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We investigate the Dirichlet problem related to linear elliptic second-order partial differential operators with smooth coefficients in
divergence form in bounded connected domains ofR𝑚 (𝑚 ≥ 3) with Lyapunov boundary. In particular, we show how to represent
the solution in terms of a simple layer potential. We use an indirect boundary integral method hinging on the theory of reducible
operators and the theory of differential forms.

1. Introduction

As remarked in [1, p. 121], elliptic operators with variable
coefficients naturally arise in several areas of physics and
engineering. In this paper, we study the Dirichlet problem
related to a scalar elliptic second-order differential operator
with smooth coefficients in divergence form in a bounded
simply connected domain of R𝑚 (𝑚 ≥ 3) with Lyapunov
boundary.

This is a classical problemwhich nowadays can be treated
in several ways. In particular, different potential methods
have been developed for such operators (see, e.g., [1–6]).

In the present paper, we obtain the solution of the Dirich-
let problem bymeans of a simple layer potential instead of the
classical double layer potential (see, e.g., [6, pp. 73–75]). We
use an indirect boundary integral method introduced for the
first time in [7] for the 𝑚-dimensional Laplacian. It requires
neither the knowledge of pseudodifferential operators nor the
use of hypersingular integrals, but it hinges on the theory
of singular integral operators and the theory of differential
forms (for details of the method, see, e.g., [8, Section 2]). The
method has been also used to treat different boundary value
problems in simply connected domains: the Neumann prob-
lem for Laplace equation (via a double layer potential), the
Dirichlet problem for the Lamé and Stokes systems, the four

boundary value problems of the theory of thermoelastic
pseudooscillations, the traction problem for Lamé and Stokes
systems, the four basic boundary value problems arising in
couple-stress elasticity, and the two boundary value problems
of the linear theory of viscoelastic materials with voids (see
[9, 10] and the references therein). The method can be
applied also in multiply connected domains, as shown for the
Laplacian, the linearized elastostatics, and the Stokes system
(see [11] and the references therein).

The present paper is organized as follows.
In Section 2, after giving preliminary results, wemake use

of Fichera’s construction of a principal fundamental solution
[12] and we prove some identities for the related nuclear
double form.

Section 3 is devoted to the study of the Dirichlet problem.
It contains themain results concerning the reduction of a cer-
tain singular integral operator acting in spaces of differential
forms and the integral representation of the solution of the
Dirichlet problem by means of a simple layer potential.

2. Preliminary Results

LetΩ be a bounded domain (open connected set) ofR𝑚 (𝑚 ≥

3).
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In this paper, we deal with the Dirichlet problem:

𝐸𝑢 = 0 in Ω,

𝑢 = 𝑓 on Σ,

(1)

where 𝐸 is a scalar second-order differential operator
(throughout this paper, we use the Einstein summation
convention):

𝐸𝑢 (𝑥) =

𝜕

𝜕𝑥
𝑖
(𝑎
𝑖𝑗

(𝑥)

𝜕𝑢 (𝑥)

𝜕𝑥
𝑗

) . (2)

We suppose that the coefficients 𝑎𝑖𝑗 are defined on 𝑇, 𝑇 being
an open ball containing Ω, and we assume that they belong
to 𝐶
2,𝜆

(𝑇), 0 < 𝜆 ≤ 1.
Moreover, assume that 𝐴 = (𝑎

𝑖𝑗

)
𝑖,𝑗=1,...,𝑚

is a symmetric
contravariant positive-definite tensor. Then, 𝐸 is a uniform
elliptic operator; that is, there exists 𝑐 > 0 such that
𝑎
𝑖𝑗

(𝑥)𝜉
𝑖
𝜉
𝑗

≥ 𝑐|𝜉|
2, for every (𝜉

1
, . . . , 𝜉

𝑚
) ∈ R𝑚 and for any

𝑥 ∈ 𝑇.
For the sake of simplicity, we suppose that the determi-

nant |𝐴| of 𝐴 is equal to 1.
It is known that to the contravariant tensor 𝐴 there

corresponds a covariant tensor 𝐴−1 = (𝑎
𝑖𝑗
)
𝑖,𝑗=1,...,𝑚

such that

𝑎
𝑖𝑗

𝑎
𝑗ℎ

= 𝛿
𝑖

ℎ
, for every 𝑖, ℎ = 1, . . . , 𝑚, (3)

𝛿
𝑖

ℎ
being the Kronecker delta.
A differential form of degree 𝑘 (in short a 𝑘-form) on 𝑇 is

a function defined on 𝑇 whose values are in the 𝑘-covectors
space of R𝑚. A 𝑘-form 𝑢 can be represented as

𝑢 =

1

𝑘!

𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘 (4)

with respect to an admissible coordinate system (𝑥
1
, . . . , 𝑥

𝑚
),

where 𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

are the components of a skew-symmetric covari-
ant tensor (for details about differential forms, we refer to
[13, 14]).

The symbol 𝐶ℎ
𝑘
(𝑇) means the space of all 𝑘-forms whose

components are continuously differentiable up to the order
ℎ in a coordinate system of class 𝐶

ℎ+1 (and then in every
coordinate system of class 𝐶ℎ+1).

If 𝑢 ∈ 𝐶
1

𝑘
(𝑇), the differential of 𝑢 is a (𝑘+ 1)-form defined

as

d𝑢 =

1

𝑘!

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑗d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘 . (5)

Further, if 𝑢 ∈ 𝐶
0

𝑘
(𝑇), the adjoint of 𝑢 is the following (𝑚−𝑘)-

form:

∗𝑢 =

1

𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

⋅ 𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖𝑘+1 ⋅ ⋅ ⋅ d𝑥𝑖𝑚 ,
(6)

where 𝛿
𝑝
1
⋅⋅⋅𝑝
𝑟

𝑞
1
⋅⋅⋅𝑞
𝑟

is the generalized Kronecker delta (𝑟 ≤ 𝑚). We
recall that (see, e.g., [15, p. 127])

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑠
𝑗
𝑠+1
⋅⋅⋅𝑗
𝑚

ℎ
1
⋅⋅⋅ℎ
𝑠
ℎ
𝑠+1
⋅⋅⋅ℎ
𝑚

𝛿
ℎ
𝑠+1
⋅⋅⋅ℎ
𝑚

𝑘
𝑠+1
⋅⋅⋅𝑘
𝑚

= (𝑚 − 𝑠)!𝛿
𝑗
1
⋅⋅⋅𝑗
𝑠
𝑗
𝑠+1
⋅⋅⋅𝑗
𝑚

ℎ
1
⋅⋅⋅ℎ
𝑠
𝑘
𝑠+1
⋅⋅⋅𝑘
𝑚

. (7)

We remark that (see, e.g., [13, p. 285])

∗ ∗ 𝑢 = (−1)
𝑘(𝑚+1)

𝑢. (8)

If 𝑢 ∈ 𝐶
1

𝑘
(𝑇), we define the codifferential of 𝑢 as the

following (𝑘 − 1)-form:

𝛿𝑢 = (−1)
𝑚(𝑘+1)+1

∗ d ∗ 𝑢. (9)

A differential double form 𝑢
ℎ,𝑘

(𝑥, 𝑦) of degree ℎ with respect
to 𝑥 and of degree 𝑘with respect to𝑦 (in short a double (ℎ, 𝑘)-
form) is represented as

𝑢
ℎ,𝑘

(𝑥, 𝑦)

=

1

ℎ!𝑘!

𝑢
𝑠
1
⋅⋅⋅𝑠
ℎ
𝑗
1
⋅⋅⋅𝑗
𝑘

(𝑥, 𝑦) d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠ℎd𝑦𝑗1 ⋅ ⋅ ⋅ d𝑦𝑗𝑘 .
(10)

If ℎ = 𝑘, we denote it briefly by 𝑢
𝑘
(𝑥, 𝑦).

Weproceed to introduce the following double 𝑘-form (see
[13, p. 204]) defined, for every 𝑥, 𝑦 ∈ 𝑇, 𝑥 ̸= 𝑦, as

𝜆
𝑘
(𝑥, 𝑦) =

1

(𝑘!)
2
𝐿 (𝑥, 𝑦)

⋅ 𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑖
1
⋅⋅⋅𝑖
𝑘

(𝑦) d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 ,
(11)

where, for 𝑘 ≤ 𝑚,

𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑖
1
⋅⋅⋅𝑖
𝑘

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑠
1
𝑖
1

⋅ ⋅ ⋅ 𝑎
𝑠
1
𝑖
𝑘

.

.

. d
.
.
.

𝑎
𝑠
𝑘
𝑖
1

⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑖
𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

= 𝛿
𝑙
1
⋅⋅⋅𝑙
𝑘

𝑖
1
⋅⋅⋅𝑖
𝑘

𝑎
𝑠
1
𝑙
1

⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑙
𝑘

, (12)

𝐿 (𝑥, 𝑦)

=

1

(𝑚 − 2) 𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

(2−𝑚)/2
(13)

(𝜔
𝑚
being the hypersurfacemeasure of the unit sphere inR𝑚)

is a parametrix in the sense of Hilbert and E.E. Levi for the
operator 𝐸. We recall that (if we write 𝑢

ℎ,𝑘
(𝑥, 𝑦) = O(|𝑥 −

𝑦|
𝛼

), 𝑢
ℎ,𝑘

(𝑥, 𝑦) being a double (ℎ, 𝑘)-form, we mean that all
its components are O(|𝑥 − 𝑦|

𝛼

))

𝐿 (𝑥, 𝑦) = O (
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2−𝑚

) , (14)

d
𝑥
𝐿 (𝑥, 𝑦) = O (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

1−𝑚

) ,

d
𝑦
𝐿 (𝑥, 𝑦) = O (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

1−𝑚

)

(15)

(see [13, Section 9]).
The next results provide other properties of 𝐿 and 𝜆

𝑘
.

Lemma 1. For every 𝑝 = 1, . . . , 𝑚,

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑦
𝑝

= −

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑝

+ 𝑀(𝑥, 𝑦) ,

𝑥, 𝑦 ∈ 𝑇, 𝑥 ̸= 𝑦,

(16)

where 𝑀(𝑥, 𝑦) = O(|𝑥 − 𝑦|
2−𝑚

).
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Proof. Taking definition (13) into account, we have

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑝

= −

1

2𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−𝑚/2

⋅ {𝑎
𝑖𝑗
(𝑦) [𝛿

𝑖

𝑝
(𝑥
𝑗

− 𝑦
𝑗

) + 𝛿
𝑗

𝑝
(𝑥
𝑖

− 𝑦
𝑖

)]}

= −

1

𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−𝑚/2

⋅ [𝑎
𝑝𝑗

(𝑦) (𝑥
𝑗

− 𝑦
𝑗

)] .

(17)

On the other hand,

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑦
𝑝

= −

1

2𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−𝑚/2

⋅ [

𝜕𝑎
𝑖𝑗
(𝑦)

𝜕𝑦
𝑝

(𝑥
𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−

1

2𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−𝑚/2

⋅ {𝑎
𝑖𝑗
(𝑦) [−𝛿

𝑖

𝑝
(𝑥
𝑗

− 𝑦
𝑗

) − 𝛿
𝑗

𝑝
(𝑥
𝑖

− 𝑦
𝑖

)]}

= 𝑀(𝑥, 𝑦) +

1

𝜔
𝑚

[𝑎
𝑖𝑗
(𝑦) (𝑥

𝑖

− 𝑦
𝑖

) (𝑥
𝑗

− 𝑦
𝑗

)]

−𝑚/2

⋅ [𝑎
𝑝𝑗

(𝑦) (𝑥
𝑗

− 𝑦
𝑗

)] = 𝑀(𝑥, 𝑦) −

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑝

(18)

and this yields the claim.

The identities proved in the next proposition generalize
the ones obtained by Colautti [16, p. 309] for the Laplacian.

Proposition 2. Let 𝜆
𝑘
be the double 𝑘-form defined by (11).

Then, for every 𝑥 ̸= 𝑦, the following properties hold:

∗
𝑥
𝜆
𝑘
(𝑥, 𝑦) = (−1)

𝑘(𝑚−𝑘)

∗
𝑦
𝜆
𝑚−𝑘

(𝑥, 𝑦)

+ 𝜏
𝑚−𝑘,𝑘

(𝑥, 𝑦) , 𝑘 ≤ 𝑚,

(19)

where

𝜏
𝑚−𝑘,𝑘

(𝑥, 𝑦) = O (
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

3−𝑚

) , (20)

∗
𝑥
d
𝑥
𝜆
𝑘
(𝑥, 𝑦) = (−1)

𝑚𝑘+1

∗
𝑦
d
𝑦
𝜆
𝑚−𝑘−1

(𝑥, 𝑦)

+ 𝛾
𝑚−𝑘−1,𝑘

(𝑥, 𝑦) , 𝑘 < 𝑚,

(21)

where 𝛾
𝑚−𝑘−1,𝑘

(𝑥, 𝑦) = O(|𝑥 − 𝑦|
2−𝑚

); and

𝛿
𝑥
𝜆
𝑘+1

(𝑥, 𝑦) = d
𝑦
𝜆
𝑘
(𝑥, 𝑦) + 𝜖

𝑘,𝑘+1
(𝑥, 𝑦) , 𝑘 < 𝑚, (22)

where

𝜖
𝑘,𝑘+1

(𝑥, 𝑦) = O (
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2−𝑚

) . (23)

Proof. First, we prove (19). It follows from (12), (3), and (7)
that

∗
𝑦
𝜆
𝑚−𝑘

(𝑥, 𝑦) =

(−1)
𝑘(𝑚−𝑘)

𝑘! (𝑚 − 𝑘)!

⋅ 𝛿
1⋅⋅⋅𝑚

𝑝
1
⋅⋅⋅𝑝
𝑘
𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘

𝐿 (𝑥, 𝑦) d𝑥𝑞1 ⋅ ⋅ ⋅ d𝑥𝑞𝑚−𝑘d𝑦𝑝1 ⋅ ⋅ ⋅ d𝑦𝑝𝑘 .
(24)

On the other hand,

∗
𝑥
𝜆
𝑘
(𝑥, 𝑦) =

1

(𝑚 − 𝑘)! (𝑘!)
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘

[(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑥)

− (𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦)]

⋅ 𝐿 (𝑥, 𝑦) 𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑝
1
⋅⋅⋅𝑝
𝑘

(𝑦) d𝑥𝑞1 ⋅ ⋅ ⋅ d𝑥𝑞𝑚−𝑘d𝑦𝑝1 ⋅ ⋅ ⋅ d𝑦𝑝𝑘

+

1

(𝑚 − 𝑘)! (𝑘!)
2
𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘

(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦)

⋅ 𝐿 (𝑥, 𝑦) 𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑝
1
⋅⋅⋅𝑝
𝑘

(𝑦) d𝑥𝑞1 ⋅ ⋅ ⋅ d𝑥𝑞𝑚−𝑘d𝑦𝑝1 ⋅ ⋅ ⋅ d𝑦𝑝𝑘 .

(25)

From (12), (3), and (7), we have that

∗
𝑥
𝜆
𝑘
(𝑥, 𝑦) =

1

(𝑚 − 𝑘)! (𝑘!)
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘

[(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑥)

− (𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦)] 𝐿 (𝑥, 𝑦)

⋅ 𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑝
1
⋅⋅⋅𝑝
𝑘

(𝑦) d𝑥𝑞1 ⋅ ⋅ ⋅ d𝑥𝑞𝑚−𝑘d𝑦𝑝1 ⋅ ⋅ ⋅ d𝑦𝑝𝑘

+

1

(𝑚 − 𝑘)!𝑘!

⋅ 𝛿
1⋅⋅⋅𝑚

𝑝
1
⋅⋅⋅𝑝
𝑘
𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘

𝐿 (𝑥, 𝑦) d𝑥𝑞1 ⋅ ⋅ ⋅ d𝑥𝑞𝑚−𝑘d𝑦𝑝1 ⋅ ⋅ ⋅ d𝑦𝑝𝑘

= 𝜏
𝑚−𝑘,𝑘

(𝑥, 𝑦) + (−1)
𝑘(𝑚−𝑘)

∗
𝑦
𝜆
𝑚−𝑘

(𝑥, 𝑦) ,

(26)

where 𝜏
𝑚−𝑘,𝑘

(𝑥, 𝑦) satisfies (20) on account of

(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑥) − (𝑎

𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦) = O (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
) (27)

and (8).
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Now we pass to show (21). With calculations analogue to
(26), we have that

∗
𝑥
d
𝑥
𝜆
𝑘
(𝑥, 𝑦) =

1

(𝑚 − 𝑘 − 1)! (𝑘!)
2
𝛿
1⋅⋅⋅𝑚

𝑗𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚

⋅ [(𝑎
𝑠𝑗

𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑥)

− (𝑎
𝑠𝑗

𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦)]

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑠

𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑖
1
⋅⋅⋅𝑖
𝑘

(𝑦)

⋅ d𝑥𝑖𝑘+2 ⋅ ⋅ ⋅ d𝑥𝑖𝑚d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 + 1

(𝑚 − 𝑘 − 1)! (𝑘!)
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚

(𝑎
𝑠𝑗

𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) (𝑦)

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑠

⋅ 𝑎
𝑠
1
⋅⋅⋅𝑠
𝑘
𝑖
1
⋅⋅⋅𝑖
𝑘

(𝑦) d𝑥𝑖𝑘+2 ⋅ ⋅ ⋅ d𝑥𝑖𝑚d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘

= 𝛾
󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) +

1

(𝑚 − 𝑘 − 1)!𝑘!

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚
𝑖
1
⋅⋅⋅𝑖
𝑘

𝑎
𝑠𝑗

(𝑦) ⋅

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑠

⋅ d𝑥𝑖𝑘+2 ⋅ ⋅ ⋅ d𝑥𝑖𝑚d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 ,

(28)

where 𝛾
󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) = O(|𝑥 − 𝑦|

1−𝑚

) thanks to (15) and (27).
Moreover,

∗
𝑦
d
𝑦
𝜆
𝑚−𝑘−1

(𝑥, 𝑦) =

1

𝑘! [(𝑚 − 𝑘 − 1)!]
2
𝛿
1⋅⋅⋅𝑚

𝑗𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘−1
𝑖
1
⋅⋅⋅𝑖
𝑘

⋅ (𝑎
𝑠𝑗

𝑎
𝑝
1
𝑞
1
⋅ ⋅ ⋅ 𝑎
𝑝
𝑚−𝑘−1
𝑞
𝑚−𝑘−1

) (𝑦)

⋅

𝜕

𝜕𝑦
𝑠
[𝐿 (𝑥, 𝑦) 𝑎

𝑠
1
⋅⋅⋅𝑠
𝑚−𝑘−1
𝑝
1
⋅⋅⋅𝑝
𝑚−𝑘−1

(𝑦)]

⋅ d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑚−𝑘−1d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 .

(29)

Arguing again as in (26) and taking Lemma 1 into account,
we get

∗
𝑦
d
𝑦
𝜆
𝑚−𝑘−1

(𝑥, 𝑦) =

(−1)
𝑘(𝑚−𝑘−1)

𝑘! (𝑚 − 𝑘 − 1)!

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗𝑖
1
⋅⋅⋅𝑖
𝑘
𝑠
1
⋅⋅⋅𝑠
𝑚−𝑘−1

𝑎
𝑠𝑗

(𝑦)

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑦
𝑠

⋅ d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑚−𝑘−1d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 + 1

𝑘! [(𝑚 − 𝑘 − 1)!]
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗𝑞
1
⋅⋅⋅𝑞
𝑚−𝑘−1
𝑖
1
⋅⋅⋅𝑖
𝑘

(𝑎
𝑠𝑗

𝑎
𝑝
1
𝑞
1
⋅ ⋅ ⋅ 𝑎
𝑝
𝑚−𝑘−1
𝑞
𝑚−𝑘−1

) (𝑦)

⋅ 𝐿 (𝑥, 𝑦)

𝜕

𝜕𝑦
𝑠
𝑎
𝑠
1
⋅⋅⋅𝑠
𝑚−𝑘−1
𝑝
1
⋅⋅⋅𝑝
𝑚−𝑘−1

(𝑦)

⋅ d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑚−𝑘−1d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘 = −

(−1)
𝑚𝑘

𝑘! (𝑚 − 𝑘 − 1)!

⋅ 𝛿
1⋅⋅⋅𝑚

𝑗𝑖
1
⋅⋅⋅𝑖
𝑘
𝑠
1
⋅⋅⋅𝑠
𝑚−𝑘−1

𝑎
𝑠𝑗

(𝑦)

⋅

𝜕𝐿 (𝑥, 𝑦)

𝜕𝑥
𝑠

d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑚−𝑘−1d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘

+

(−1)
𝑚𝑘

𝑘! (𝑚 − 𝑘 − 1)!

𝛿
1⋅⋅⋅𝑚

𝑗𝑖
1
⋅⋅⋅𝑖
𝑘
𝑠
1
⋅⋅⋅𝑠
𝑚−𝑘−1

𝑎
𝑠𝑗

(𝑦)

⋅ 𝑀 (𝑥, 𝑦) d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑚−𝑘−1d𝑦𝑖1 ⋅ ⋅ ⋅ d𝑦𝑖𝑘

+ 𝛾
󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) = (−1)

𝑚𝑘+1

∗
𝑥
d
𝑥
𝜆
𝑘
(𝑥, 𝑦)

+ 𝛾
󸀠󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) + 𝛾

󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) ,

(30)

where both 𝛾
󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) and 𝛾

󸀠󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) areO(|𝑥−𝑦|

2−𝑚

).
Then, we obtain the claim by setting

𝛾
𝑚−𝑘−1,𝑘

(𝑥, 𝑦)

= (−1)
𝑚𝑘

(𝛾
󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦) + 𝛾

󸀠󸀠󸀠

𝑚−𝑘−1,𝑘
(𝑥, 𝑦)) .

(31)

Finally, we prove (22). Thanks to (9) and (19), we have

𝛿
𝑥
𝜆
𝑘+1

(𝑥, 𝑦) = (−1)
𝑚−𝑘

∗
𝑥
d
𝑥
∗
𝑦
𝜆
𝑚−𝑘−1

(𝑥, 𝑦)

+ (−1)
𝑚𝑘+1

∗
𝑥
d
𝑥
𝜏
𝑚−𝑘−1,𝑘+1

(𝑥, 𝑦)

= (−1)
𝑚−𝑘

∗
𝑦
∗
𝑥
d
𝑥
𝜆
𝑚−𝑘−1

(𝑥, 𝑦)

+ 𝜖
󸀠

𝑘,𝑘+1
(𝑥, 𝑦) ,

(32)

where 𝜖󸀠
𝑘,𝑘+1

(𝑥, 𝑦) = O(|𝑥−𝑦|
2−𝑚

). Now, by using (21) and (8),
we get

𝛿
𝑥
𝜆
𝑘+1

(𝑥, 𝑦) = (−1)
𝑚−𝑘−𝑘𝑚+1

∗
𝑦
∗
𝑦
d
𝑦
𝜆
𝑘
(𝑥, 𝑦)

+ (−1)
𝑚−𝑘

∗
𝑦
𝛾
𝑘,𝑚−𝑘−1

(𝑥, 𝑦)

+ 𝜖
󸀠

𝑘,𝑘+1
(𝑥, 𝑦)

= d
𝑦
𝜆
𝑘
(𝑥, 𝑦) + 𝜖

𝑘,𝑘+1
(𝑥, 𝑦) ,

(33)

and hence the claim with

𝜖
𝑘,𝑘+1

(𝑥, 𝑦) = (−1)
𝑚−𝑘

∗
𝑦
𝛾
𝑘,𝑚−𝑘−1

(𝑥, 𝑦)

+ 𝜖
󸀠

𝑘,𝑘+1
(𝑥, 𝑦) .

(34)

Proposition 3. If 𝑢 ∈ 𝐶
2

𝑘
(𝑇), then

(𝛿d + d𝛿) 𝑢 = −𝐸𝑢 + 𝐹𝑢, (35)

where 𝐹 is a linear first-order differential operator whose
coefficients depend only on first- and second-order derivatives
of entries of the tensor 𝐴.
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In particular,

(𝛿
𝑥
d
𝑥
+ d
𝑥
𝛿
𝑥
) 𝜆
𝑘
(𝑥, 𝑦) = 𝐹

𝑥
[𝜆
𝑘
(𝑥, 𝑦)] , 𝑥 ̸= 𝑦. (36)

Proof. We begin by observing that

d𝛿𝑢 = (−1)
𝑚(𝑘+1)+1 d 1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚
𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘

𝜕

𝜕𝑥
𝑗
𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘

+ (−1)
𝑚(𝑘+1)+1 d 1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚
⋅ 𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝜕

𝜕𝑥
𝑗
(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
)

⋅ 𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 .

(37)

Since 𝐴 is symmetric and |𝐴| = 1, we get

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚

= 𝛿
𝑠
1
⋅⋅⋅𝑠
𝑘
ℎ
𝑘+1
⋅⋅⋅ℎ
𝑚

1⋅⋅⋅𝑚

(38)

and, keeping in mind (7), we get

d𝛿𝑢 = −

1

(𝑘 − 1)!𝑘!

𝛿
𝑠
1
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕

𝜕𝑥
𝑖
1

(𝑎
𝑗ℎ

⋅

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

) d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘

+ (−1)
𝑚(𝑘+1)+1

1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

⋅ 𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

⋅

𝜕

𝜕𝑥
𝑖
1

[𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚

𝜕

𝜕𝑥
𝑗
(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
)

⋅ 𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

] d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 .

(39)

On the other hand,

𝛿d𝑢 = (−1)
𝑚(𝑘+2)+1

1

(𝑚 − 𝑘 − 1)! (𝑘!)
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑞𝑗
𝑘+2
⋅⋅⋅𝑗
𝑚
𝑖
1
⋅⋅⋅𝑖
𝑘

𝑎
𝑝𝑞

𝑎
𝑖
𝑘+2
𝑗
𝑘+2

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
𝑗
𝑚
𝛿
1⋅⋅⋅𝑚

ℎℎ
1
⋅⋅⋅ℎ
𝑘
𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚

⋅

𝜕

𝜕𝑥
𝑝
(𝑎
𝑗ℎ

𝑎
𝑠
1
ℎ
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
ℎ
𝑘

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

) d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 .

(40)

Then,

d𝛿𝑢 + 𝛿d𝑢 = −

1

(𝑘 − 1)!𝑘!

𝛿
𝑠
1
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝑎
𝑗ℎ

𝜕
2

𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑖
1𝜕𝑥
𝑗
d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 + (−1)

𝑚(𝑘+2)+1
1

(𝑚 − 𝑘 − 1)! (𝑘!)
2
𝛿
1⋅⋅⋅𝑚

𝑞𝑗
𝑘+2
⋅⋅⋅𝑗
𝑚
𝑖
1
⋅⋅⋅𝑖
𝑘

⋅ 𝑎
𝑝𝑞

𝑎
𝑖
𝑘+2
𝑗
𝑘+2

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
𝑗
𝑚
⋅ 𝛿
1⋅⋅⋅𝑚

ℎℎ
1
⋅⋅⋅ℎ
𝑘
𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚

𝑎
𝑗ℎ

𝑎
𝑠
1
ℎ
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
ℎ
𝑘

𝜕
2

𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑝
𝜕𝑥
𝑗
d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 − 1

(𝑘 − 1)!𝑘!

𝛿
𝑠
1
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕𝑎
𝑗ℎ

𝜕𝑥
𝑖
1

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

⋅ d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 + (−1)
𝑚(𝑘+1)+1

1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚

⋅

𝜕

𝜕𝑥
𝑗
(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
)

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑖
1

d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 + (−1)
𝑚(𝑘+2)+1

1

(𝑚 − 𝑘 − 1)! (𝑘!)
2

⋅ 𝛿
1⋅⋅⋅𝑚

𝑞𝑗
𝑘+2
⋅⋅⋅𝑗
𝑚
𝑖
1
⋅⋅⋅𝑖
𝑘

𝑎
𝑝𝑞

𝑎
𝑖
𝑘+2
𝑗
𝑘+2

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
𝑗
𝑚
𝛿
1⋅⋅⋅𝑚

ℎℎ
1
⋅⋅⋅ℎ
𝑘
𝑖
𝑘+2
⋅⋅⋅𝑖
𝑚

𝜕

𝜕𝑥
𝑝
(𝑎
𝑗ℎ

𝑎
𝑠
1
ℎ
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
ℎ
𝑘
)

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 + (−1)
𝑚(𝑘+1)+1

⋅

1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝜕

𝜕𝑥
𝑖
1

(𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚
)

𝜕

𝜕𝑥
𝑗
(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
) 𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘

+ (−1)
𝑚(𝑘+1)+1

1

(𝑘 − 1)!𝑘! (𝑚 − 𝑘)!

𝛿
1⋅⋅⋅𝑚

ℎℎ
𝑘+1
⋅⋅⋅ℎ
𝑚
𝑖
𝑖2
⋅⋅⋅𝑖
𝑘

𝛿
1⋅⋅⋅𝑚

𝑗
1
⋅⋅⋅𝑗
𝑘
𝑖
𝑘+1
⋅⋅⋅𝑖
𝑚

𝑎
𝑗ℎ

𝑎
𝑖
𝑘+1
ℎ
𝑘+1

⋅ ⋅ ⋅ 𝑎
𝑖
𝑚
ℎ
𝑚

𝜕
2

𝜕𝑥
𝑖
1𝜕𝑥
𝑗
(𝑎
𝑠
1
𝑗
1
⋅ ⋅ ⋅ 𝑎
𝑠
𝑘
𝑗
𝑘
)

⋅ 𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖1d𝑥𝑖2 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 = −

1

𝑘!

𝜕

𝜕𝑥
𝑝
(𝑎
𝑗𝑝

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

) d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘 + 𝑚! − (𝑚 − 𝑘)!

𝑚!𝑘!

𝜕𝑎
𝑗𝑝

𝜕𝑥
𝑝

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘

−

𝑚! − (𝑚 − 𝑘)!

𝑚! (𝑘 − 1)!𝑘!

𝛿
𝑠
1
𝑠
2
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕𝑎
𝑗ℎ

𝜕𝑥
𝑖
1

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 − (𝑚 − 𝑘 + 1)!

𝑚! (𝑘 − 1) !
2
𝛿
𝑗𝑠
2
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕𝑎
𝑠
1
ℎ

𝜕𝑥
𝑗

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑖
1

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 + (𝑚 − 𝑘)!

𝑚! (𝑘 − 1)!𝑘!

𝛿
𝑗𝑠
2
⋅⋅⋅𝑠
𝑘

𝑖
1
𝑖
2
⋅⋅⋅𝑖
𝑘
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⋅

𝜕𝑎
𝑠
1
ℎ

𝜕𝑥
ℎ

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 − (𝑚 − 𝑘)!

𝑚! (𝑘 − 1) !
2
𝛿
𝑗𝑠
2
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕𝑎
𝑠
1
ℎ

𝜕𝑥
𝑖
1

𝜕𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

𝜕𝑥
𝑗

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘 − (𝑚 − 𝑘 + 1)!

𝑚! (𝑘 − 1)!

𝛿
𝑗𝑠
2
⋅⋅⋅𝑠
𝑘

ℎ𝑖
2
⋅⋅⋅𝑖
𝑘

𝜕
2

𝑎
𝑠
1
ℎ

𝜕𝑥
𝑖
1𝜕𝑥
𝑗
𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑖1 ⋅ ⋅ ⋅ d𝑥𝑖𝑘

= −

1

𝑘!

𝐸𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘 + 1

𝑘!

𝐹𝑢
𝑠
1
⋅⋅⋅𝑠
𝑘

d𝑥𝑠1 ⋅ ⋅ ⋅ d𝑥𝑠𝑘

(41)

and this proves (35). Finally, (36) follows from (35).

Finally, following Fichera we employ the parametrix 𝐿 to
construct a principal fundamental solution of the differential
operator 𝐸 (see [12]).

Lemma 4. There exists 𝜁(𝑥, 𝑦) such that the function

𝑆 (𝑥, 𝑦) = 𝐿 (𝑥, 𝑦) + 𝜁 (𝑥, 𝑦) , 𝑥 ∈ 𝑇, 𝑦 ∈ 𝑇, (42)

is a principal fundamental solution of 𝐸. In particular, we have

𝐸
𝑥
𝑆 (𝑥, 𝑦) = 0, 𝑥 ∈ 𝑇, 𝑦 ∈ 𝑇, 𝑥 ̸= 𝑦,

𝑆 (𝑥, 𝑦) = 0, 𝑥 ∈ 𝜕𝑇, 𝑦 ∈ 𝑇,

𝑆 (𝑥, 𝑦) = O (
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2−𝑚

) .

(43)

Moreover, for every 𝑥 ̸= 𝑦,

d
𝑥
𝜁 (𝑥, 𝑦) = O (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2−𝑚−𝛾

) (44)

for some 0 < 𝛾 ≤ 1.

Proof. Theexistence of 𝜁(𝑥, 𝑦) can be obtained as the solution
of a certain integral equation (see [12, §2]). In [12] properties
(43) are proved and 𝜁(𝑥, 𝑦) is written as

𝜁 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) + ∫

𝑇

𝐿 (𝑥, 𝑤) 𝑅 (𝑤, 𝑦) d𝑤, (45)

where 𝐺 is a smooth function on 𝑇 and, for some 0 < 𝛾 ≤ 1,

𝑅 (𝑤, 𝑦) = O (
󵄨
󵄨
󵄨
󵄨
𝑤 − 𝑦

󵄨
󵄨
󵄨
󵄨

1−𝑚−𝛾

) . (46)

Then, by (15),

d
𝑥
𝜁 (𝑥, 𝑦) = d

𝑥
𝐺 (𝑥, 𝑦) + ∫

𝑇

d
𝑥
𝐿 (𝑥, 𝑤) 𝑅 (𝑤, 𝑦) d𝑤

= O (
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨

2−𝑚−𝛾

) .

(47)

3. The Dirichlet Problem

In this section, we suppose that the domain Ω is such that
R𝑚 \ Ω is connected and such that its boundary Σ = 𝜕Ω is a
Lyapunov surface (i.e., Σ ∈ 𝐶

1,𝜆, 0 < 𝜆 ≤ 1).
By 𝑛(𝑦) = (𝑛

1
(𝑦), . . . , 𝑛

𝑚
(𝑦)), we denote the outwards

unit normal vector at the point 𝑦 ∈ Σ and by ](𝑦) =

(]
1
(𝑦), . . . , ]

𝑚
(𝑦))we denote the conormal vector at the point

𝑦 ∈ Σ associated with the operator 𝐸 and defined as ]
𝑖
(𝑦) =

𝑎
𝑖𝑗

(𝑦)𝑛
𝑗
(𝑦) (𝑖 = 1, . . . , 𝑚). By 𝜕𝑢/𝜕] we denote the conormal

derivative
𝜕𝑢

𝜕]
= 𝑎
𝑖𝑗

𝑛
𝑗

𝜕𝑢

𝜕𝑦
𝑖
. (48)

As usual, the symbols 𝐿
𝑝

(Σ) and 𝑊
1,𝑝

(Σ) (1 < 𝑝 <

+∞) stand for the classical Lebesgue and Sobolev spaces,
respectively.

By 𝐿
𝑝

𝑘
(Σ), we denote the space of all 𝑘-forms whose

components are 𝐿
𝑝 real-valued functions in a coordinate

system of class 𝐶
1 (and then in every coordinate system of

class 𝐶1).
We will look for the solution of the Dirichlet problem for

the operator 𝐸 in the domain Ω in the form of a simple layer
potential. To this end, we introduce the space S𝑝.

Definition 5. The function 𝑢 belongs toS𝑝 if and only if there
exists 𝜑 ∈ 𝐿

𝑝

(Σ) such that it can be represented by means of
a simple layer potential; that is,

𝑢 (𝑥) = ∫

Σ

𝜑 (𝑦) 𝑆 (𝑥, 𝑦) d𝜎
𝑦
, 𝑥 ∈ Ω. (49)

Specifically our aim is to give an existence and uniqueness
theorem for the Dirichlet problem

𝑢 ∈ S
𝑝

,

𝐸𝑢 = 0 in Ω,

𝑢 = 𝑓 on Σ, 𝑓 ∈ 𝑊
1,𝑝

(Σ) .

(50)

First, we prove the following formula.

Proposition 6. For any 𝑢 ∈ 𝑊
1,𝑝

(Σ),

𝜕

𝜕]
𝑧

(∫

Σ

𝑢 (𝑥)

𝜕

𝜕]
𝑥

𝐿 (𝑧, 𝑥) d𝜎
𝑥
) d𝜎
𝑧

= d
𝑧
∫

Σ

d𝑢 (𝑥) ∧ 𝜆
𝑚−2

(𝑧, 𝑥)

+ ∫

Σ

𝑢 (𝑥) ∧ 𝐹
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

− ∫

Σ

𝑢 (𝑥) ∧ 𝜂
𝑚−1

(𝑧, 𝑥) , 𝑧 ∈ Σ,

(51)

where 𝐹 is the linear first-order differential operator considered
in Proposition 3 and

𝜂
𝑚−1

(𝑧, 𝑥) = O (|𝑧 − 𝑥|
1−𝑚

) . (52)
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Proof. Set, for every 𝑧 ∉ Σ,

𝑈 (𝑧) = ∫

Σ

d𝑢 (𝑥) ∧ 𝜆
𝑚−2

(𝑧, 𝑥) ,

𝑉 (𝑧) = ∫

Σ

𝑢 (𝑥) ∧ d
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)] .

(53)

On account of (22) and (36), we get

d𝑈 (𝑧) = −∫

Σ

𝑢 (𝑥) ∧ d
𝑧
d
𝑥
[𝜆
𝑚−2

(𝑧, 𝑥)]

= −∫

Σ

𝑢 (𝑥) ∧ d
𝑧
𝛿
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

+ ∫

Σ

𝑢 (𝑥) ∧ d
𝑧
[𝜖
𝑚−2,𝑚−1

(𝑧, 𝑥)]

= ∫

Σ

𝑢 (𝑥) ∧ 𝛿
𝑧
d
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

− ∫

Σ

𝑢 (𝑥) ∧ 𝐹
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

+ ∫

Σ

𝑢 (𝑥) ∧ d
𝑧
[𝜖
𝑚−2,𝑚−1

(𝑧, 𝑥)]

= 𝛿𝑉 (𝑧) − ∫

Σ

𝑢 (𝑥) ∧ 𝐹
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

+ ∫

Σ

𝑢 (𝑥) ∧ 𝜂
𝑚−1

(𝑧, 𝑥)

(54)

and (52) follows from (23).
On the other hand, if 𝐴

𝚥̂

𝚤̂
is the minor of 𝐴

−1 obtained
deleting the 𝑖th row and the 𝑗th column, for 𝑧 ∈ Ω, 𝑥 ∈ Σ

we get

d
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)] = d
𝑧
𝐿 (𝑧, 𝑥)

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
𝑗

𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
d𝑧1 ⋅ ⋅ ⋅ 𝚤̂ ⋅ ⋅ ⋅ d𝑧𝑚d𝑥1 ⋅ ⋅ ⋅ 𝚥̂ ⋅ ⋅ ⋅ d𝑥𝑚

=

𝜕𝐿 (𝑧, 𝑥)

𝜕𝑧
𝑖

(−1)
𝑖−𝑗

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝐴
𝑗

𝑖
(𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚 (−1)

𝑗−1 d𝑥1 ⋅ ⋅ ⋅ 𝚥̂ ⋅ ⋅ ⋅ d𝑥𝑚

=

𝜕𝐿 (𝑧, 𝑥)

𝜕𝑧
𝑖

𝑎
𝑖𝑗

(𝑥) 𝑛
𝑗
(𝑥) d𝜎

𝑥
d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚 = −𝑎

𝑖𝑗

(𝑥)

⋅ 𝑛
𝑗
(𝑥)

𝜕𝐿 (𝑧, 𝑥)

𝜕𝑥
𝑖

d𝜎
𝑥
d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚

= −

𝜕𝐿 (𝑧, 𝑥)

𝜕]
𝑥

d𝜎
𝑥
d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚.

(55)

Therefore,

𝑉 (𝑧) = −∫

Σ

𝑢 (𝑥)

𝜕𝐿 (𝑧, 𝑥)

𝜕]
𝑥

d𝜎
𝑥
d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚

= 𝑉
0
(𝑧) d𝑧1 ⋅ ⋅ ⋅ d𝑧𝑚,

𝛿𝑉 (𝑧) = (−1)
𝑚(𝑚+1)+1

∗ d ∗ 𝑉 (𝑧) = − ∗ d𝑉
0
(𝑧)

= − ∗

𝜕𝑉
0
(𝑧)

𝜕𝑧
𝑗

d𝑧𝑗

= −

1

(𝑚 − 1)!

𝛿
1⋅⋅⋅𝑚

ℎ𝑘
2
⋅⋅⋅𝑘
𝑚

𝑎
𝑗ℎ

(𝑧)

𝜕𝑉
0
(𝑧)

𝜕𝑧
𝑗

d𝑧𝑘2 ⋅ ⋅ ⋅ d𝑧𝑘𝑚

= −𝑎
𝑗ℎ

(𝑧)

𝜕𝑉
0
(𝑧)

𝜕𝑧
𝑗

(−1)
ℎ−1 d𝑧1 ⋅ ⋅ ⋅ ̂ℎ ⋅ ⋅ ⋅ d𝑧𝑚

= −𝑎
𝑗ℎ

(𝑧) 𝑛
ℎ
(𝑧)

𝜕𝑉
0
(𝑧)

𝜕𝑧
𝑗

d𝜎
𝑧
= −

𝜕𝑉
0
(𝑧)

𝜕]
𝑧

d𝜎
𝑧
.

(56)

Then, if 𝑧 ∈ Σ,

lim
𝑧
󸀠
→𝑧

𝛿𝑉 (𝑧
󸀠

) = −

𝜕𝑉
0
(𝑧)

𝜕]
𝑧

d𝜎
𝑧

(57)

and this concludes the proof.

Remark 7. Wenote that (51) generalizes the following identity
(see [7] [8, Proposition 2.2]):

𝜕

𝜕𝑛
𝑧

(∫

Σ

𝑢 (𝑥)

𝜕

𝜕𝑛
𝑥

𝑠 (𝑧, 𝑥) d𝜎
𝑥
) d𝜎
𝑧

= d
𝑧
∫

Σ

d𝑢 (𝑥) ∧ 𝑠
𝑚−2

(𝑧, 𝑥) , 𝑢 ∈ 𝑊
1,𝑝

(Σ) ,

(58)

where 𝑠(𝑧, 𝑥) and 𝑠
𝑘
(𝑧, 𝑥) denote the fundamental solution

for Laplace equation and the double 𝑘-form associated with
𝑠(𝑧, 𝑥), respectively.

We recall that if 𝐵 and 𝐵 are two Banach spaces and 𝐶 :

𝐵 → 𝐵 is a continuous linear operator, we say that 𝐶 can be
reduced on the left if there exists a continuous linear operator
𝐶
󸀠

: 𝐵 → 𝐵 such that 𝐶󸀠𝐶 = 𝐼 + 𝐾, where 𝐼 stands for the
identity operator on𝐵 and𝐾 : 𝐵 → 𝐵 is compact. One of the
main properties of such operators is that equation𝐶𝛼 = 𝛽 has
a solution if and only if ⟨𝛾, 𝛽⟩ = 0 for any 𝛾 such that𝐶∗𝛾 = 0,
𝐶
∗ being the adjoint of 𝐶 (see [17, 18]).

Theorem 8. Let 𝐽 : 𝐿
𝑝

(Σ) → 𝐿
𝑝

1
(Σ) be the singular integral

operator defined as

𝐽𝜑 (𝑥) = ∫

Σ

𝜑 (𝑦) d
𝑥
[𝑆 (𝑥, 𝑦)] d𝜎

𝑦
,

𝜑 ∈ 𝐿
𝑝

(Σ) , 𝑥 ∈ Σ.

(59)

Then, 𝐽 can be reduced on the left by the operator 𝐽
󸀠

:

𝐿
𝑝

1
(Σ) → 𝐿

𝑝

(Σ):

𝐽
󸀠

𝜓 (𝑧) = ∗

Σ

∫

Σ

𝜓 (𝑥) ∧ d
𝑧
[𝜆
𝑚−2

(𝑧, 𝑥)] , 𝑧 ∈ Σ, (60)
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where the symbol ∗
Σ

means that if𝑤 = 𝑤
0
d𝜎 is an (𝑚−1)-form

on Σ, then ∗

Σ

𝑤 = 𝑤
0
.

Proof. We start with the observation that

𝐽𝜑 (𝑥) = ∫

Σ

𝜑 (𝑦) d
𝑥
[𝐿 (𝑥, 𝑦)] d𝜎

𝑦

+ ∫

Σ

𝜑 (𝑦) d
𝑥
[𝜁 (𝑥, 𝑦)] d𝜎

𝑦

= 𝐽𝜑 (𝑥) + 𝑍𝜑 (𝑥)

(61)

and then

𝐽
󸀠

𝐽𝜑 = 𝐽
󸀠

𝐽𝜑 + 𝐽
󸀠

𝑍𝜑. (62)

The operator 𝐽
󸀠

𝑍 is compact because of (44). Concerning
𝐽
󸀠

𝐽, keeping in mind Proposition 6 and setting 𝑢(𝑥) =

∫
Σ

𝜑(𝑦)𝐿(𝑥, 𝑦)d𝜎
𝑦
, we get

𝐽
󸀠

𝐽𝜑 (𝑧)

= ∗

Σ

∫

Σ

∫

Σ

𝜑 (𝑦) d
𝑥
[𝐿 (𝑥, 𝑦)] d𝜎

𝑦
∧ d
𝑧
[𝜆
𝑚−2

(𝑧, 𝑥)]

= ∗

Σ

∫

Σ

d𝑢 (𝑥) ∧ d
𝑧
[𝜆
𝑚−2

(𝑧, 𝑥)]

=

𝜕

𝜕]
𝑧

∫

Σ

𝑢 (𝑥)

𝜕

𝜕]
𝑥

𝐿 (𝑧, 𝑥) d𝜎
𝑥

− ∗

Σ

∫

Σ

𝑢 (𝑥) ∧ 𝐹
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)]

+ ∗

Σ

∫

Σ

𝑢 (𝑥) ∧ 𝜂
𝑚−1

(𝑧, 𝑥)

=

𝜕

𝜕]
𝑧

∫

Σ

𝑢 (𝑥)

𝜕

𝜕]
𝑥

𝐿 (𝑧, 𝑥) d𝜎
𝑥
+ 𝑄𝜑 (𝑧) .

(63)

Since 𝐹
𝑧
[𝜆
𝑚−1

(𝑧, 𝑥)] = O(|𝑧 − 𝑥|
1−𝑚

) and in view of (52),𝑄 is
a compact operator from 𝐿

𝑝

(Σ) into itself.
In view of the Stokes formula for 𝑢 and on account of

known properties of potentials (see, e.g., [6, p. 35]), we get

𝜕

𝜕]
𝑧

∫

Σ

𝑢 (𝑥)

𝜕

𝜕]
𝑥

𝐿 (𝑧, 𝑥) d𝜎
𝑥

=

𝜕

𝜕]
𝑧

[𝑢 (𝑧) + ∫

Σ

𝜕

𝜕]
𝑥

𝑢 (𝑥) 𝐿 (𝑧, 𝑥) d𝜎
𝑥
]

= (1 −

1

2

)

𝜕

𝜕]
𝑧

𝑢 (𝑧) + ∫

Σ

𝜕

𝜕]
𝑥

𝑢 (𝑥)

𝜕

𝜕]
𝑧

𝐿 (𝑧, 𝑥) d𝜎
𝑥

=

1

2

(−

1

2

𝜑 (𝑧) + ∫

Σ

𝜑 (𝑦)

𝜕

𝜕]
𝑧

𝐿 (𝑧, 𝑦) d𝜎
𝑦
)

+ ∫

Σ

[−

1

2

𝜑 (𝑥) + ∫

Σ

𝜑 (𝑦)

𝜕

𝜕]
𝑥

𝐿 (𝑥, 𝑦) d𝜎
𝑦
]

𝜕

𝜕]
𝑧

𝐿 (𝑧, 𝑥) d𝜎
𝑥

= −

1

4

𝜑 (𝑧) + ∫

Σ

𝜑 (𝑦) d𝜎
𝑦
∫

Σ

𝜕

𝜕]
𝑥

𝐿 (𝑥, 𝑦)

𝜕

𝜕]
𝑧

𝐿 (𝑧, 𝑥) d𝜎
𝑥
.

(64)

Then,

𝐽
󸀠

𝐽𝜑 (𝑧)

= −

1

4

𝜑 (𝑧)

+ ∫

Σ

𝜑 (𝑦) d𝜎
𝑦
∫

Σ

𝜕

𝜕]
𝑥

𝐿 (𝑥, 𝑦)

𝜕

𝜕]
𝑧

𝐿 (𝑧, 𝑥) d𝜎
𝑥

+ 𝑄𝜑 (𝑧) = −

1

4

𝜑 (𝑧) + 𝐾
2

𝜑 (𝑧) + 𝑄𝜑 (𝑧) .

(65)

Since 𝜕/𝜕]
𝑥
𝐿(𝑥, 𝑦) = O(|𝑥 − 𝑦|

1−𝑚+𝜆

), 𝐾 is a compact
operator.

Thus,

𝐽
󸀠

𝐽𝜑 = 𝐽
󸀠

𝐽𝜑 + 𝐽
󸀠

𝑍𝜑 = −

1

4

𝜑 + (𝐾
2

+ 𝑄 + 𝐽
󸀠

𝑍)𝜑 (66)

is a Fredholm operator and the assertion is proved.

Theorem 9. Given 𝜔 ∈ 𝐿
𝑝

1
(Σ), there exists a solution of the

singular integral equation

𝐽𝜑 (𝑥) = 𝜔 (𝑥) , 𝜑 ∈ 𝐿
𝑝

(Σ) , 𝑥 ∈ Σ (67)

if and only if

∫

Σ

𝛾 ∧ 𝜔 = 0 (68)

for every weakly closed form 𝛾 ∈ 𝐿
𝑞

𝑚−2
(Σ)(1/𝑝 + 1/𝑞 = 1).

Proof. Denote by 𝐽
∗

: 𝐿
𝑞

𝑚−2
(Σ) → 𝐿

𝑞

(Σ) the adjoint of 𝐽; that
is,

𝐽
∗

𝛾 (𝑥) = ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)] , 𝑥 ∈ Σ. (69)

FromTheorem 8, it follows that operator 𝐽 can be reduced on
the left; therefore, (67) admits a solution𝜑 ∈ 𝐿

𝑝

(Σ) if and only
if

∫

Σ

𝛾 ∧ 𝜔 = 0, ∀𝛾 ∈ 𝐿
𝑞

𝑚−2
(Σ) , 𝐽

∗

𝛾 = 0. (70)

On the other hand, 𝐽∗𝛾 = 0 if and only if 𝛾 is a weakly closed
form; that is,

∫

Σ

𝛾 ∧ d𝑔 = 0, ∀𝑔 ∈ 𝐶
∞

(R
𝑚

) . (71)

In fact, if

∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)] = 0, a.e. 𝑥 ∈ Σ, (72)

we have

∫

Σ

𝑝 (𝑥) d𝜎
𝑥
∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)] = 0,

∀𝑝 ∈ 𝐶
𝜆

(Σ)

(73)
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and then

0 = ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
∫

Σ

𝑝 (𝑥) 𝑆 (𝑥, 𝑦) d𝜎
𝑥
= ∫

Σ

𝛾 ∧ d𝑢 (74)

for any smooth solution 𝑢 of 𝐸𝑢 = 0 inΩ. Therefore, we have

∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)] = 0, ∀𝑥 ∈ 𝑇 \ Ω. (75)

Let us consider

𝑧 (𝑥) = ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)] , 𝑥 ∈ 𝑇. (76)

If V ∈ 𝐶
∞

(𝑇) and 𝜂 ∈ 𝐶
1

(Ω) ∩ 𝐶
2

(Ω) are such that 𝐸𝜂 = 𝐸V
in Ω and 𝜂 = 0 on Σ, we have

∫

Ω

𝑧𝐸V d𝑥 = ∫

Ω

𝑧𝐸𝜂 d𝑥

= ∫

Ω

𝐸𝜂 (𝑥) d𝑥∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)]

= ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
∫

Ω

𝐸𝜂 (𝑥) 𝑆 (𝑥, 𝑦) d𝑥.

(77)

From the Green formulas we have

∫

Ω

𝑆 (𝑥, 𝑦) 𝐸𝜂 (𝑥) d𝑥 = ∫

Σ

𝑆 (𝑥, 𝑦)

𝜕𝜂

𝜕]
(𝑥) d𝜎

𝑥
,

𝑦 ∈ Σ.

(78)

In view of (72), we find

∫

Ω

𝑧𝐸V d𝑥 = ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
∫

Ω

𝐸𝜂 (𝑥) 𝑆 (𝑥, 𝑦) d𝑥

= ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
∫

Σ

𝜕𝜂

𝜕]
(𝑥) 𝑆 (𝑥, 𝑦) d𝜎

𝑥

= ∫

Σ

𝜕𝜂

𝜕]
(𝑥) d𝜎

𝑥
∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)]

= 0.

(79)

We have proved that 𝑧 = 0 on Σ, 𝑧 = 0 in Ω, and then 𝑧 = 0

in 𝑇. Therefore,

0 = ∫

𝑇

𝑧𝐸𝜑 d𝑥 = ∫

𝑇

𝐸𝜑 d𝑥∫

Σ

𝛾 (𝑦) ∧ d
𝑦
[𝑆 (𝑥, 𝑦)]

= ∫

Σ

𝛾 (𝑦) ∧ d
𝑦
∫

𝑇

𝐸𝜑 (𝑥) 𝑆 (𝑥, 𝑦) d𝑥

= ∫

Σ

𝛾 (𝑦) ∧ d𝜑 (𝑦) ,

(80)

for any 𝜑 ∈

∘

𝐶
∞

(𝑇). This implies (71) and the theorem is
proved.

Lemma 10. For every 𝑓 ∈ 𝑊
1,𝑝

(Σ), there exists a solution of
the boundary value problem

𝑤 ∈ S
𝑝

,

𝐸𝑤 = 0 in Ω,

d𝑤 = d𝑓 on Σ.

(81)

Its solution 𝑤 is a simple layer potential (49) whose density 𝜑

solves 𝐽𝜑 = d𝑓 (see (59)).

Proof. Consider the following singular integral equation:

∫

Σ

𝜑 (𝑦) d
𝑥
[𝑆 (𝑥, 𝑦)] d𝜎

𝑦
= d𝑓 (𝑥) , 𝑥 ∈ Σ, (82)

in which the unknown is 𝜑 ∈ 𝐿
𝑝

(Σ) and the datum is
d𝑓 ∈ 𝐿

𝑝

1
(Σ). With conditions (68) being satisfied, in view of

Theorem 9 there exists a solution 𝜑 of (82).

Lemma 11. Let A be the eigenspace of the Fredholm integral
equation

−

1

2

𝜓 (𝑥) + ∫

Σ

𝜓 (𝑦)

𝜕

𝜕]
𝑥

𝑆 (𝑥, 𝑦) d𝜎
𝑦
= 0,

a.e. 𝑥 ∈ Σ.

(83)

The dimension ofA is 1.

Proof. The Fredholm equation (83) has the same number of
linearly independent solutions of the following equation:

−

1

2

𝛾 (𝑥) + ∫

Σ

𝛾 (𝑦)

𝜕

𝜕]
𝑦

𝑆 (𝑥, 𝑦) d𝜎
𝑦
= 0, a.e. 𝑥 ∈ Σ. (84)

Obviously, the constant functions are eigensolutions of (84).
We want to show that they are the only ones. Let 𝛾

1
and 𝛾
2
be

two linearly independent eigensolutions of (84) and set

𝑢
𝑖
(𝑥) = ∫

Σ

𝛾
𝑖
(𝑦) 𝑆 (𝑥, 𝑦) d𝜎

𝑦
, 𝑖 = 1, 2. (85)

We note that 𝛾
1
and 𝛾
2
are Hölder continuous functions.

With potentials 𝑢
𝑖
being smooth solutions of the problem

𝐸𝑢 = 0 in Ω,

𝜕𝑢

𝜕]+
= 0 on Σ,

(86)

we get 𝑢
𝑖
= 𝛼
𝑖
in Ω. Choose (𝑐

1
, 𝑐
2
) ̸= (0, 0) such that 𝑐

1
𝛼
1
+

𝑐
2
𝛼
2
= 0 and set

𝑢 (𝑥) = ∫

Σ

(𝑐
1
𝛾
1
(𝑦) + 𝑐

2
𝛾
2
(𝑦)) 𝑆 (𝑥, 𝑦) d𝜎

𝑦
. (87)

Since 𝑢 = 𝑐
1
𝛼
1
+ 𝑐
2
𝛼
2

= 0 in Ω, 𝑢 satisfies the following
boundary value problem:

𝐸𝑢 = 0 in 𝑇 \ Ω,

𝑢 = 0 on Σ,

𝑢 = 0 on 𝜕𝑇.

(88)

By Green’s formula, 𝑢 = 0 in 𝑇 \ Ω and therefore 𝑢 = 0 in 𝑇.
This implies 𝑐

1
𝛾
1
+ 𝑐
2
𝛾
2
= 0, which is a contradiction.
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Lemma 12. Given 𝑐 ∈ R, there exists a solution of the following
boundary value problem:

V ∈ S
𝑝

,

𝐸V = 0 in Ω,

V = 𝑐 on Σ.

(89)

It is given by

V (𝑥) = 𝑐∫

Σ

𝜓
0
(𝑦) 𝑆 (𝑥, 𝑦) d𝜎

𝑦
, 𝑥 ∈ Ω, (90)

where 𝜓
0
is the unique element ofA such that

∫

Σ

𝜓
0
(𝑦) 𝑆 (𝑥, 𝑦) d𝜎

𝑦
= 1, ∀𝑥 ∈ Ω. (91)

Proof. Let 𝜓 ∈ A, 𝜓 ̸= 0. Setting

𝑃𝜓 (𝑥) = ∫

Σ

𝜓 (𝑦) 𝑆 (𝑥, 𝑦) d𝜎
𝑦

(92)

we have that 𝑃𝜓 = 𝑐 inΩ. As in Lemma 11, this implies that if
𝑐 = 0, we have that 𝜓 = 0. Then, 𝑐 ̸= 0. Function 𝜓

0
= (1/𝑐)𝜓

satisfies (91) and V given by (90) is solution of (89).

Theorem 13. TheDirichlet problem (50) has a unique solution
for every 𝑓 ∈ 𝑊

1,𝑝

(Σ). In particular, the density 𝜑 of 𝑢 can be
written as 𝜑 = 𝜑

0
+ 𝜓, where 𝜑

0
solves the singular integral

system

∫

Σ

𝜑
0
(𝑦) d
𝑥
[𝑆 (𝑥, 𝑦)] d𝜎

𝑦
= d𝑓 (𝑥) , a.e. 𝑥 ∈ Σ (93)

and 𝜓 ∈ A.

Proof. Let𝑤 be a solution of the boundary value problem (81).
Since d𝑤 = d𝑓 on Σ,𝑤 = 𝑓−𝑐 on Σ for some 𝑐 ∈ R. Function
𝑢 = 𝑤 + V, where V is given by (90), solves problem (50).

Consider now two solutions of the same problem (50):

𝑢 (𝑥) = ∫

Σ

𝜑 (𝑦) 𝑆 (𝑥, 𝑦) d𝜎
𝑦
,

𝑢
󸀠

(𝑥) = ∫

Σ

𝜑
󸀠

(𝑦) 𝑆 (𝑥, 𝑦) d𝜎
𝑦
.

(94)

Therefore, the potential

V (𝑥) = ∫

Σ

𝜓 (𝑦) 𝑆 (𝑥, 𝑦) d𝜎
𝑦
, (95)

where 𝜓 = 𝜑 − 𝜑
󸀠, solves the problem

V ∈ S
𝑝

,

𝐸V = 0 in Ω,

V = 0 on Σ.

(96)

Since

∫

Σ

𝜓 (𝑦) d
𝑥
[𝑆 (𝑥, 𝑦)] d𝜎

𝑦
= 0 on Σ, (97)

we have 𝐽
󸀠

𝐽𝜓 = 0 (see (66)). By standard arguments, 𝜓 is
Hölder continuous and then V ∈ 𝐶

0

(Ω) ∩ 𝐶
2

(Ω). The weak
maximum principle (see, e.g., [19, p. 32]) shows that V = 0 in
Ω; that is, 𝑢 = 𝑢

󸀠.

We end this section by observing that when we study the
Dirichlet problem (50), we need to solve the singular integral
equation 𝐽𝜑 = d𝑓, 𝜑 ∈ 𝐿

𝑝

(Σ). We have proved that this
equation can be reduced to a Fredholm one by means of the
operator 𝐽

󸀠. This reduction is not an equivalent reduction in
the usual sense (see, e.g., [18, pp. 19-20]); that is, it is not true
that N(𝐽

󸀠

) = {0}, N(𝐽
󸀠

) being the kernel of the operator 𝐽
󸀠.

However, if the condition

N (𝐽
󸀠

𝐽) = N (𝐽) (98)

is true, 𝐽󸀠 still provides equivalence in a certain sense. In fact,
we have the following lemma.

Lemma 14. If condition (98) holds, the singular integral
equation (82) is equivalent to the Fredholm equation 𝐽

󸀠

𝐽𝜑 =

𝐽
󸀠d𝑓.

Proof. Condition (98) implies that if𝑔 is such that there exists
a solution 𝜑 of the equation 𝐽𝜑 = 𝑔, then this equation is
satisfied if and only if 𝐽󸀠𝐽𝜑 = 𝐽

󸀠

𝑔. Since the equation 𝐽𝜑 = d𝑓
is solvable (see Lemma 10), we have that 𝐽𝜑 = d𝑓 if and only
if 𝐽󸀠𝐽𝜑 = 𝐽

󸀠d𝑓.

Condition (98) is satisfied, for example, if the differential
operator 𝐸 has constant coefficients. This can be proved
as in [20, Remark 1, p. 1045], replacing the Laplacian and
the normal derivative by 𝐸 and the conormal derivative,
respectively.
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