Ot |@,ni(s)|*ds. Similarly, we also obtain

i+ 2
K,(t) <8 (T + E‘Jﬁ ) il < Cr- (69)



Estimating K5(t) = 4 f; Irm,-(s)lzds. We see that

23 [ s ) cos ) cos 1)
Pi=iH

i (8) =

1

f(xuy (x))dx = oW

j Zi{sm [ (Vs + & + x)] (70)

0 =1k

+sin [y (Vps = & = %)]} f (% g () dx

+3e5 Jy il (Vs + &)

+sin [y (Vps = & + %) ]} f (% () dx

To estimate K;(t), we need the following lemma.

Lemma 10. Let m € N. One always has

i sin gz

k=0 i

4
<l+ —,
T

S, (2) = Vz € R. (71)

Proof of Lemma 10. First, we assume that 0 < z < 1. Set M =
[z7!] (which is an integer part of z71). We consider two cases
of m.

Casel(m > M +1). Then

inpy;z 2osinuz
S, (2) < Z| j ' Z Hic
= M k=M+1 Mk (72)
=S (2)+S (2).

Since | sin | < ||, for all ¢ € R, we get

Moreover, the function ¢ +— (sing)/¢ is decreasing on
(0,71/2]; hence, sin(r1/2)¢ > ¢@; for all ¢ € [0, 1], it follows
that

sin(im+k—-1)/2)nzsin((m—-k+1)/2)nz (74)
sin (71z/2)

RN
sin (mz/2) ~ 2z’
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On the other hand, it is easy to verify the following equality
by the induction:
sin .z
k=m+1 Pk
1 m

= Z sin p.z (75)
P+t k2ar

m—1 m
+ Z I:( ! —i> Z sinyiz].
=M+ L NP1 B/ b

Using (74) and (75), we arrive at

sin y.z
$2 (2) = i

k=m+1 Pk

m

Z sin .z

k=M+1

m—1
1 1

3G

k=M+1 Ui Hre+1

11 e <1 1 >1

< -+ — = -

Unpe1 2 k=M+1 Mk M1/ =

_( 2 _L>l<é
Un+1 UYm/ 2 T[.

Consequently, it follows from (72), (73), and (76) that

<

U1

m

sin y;z
i=k+1

] 76

S, (2) <8 (2)+ S (2) < 1+ % (77)

Case2(1 <m< M +1). We have

Z !|sin ykz| Z ez

s (z) < Z sin [/lkz

= Mk = Mk =1 Mk (78)

4

=M+1)z<1+—.

T

Combining (77) and (78), we conclude that
4

Sm(z)<1+;, vmeN, z€(0,1]. (79)

Since S,,(0) = 0 and the function §,, is even, periodic with
the period 2, thus inequality (79) holds forallm € N, z € R.
The proof of Lemma 10 is complete.

By (70) and Lemma 10, it leads to

|7, (5)] < ﬁ 1014(1 +

4
) Gl

)NF ey )] dx
(80)

2
il
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Hence, it follows from (28), (80), and assumptions (A ), (A5)
that

K, (t) =4 L |Fmi ()] ds

(81)
16T
< —

4\? 112
o (1 ) 1 G <

Estimating K,(t) = 4 fot Ismi(s)lzds. Proving in the same way
as (81), we get

t 2 2
K, (t) = 4]0 ls,0 (5) s < £ (1 + 3)
: (2)

t
' Jo I1Dof (o™ (5 5)) i ("S)Hil(o,l) ds.
On the other hand, using assumption (A5)-(ii), then

D, f (60" (x,9))| <G (x) sup f(2) =Cr6(x), (g3

|z|<Dy.

with Dy = \/Dy/p.

Applying the Cauchy-Schwartz inequality, we clearly get

8T* 4\? 2 [Fm
K== (10 1) Gaar | ool as
p T 0 (84)

<Cp.

Combining (65), (68), (69), (81), and (84), we obtain
Lemma 8.

Remark 11. Lemma 3 in [4] is a special case of Lemma 8 with
g=h=0andp=1.

We now return to the proof of Lemma 7.
Note that it follows from (27) that

v, (#) =0 (t)+ g (" (&,t)) " (&,t) + k(0)
(W™ (&g t) U™ (€ t), .U (Eget))
t (85)
+J K (t-s)
0
ch(u™ (&), u" (&t), ... u™ (Ey,s)) ds.

On account of (53) and assumptions (A,), (A,), and (As), we
get

v, @] < [o" O]+ sup |g" @)] " (& 1)

|z|<Dy

+ (K1 + K] oy ) (N + 1) D +.d] - )

< |0/ (t)' +Cr ([ (. 1)] + 1)

Therefore, it is easy to see that

v, 0 <2]o’ 0 +4C2 (ju" &) +1). (87

Applying Lemmal0 and the imbedding H'(0,1) <
C°([0, 1]), we deduce from (27) and (57) that

|u" (&,t)] = g:ni (t) = 2k,,; (£) v, (0)

-2 thm,- (t—2s) v:n (s)ds
0

< g (t)'+%<l

+%>|vm (0)|+%(1+%>Elv;ﬂ (9] ds (88)
< |gr: )] + Cr <1 + Lt v, ()] ds> :
Thus,
e (& O < 2]l (0]
(89)

t
+4C. (1 +tJ |V (s)|2 ds).
0

Using the Cauchy-Schwartz inequality and Lemma 8, then we
obtain from (87) and (89) that

t
L | (&, s)|2 ds
2 ! 2
<4CHt+2 J |g£m. (s)| ds
0

t T
+ 4C% J Tdt J |v,'n (s)'2 ds
0 0

2, 16 4 3 20 12
<4CHt + S Cpt’ +4Cqt lo'l 20 (90)
t , 2
+ZJ 'gmi (s)' ds
0
t T 2
+ 16C4TJ TdTJ |u:" (Eo,s)| ds
0 0
t T 2
<Cr+Cr J d‘rj )" (&, )| ds.
0 0
Hence,
N ¢t )
> [l o) ds
i=0 70
(91)
t [ N rr 5
S(N+1)Cp |1+ J (ZJ 1" (&;55)| ds) dr:| .
o\ Jo

By the Gronwall inequality, we get Lemma 7. This completes
the proof of Lemma 7.
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Step 3 (limiting process). Due to (53) and (54), applying the
Banach-Alaoglu theorem, we can extract a subsequence of
sequence {u"}, still labeled by the same notations, such that

u" — u  weakly*in L (0, T;H' (0, 1)) ,
u;' — u, weakly“in L% (0, T; L* (0, 1)) . (92)

" (§,") — u(&,) weakly in H' (0,T).

Thanks to Lemma 4 and the compactness of the imbedding
HY0,T) — C°([0,T]), they lead us to

u" —u
strongly in L*((0,1) x (0,T)), ae. in (0,1)x (0,T), (93)
u" (&,) — u(&,) strongly in C°([0,T7).
By (93), and assumptions (A,), (A,), and (A), we have

v, () — L k(t—s)h(u(&y,s),...,u(&y,s))ds

(94)
+gw(&pt))+o(t)=v(),
strongly in C°([o, T)).
Also, we apply the inequality
|f (e u™ (x, 1) = f (x5, u(x, 1))
(95)

<dgp |[u" (x,t) —u(x, 1),
where d = "DZf”C"([O,l]X[fﬁTﬁT])' By (93), and (95), we get
fGu") — fw
(96)
strongly in L*((0,1) x (0, T)).

Passing to the limit in (26) by (92), ,, (94), and (96), we have
u satistying the equation

%(ut (1), 9) +p(u (), @)y +v (1) @ (0)

+ <f (')u('st))’(P> =0,

forallp € H,a.e.t € [0,T].
On the other hand, it is easy to show a similar way as in
4, p. 588]

u(x,0) =u, (x),
(98)
u, (x,0) = u; (x).
The existence of global solutions is proved.
Step 4 (uniqueness of the weak solutions). Let 1, and u, be

two weak solutions of problem (1). Then u = u; —u, is a weak
solution of the following problem:

Uy = PUyy + f(’ ul) - f("uZ) =0,
PU, (0) t) = V(t)1
u(l,t) =0,

(99)

u(x,0) =u,(x,0)=0,

Abstract and Applied Analysis

in which

2 ) t
V0= Y07 gl ) + | k=9
. (100)

5]

N DT (s (Es) -

1

i (& 5)) ds.

Il
—

To prove u; = u,, then the following lemma is needed.

Lemma 12. Let u be the weak solution of the following
problem:

Uy —pu, +F=0, 0<x<1, 0<t<T,
u(l,t) =0,
pu, (0,t) =v (1),
u(x,0) = uy (x),
u, (x,0) = u; (x),
ue L% (0,T; H), (101)
u € L (0,T; L2 (0, 1)),
u(0,-) € H' (0,T),
velL*(0,T),
FelL'(0,T;L°(0,1)).
Then we have

t
[t -, 1‘)||2 +pluG ol +2 L v(s)u, (0,s)ds

+2 L (F (s),u; (s))yds > ||u1||2 ‘p ““0"2: (102)

ae. te€[0,T].

Equality holds in case of uy = u; = 0.
The proof of Lemma 12 is the same as Lemma 2.1 in [16].

Applying Lemma 12 with uy, = u; = 0, F = f(,u;) -
f(uy), we get

E(t)=-2 Lt (f ) = f ()0l () ds
2 [ 0.9 Y 1 g (G0 ) s
0 i=1

t 2 .
~2pu (0,1) L k(t-9)Y (1)
i1

“h(u; (8o 5) . 1 (8 5)) ds + 2pk (0)

t 2
. J u(0,9) Y (-1
0 i=1

ch(u; (8y,8),..u; (En,8)) ds
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t r 2 )
+2p L u(0,7)dr L K (r-s) Z -1
im1

ch(w; (&g, s)s . su; (Ens8))ds = T () + 1, ()

+ 50+ () + 5 (1),
(103)

with E(t) = llu, (-, )1 + pllut, )3,

Now we can estimate the integrals in the right-hand side
of (103) as follows.

First term J,(f): using assumption (A;), it follows from
Lemma 1 and (103) that

Ji @)

=2 [ (G 9) = F (ot (291 (29 ds

dan Jt 2 2 (104)
< — ) ', d
75 ), (e G+ p a9 ds
t
< @J E(s)ds,
P Jo
where
A = |D2f oo itoat v »
(105)

2
M = Z ||”i“L°°(o,T;H) .
i1

Second term J,(t): set dy;, = gl -arn)- Integrating by
parts, then we arrive at

t 2 )
I, (t) = -2 L u, (0,5) Z (1) g (u; (&) 5)) ds
i=1
=-2 L u, (0,s)ds

. ,[o %g (145 (80> ) + 6u (&, 5)) dO

=’ (0.1) J gy (1) +6u (& 1))d0 (106)
0

+ J 4% (0,s)ds J g" (uy (&> ) + Ou (&), 5))
0

0

. (u; (&, 5) + 0u' (&, s)) dé <d,;, [uz (0,1)

t
+ L (|u; (Eo,s)| + |u; (EO,S)D u? (0, 5) ds] .
On the other hand, we easily show that

GOl <t L luy (2P ds < T L E(s)ds.  (107)

1
Applying Lemma 2, we deduce from (107) that
u? (0,1) < flu (5 Oligo oy
1
<eluG Ol + (142 ) G0 (108)
€ 1\ (*
<%Ew +T(1 4 —) j E(s)ds, Ve> 0.
P g/ Jo
Thus, it follows from (106) and (108) that
t
5L <eB2E ) +J d()E(s)ds,  (109)
p 0
in which
£ 1
d(s)= —dyp, (|u'1 (EO,S)| + |u; (EO,S)D + (1 + ;)
p (110)

~Tdy, ("”; o> ')"Ll(o,T) + "”; o .)"L‘(O,T) + 1) :

Third term J5(t): using the Cauchy-Schwartz inequality, we
have from (103), (A,), and (Ag) that

t 2 .
(0 =-20u0.0) | k(-9 (1)
i1

(4 (8025) -4y (€ 5)) ds

¢ N 1 (111)
<2VE®) L Ik (t = )| Y ey VE (s)ds < ZE(t)
i=0

t
+4(N + 1) 3T [kl 7o 011 L E(s)ds.

In addition, we can similarly prove as in (111) for the fourth
and fifth terms as follows:

t 2 )
o0 =20k(0) [ (0.9 (1)
0 i=1
h(u; (& s),..u; (Enss))ds < 2p |k (0)]
! 1
. Jo ﬁ\/E (s) (N + l)cM% VE (s)ds =2 (N

+ 1) ¢y [k (0)] L E (s)ds,

t p 3 A
Js () =2p L u(0,r)dr L K (r ) Z (1) (112)
i=1

.h(ui (EO,S),...,U,‘ (fN’S))ds
<2 VEGI [ ¢ ooy
ey VE (8)dsdr < (N + 1) ¢y ("k’“il(o,T) * 1>

. Jot E(s)ds.
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Choosing 4ed,, < p, the combination of (103), (104), (109),
and (111)-(112) shows that

t -~
E(t) < J d(s)E(s)ds, (113)
0
where
d(s)=2d(s) + 8 (N + 1) i, T IKklleoo.7)
12
+2(N+1ﬁM(M”U&n+ZMUM+J) (114)
+ 2@.
P

By the Gronwall inequality, we see that E(t) = 0; that is, u; =
u,.
This completes the proof of Theorem 5.

4. Stability of the Weak Solutions

In this section, let (uy,u,) € H'Y0,1) x L*(0,1) be fixed
functions. Also, we assume that 0,0, € L'(0,1), G €
L*0,1), f € CR), and a,b, d,c, ¢y are fixed functions,

(uj,uj) —> (u,u,) strongly in L (0, T; H' (0, 1)) L® (0, T; L* (0, 1)), as j — oo,

where u! = u(al, K/, f7, g/, W), u=u(o,k, f, g,h).
Proof of Theorem 13. Firstly, we assume that

“f’j”wlvlm +lolwi o < 0.
(118)

"kj”W“(mT) +lkllwi o) < koo

where o, k, are fixed positive constants.
On the other hand, by the proof of Theorem 5, the a priori
estimates of the sequence {u"} satisfy

N -t
my, 2 m. 2 m ) 2
I 0P ¢ p " ol + X 1 8o s .

<Cp, Vtel[0,T],

where C; is a constant depending only on u, u,,0,,0,,0,
£ fro.k,a,b,d,c,p,T.
Due to (119) and (92), we conclude that

R (e e e

Nt
+ Z J | (&, 5)| ds) > liminf [lu}* ()| + p
pard 0 m— 00

Abstract and Applied Analysis

constants satisfying assumptions (A;)-(A) (independent of
f> g, and h). Applying Theorem 5, then problem (1) has a
unique weak solution u depending on o, k, f, g, h. We denote
u=ul(ok f,g.h), (115)
where 0, k, f, g, h satisfy assumptions (A,)-(Ag).
Then the stability of the solutions of problem (1) is given
as follows.

Theorem 13. Let (A,)-(A¢) hold. Then the solutions of prob-
lem (1) are stable with respect to the data (o, k, f, g, h) in the
following sense.

If (o7, K, f1, g, W) and (o, k, f, g, h) satisfy the assump-
tions (A,)-(Ag) such that
2

(aj,kj) — (0,k) strongly in [Wl’1 (0, T)]

(f.g, W) — (f.9.h)

(116)

strongly in C°([0,1] x [-M,M]) x C'([-M,M]) x
C'(-M, MIN*™Y), as j — oo, for all M > 0.
Then

117)
2 N t 2
Aiminf |u" ¢, 0|, + nminfj Wi (&, 5)f ds
2 St 2
zpwﬁ"+mm@m@+ZLh“gg|m
i=1
(120)

In addition, we can prove in a similar way above that
the solution 1/ of problem (1) corresponding to the data
(o), K, f7, g’, W) also satisfies

N -t
ul (-t 2+ w (-t 2y J ul (&, 2ds
[ .o + ol 0l + 2 ) e @9 ds
<Cp Vtel0,T],
with 6T being a constant depending only on u,, u;,0,,0,,0,
ﬁf’a*’k*)a:b)d,C,P,T.

We set
fi=-1
g9,=9 -9
hj=h —h,
G=k—k (122)
@zaj—a,
Vi=ul —u
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Then v/ satisfies the following problem:
v{ —pvfcx+Fj=0, 0<x<1, 0<t<T,
v (1,1) =0,

(123)
v (0,6) =W/ (t),

v (x,0) = v/ (x,0) = 0,
where

F ot = f;(xu)+ f(x0)) - f (xu),
w ()
=50+ 75 (¢ (&:1)) + 9 (W (1))
-9 (u(801))

t . — .
+J k](t—s)hj(u](fo,s),...

0

(& 5))ds (124)
+ Jo kAj(t— s)h(uj (Eo,s),...,uj (£N,s))d5

+th(t—s)h(uj(fo,s),...

0

! (Ens s)) ds

- Jotk(t—s)h(u(EO,s),...,u(EN,s))ds.

Applying Lemma 12 with 1, = 1, = 0, we see that
Ej () =2 jo (f ()= fCw vl () ds
[ (T i) 56
] (0,5)ds -2 j 3; (4 (&,5)) v (0,5)ds
-2 Jot [9(/ (£0,1)) = g (u (& 1))] v/ (0,5) s
—2Jtv{ (O,r)drjrkj (r=s)

0 0

-l”l;(uj (&055) 5. . 1 (EN,S))ds
~ t i r)_\' ~
2 Jo v, (0,r)dr Jo k] (r—s)

~h(uj (&08),...ou (EN,S))ds

13
2 UO Vi (0,7) dr
-Iork(r—s)h(uj (E5)s. o) (Exr5)) ds
—Eﬁ@nm
[ =9 h s Es) ) ]
=K O+K, ) +--+Kg(t),
(125)
where
EO=eof vpleol,. a2

Let M = (/Cp + \léT)/\/ﬁ. Now we can estimate eight
integrals in the right-hand side of (125) as follows.

Estimating K, (t). From assumption (A ), it yields
K, (@)
t ‘ )
=2 L (f(1 (59) = f u(-9),v] (5)) ds (127)
dy ("
<2 |, B s

with dy; = 1D, fllcogo,11x(-m,m1)-

Estimating K, (t). It is easy to show that

t_ ) .
K, (t) = -2 J <f] (-,u’) ! (-,s)> ds
’ (128)

—_— t
<T ||fj|lzcﬁ([0,1]x[_M,MD + JO E; (s)ds.

Estimating K;(t). Since pv?(O, t) <
Schwartz inequality, then

E;(t), by Cauchy-

t .
Ky (f) = -2 L () v (0,5) ds

| T 1,
<eE; () + > ||gj’||Ll(0,T) + " 'aj (t)|2 (129)

+ Jot 57 )| E; (5) ds.

Moreover, using the imbedding whlo, ) — C°(I0,T)),
there exists a positive constant k- such that

Wlcoqory < krIVllwiary > Vv eW" (0,T).  (130)
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Thus,

TII il
Jliiw(0,1)

K5 (f) <eE; (1) + /_1) “E;"WI'I(O,T)

(131)
+ [ 16 @B @

Estimating K,(t). By help of assumption (A,) and (121), we
get

K, (t)=-2 Jo g; (uj (Eo,s)) v{ (0,s)ds

SsE(t)+Il)J E; (5)d5+ ”gJ“cO [-M,M])

to
+ " ”CO (=M, M]) J- |ui (EO’S)|2 ds (132)
<0+ [ B;ds
pP Jo

<CT T > ”gJ"cl([ v VE>O.

Estimating K;(t). Proving in a similar way to (109), we also
obtain

K (t)
- L [9 (1 (§.5)) = g (1 (&5))] vi (0,5) ds (133
& t
S ,_)Ej (t) ”g"CZ([—M,M]) + L d;(s)E(s)ds,

where

dj (5) = ”g”CZ([_M,M]) l:% (|ui (EO’S)l + lut (EO’S)D

+ (1 + l) (134)
€
1 (i G0 Mooy * o oMy 1)
On the other hand, we have
Il < VT Wlper . ¥veL*(0,T). (135)
Therefore,
d]- (s)
e )
= ; ||9||cz<[7M,M]) (|uf (’Eo’s)' + |”t (EO’S)D
(136)

+ 732 (1 +

1 —_
D) (143 + ) Il aany

=d;(s).

Abstract and Applied Analysis

It implies
e b
Ks (1) < ;Ej (t) "g”CZ([—M,M]) + L dj (s)E(s)ds. (137)

Estimating K¢(t). By reusing the inequalities (121) and (135)
and assumption (A,), then

Kq (1) = —2J vt (0,7)dr

-L ki (r—s)ﬁ;(uj (80>5) 5. i’ (EN,s))ds
<¢E; (1) + EJ'tEj(s)als+(l+Tk2T+ i)
P (138)

2
I, <o 1)+ 2

Wwh1(0,T) "A;"co([ M, MV
J E;(s)ds+ K (1 F TR + i)
ep

“hJ“d’ ([-M,MIN*Y *

Estimating K,(t). Similarly, from assumption (A;), we also
obtain

K, (1) = —zj Vi (0,r)dr
[ B 9h( ) Es)) ds
<eE; () + 2 JtE (s)ds + (1 + TK> + i)
=T 0o j T ep (139)
2 _ 2
“k ||W”(0T) "h”CU([_M’M]NH) = SEj (t) + ;

j E;(s)ds+ <1 + Tk + —p>dM "k ”w“ on’

Estimating Kg(t). Due to assumptions (A,) and (Ag), we get

to.
Kg(t)=-2 L v! (0,r)dr

. Jork(r—s)h(uj (Eo,s),...,uj (EN,S))ds
+2 J vt (0,7)dr (140)

-JO k(r—s)h(u(&ys),...,u(&y,s))ds

t
< €E; () + M;J E;(s)ds,
0
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where

1 2 1
My = » [(N + 1) ey ("k,”Ll(O,T) T "k"iz(o’T)>
(141)
+2(N + 1) ¢y |k (0)] + 1

Thus, combining (125)-(128), (131), (132), and (137)-(140),

E;(t) < sM%Ej (t) + My (“E“z}o([o,l]x[—M,M])

+ “E"ZCI([—M,M]) + "hf“;([—M,M]”“)

2 e _
+ “kf"W“(O,T) * ”"f"wu(o,T) * "Uf"wl*l(o,T)) (142)
. .
i Jo [; "9“c2([—M,M]) (|”f (50’5)' + [ (EO’S)D
+[5; ()] + M%] E;(s)ds,
in which
, 1
My = P l9llco-reamy + 5
My
2
= (k2 +JM)<1+Tk§+$>+ 1+I;;+g T
LG (143)
My

1 —
=717 (1 + ;) <1 + \@ + @) ”g"CZ([—M,M])

+d—M+M;+E+1.
VP p

Choosing eM2 = 1/2 and applying the Gronwall inequality,
we deduce from (120), (121), and (142) that

3 4
E; (t) < 2M7 exp [ZTMT

e =
+ 2\/’.75 (\@ + \/C\T> "g"CZ([—M,M]) + 20*]

—_ . (144)
: ("fJ'"zcﬂ([o,ux[—M,M]) + “gj||2cl([—M,M])

Bl * 5o

+ "E;HZCO([—M,M]N”)

+ "01' "W“(O,T)) :

15

This shows that
2

2 .
i + |V
tllLe(0,1:L%(0,1)) L(0,T;H(0,1))

< My (“E“z‘)([o,l]x[—M,M]) + ”gAJ'"ch([—M,M])

(145)

1 27 PR 13 P (] Sy
+ "ff;uwu(o,T)) i

with My being a constant depending
u(); ulyalx 021 a; fs fa 0*; k*>aa bs d) C) p) T'
This completes the proof of Theorem 13. O

only on

Remark 14. 1If we use the inequality pv?(fi, t) < E;t), i =

0, N, then, with regard to (126) and (145), conclusion (117) in
Theorem 13 can be extended as follows:

(4] (E0r) 09 (B ) o) ()
— (ot B )1t (B )t ().

strongly in  L®(0,T; H'(0,1)) x L®(0,T;L*(0,1)) x
[C°([o, THIN"', as j — oo.

(146)
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