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We introduce infinite matrix products including some of their main properties and convergence results. We apply them in order to
extend to the matrix scenario the definition of the scalar gamma function given by an infinite product due to Weierstrass. A limit
representation of the matrix gamma function is also provided.

1. Introduction

Scalar special functions play a significant role in applied
mathematics, Physics, engineering, economics, and industry.
From a mathematical point of view, many special functions
have been introduced for describing the solutions of certain
second-order differential equations [1]. They also appear in
connection with orthogonal polynomials and their fruitful
applications in Physics, particularly in the theory of Lie
groups and Lie algebras [2, 3]. During the last few decades
numerous contributions have focused on generalizing the
well-developed scalar theory on special functions to their
matrix analogous counterpart and this extension continues
being an active area under research [4–6].

Among special functions, the gamma function plays a
distinguished role due to its ubiquity in mathematics. The
gamma function appears in areas as seemingly different as
Number Theory (it generalizes the concept of factorial for
complex numbers), probability (takes part in the definition
of relevant probability density functions like the gamma
distribution and some of its recent generalizations [7]),
and differential equations (appears in solving significant
continuous models like the Bessel equation) and recently
it has been used as a cornerstone to develop the fractional
calculus since it permits expressing the fractional derivative
of certain functions including the potential-type functions.

Although the scalar gamma function possesses several
representations, its integral form is the most widely used
one. It has done that matrix generalizations of the gamma
function had mainly focused on integral expressions. In this
sense, some relevant contributions focussing on the integral
generalization to the matrix scenario of the gamma function
and its properties including its relationship with other special
functions and statistical counterpart have beenmade recently
[8, 9]. Apart from the aforementioned integral representation
of the gamma function, it can also be expressed by an infinite
product. Such representation, due to Weierstrass, plays a
prominent role in dealing with other special functions such
as the digamma or more generally polygamma functions
closely related to numerous problems that appear in Num-
ber Theory [10]. This fact motivates the extension to the
matrix framework of theWeierstrass definition to the gamma
function which, in addition, entails the generalization of
some required results related to infinite matrix products.
Some interesting results regarding matrix infinite products
are available (see, e.g., [11–13]); to the best of our knowledge,
none of them includes the ones that will be presented in
Section 3.

The aim of this paper is to introduce infinite matrix
products and their main properties and convergence results,
with our main focus to extend the gamma function defined
by Weierstrass as an infinite product to the matrix scenario.
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Taking advantage of such definition we also provide a limit
representation of the matrix gamma function. With these
benefits, it is hoped that our approach provides an alternative
method to the existing ones that may open up new avenues
to the use of the matrix gamma function in practical applica-
tions.

The paper is organized as follows. Section 2 summarizes
the main results and definitions that will be used throughout
the paper. Section 3 introduces infinite matrix products and
some relevant results regarding their convergence.Thematrix
extension of the scalar definition of the gamma function
due to Weierstrass through an infinite product is presented
in Section 4. A limit representation of the matrix gamma
function is also included in this section. Conclusions are
drawn in Section 5.

2. Preliminaries

As we mentioned in the previous section, our goal is twofold:
first, we pursue extending from the scalar framework the
main results for matrix infinite products and, second, apply-
ing them in order to generalize the classical definition of the
gamma function due to Weierstrass in the matrix case. The
scalar gamma function given by Weierstrass is defined as

1

Γ (𝑧)
= 𝑧𝑒
𝛾𝑧

∞

∏

𝑛=1

[(1 +
𝑧

𝑛
) 𝑒
−𝑧/𝑛

] , 𝑧 ∈ C, (1)

where 𝛾 is the Euler-Mascheroni constant given by

𝛾 = lim
𝑛→∞

(𝐻𝑛 − ln 𝑛) ≈ 0.5772, 𝐻𝑛 =

𝑛

∑

𝑘=1

1

𝑘
. (2)

For the sake of clarity in the presentation, in the following
we summarize the main definitions and results that will be
used throughout the paper (see [14, 15] for further details).
The set of all the square matrices of size 𝑟 whose entries are
complex numbers will be denoted by C𝑟×𝑟.

Definition 1. Given𝐶 ∈ C𝑟×𝑟, the spectrum of𝐶 is the set of all
eigenvalues of 𝐶 and it is denoted by 𝜎(𝐶). The number 𝑟(𝐶)
given by 𝑟(𝐶) = max{|𝜆| : 𝜆 ∈ 𝜎(𝐶)} is called the spectral
radius of 𝐶.

Definition 2. The associated 2-norm of a matrix 𝐶 ∈

C𝑟×𝑟, denoted by ‖𝐶‖, is defined by the following: ‖𝐶‖ =

sup
𝑥 ̸=0

(‖𝐶𝑥‖2/‖𝑥‖2), where 𝑥 ∈ C𝑟 and ‖𝑥‖2 is the usual
Euclidean norm of 𝑥.

The following relationship between the spectral radius
and the 2-norm is well known: 𝑟(𝐶) ≤ ‖𝐶‖.

The following result will be used later. We omit its proof
because it is a direct consequence of the definition of the
spectrum of a matrix.

Proposition 3. Let 𝐴 ∈ C𝑟×𝑟 and 𝐼 ∈ C𝑟×𝑟 be the identity
matrix; then 𝐼+𝐴 is invertible inC𝑟×𝑟 if and only if −1 ∉ 𝜎(𝐴).

The following result permits extending the concept of
Taylor series to a function of matrices.

Proposition 4 (Th. 11.2.3 of [15, pages 549-550]). If 𝑓(𝑧) has
a power series representation on an open disk which contains
the spectrum of 𝐴, that is,

𝑓 (𝑧) =

∞

∑

𝑛=0

𝑐𝑛𝑧
𝑛
,

𝑧 ∈ 𝐷𝛿 = {𝑧 ∈ C : |𝑧| < 𝛿} : 𝜎 (𝐴) ⊂ 𝐷𝛿,

(3)

then

𝑓 (𝐴) =

∞

∑

𝑛=0

𝑐𝑛𝐴
𝑛
. (4)

As a direct consequence of the previous results one gets
the following.

Proposition 5. Let 𝐴 ∈ C𝑟×𝑟 such that ‖𝐴‖ < 1. Then

ln (𝐼 + A) =
∞

∑

𝑛=1

(−1)
𝑛−1

𝑛
𝐴
𝑛
, (5)

where ln(⋅) denotes the logarithmic function in the natural
base 𝑒.

Throughout this paper the exponential of a square matrix
is defined as usual [15]:

𝑒
𝐴
=

∞

∑

𝑛=0

𝐴
𝑛

𝑛!
, 𝐴 ∈ C

𝑟×𝑟
. (6)

From this definition one gets 𝑒
𝑂

= 𝐼, where 𝑂 and 𝐼

denote the null and identity matrices in C𝑟×𝑟, respectively.
The following algebraic identity that will be used later can be
proven easily from representation (6).

Proposition 6. Let 𝐴, 𝐵 ∈ C𝑟×𝑟 be such that 𝐴 and 𝐵

commute. Then

𝑒
𝐴+𝐵

= 𝑒
𝐴
𝑒
𝐵
. (7)

3. Infinite Matrix Products

In this section we first extend to the matrix framework the
definition of convergence to an infinite product of square
matrices. We then establish some results related to the con-
vergence of infinite matrix products. These results generalize
their scalar counterpart including a characterization of the
absolute convergence of infinite matrix products in terms of
the associated logarithmic matrix series which is particularly
useful in practice.

Definition 7. Let {𝐴𝑛}
∞

𝑛=1
be a sequence of matrices in C𝑟×𝑟

and consider the finite matrix product:

𝑃𝑛 =

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘) = (𝐼 + 𝐴1) (𝐼 + 𝐴2) ⋅ ⋅ ⋅ (𝐼 + 𝐴𝑛) , (8)

where 𝐼 ∈ C𝑟×𝑟 denotes the identity matrix. If the limit
lim𝑛→∞𝑃𝑛 exists and its value is an invertible matrix denoted
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by 𝑃 ∈ C𝑟×𝑟, we say that the infinite matrix product∏𝑛
𝑘=1

(𝐼 +

𝐴𝑘) exists and the matrix 𝑃 is its value. Then, we write
∞

∏

𝑛=1

(𝐼 + 𝐴𝑛) = 𝑃. (9)

𝑃𝑛 in (8) is referred to as the 𝑛th partial product, and 𝐼 + 𝐴𝑛

in (9) is called the general term of the infinite product.

Remark 8. Notice that taking determinants in (9) since 𝑃 is
invertible by the continuity of the determinant function there
exists 𝑛0 such that det(𝑃𝑛) ̸= 0 ∀𝑛 ≥ 𝑛0. Thus in (9) there are
at most a finite number of singular factors. In such case if the
rest of the product converges to an invertible matrix we say
that the original product converges to the null matrix. This
motivates the fact that in the following we will not consider
infinite products with an infinite number of singular factors.
In the case that only a finite number of factors are singular,
we will discard them from the matrix product and we will
deal with the rest of the infinite matrix product. Then, in
accordance with Proposition 3 and without loss of generality,
this is equivalent to assume in the context of Definition 7 that
−1 ∉ 𝜎(𝐴𝑛), ∀𝑛 ≥ 1.

Now we will establish the following necessary condition
for the convergence of an infinite matrix product which is
analogous to the corresponding one for infinite series.

Theorem 9. Let {𝐴𝑛}
∞

𝑛=1
be a sequence of matrices in C𝑟×𝑟. If

the infinite matrix product∏∞
𝑛=1

(𝐼 + 𝐴𝑛) exists, then

lim
𝑛→∞

𝐴𝑛 = 0 ∈ C
𝑟×𝑟

. (10)

Proof. First, we deal with the case that −1 ∉ 𝜎(𝐴𝑛), ∀𝑛 ≥ 1;
that is, there are no singular terms among the factors of the
infinite product. By assumption ∏

∞

𝑛=1
(𝐼 + 𝐴𝑛) exists; hence

we can define 𝑃 as

𝑃 =

∞

∏

𝑛=1

(𝐼 + 𝐴𝑛) = lim
𝑛→∞

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘) . (11)

Thus, taking into account the continuity of the inverse
function 𝑥

−1 as well as the inverse of a finite product of
invertible matrices, one gets

𝐼 = 𝑃
−1
𝑃 = [ lim

𝑛→∞

𝑛−1

∏

𝑘=1

(𝐼 + 𝐴𝑘)]

−1

⋅ [ lim
𝑛→∞

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘)] = lim
𝑛→∞

[

𝑛−1

∏

𝑘=1

(𝐼 + 𝐴𝑘)]

−1

⋅ lim
𝑛→∞

[

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘)]

= lim
𝑛→∞

{

{

{

[

𝑛−1

∏

𝑘=1

(𝐼 + 𝐴𝑘)]

−1

[

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘)]

}

}

}

= lim
𝑛→∞

{(𝐼 + 𝐴𝑛−1)
−1
(𝐼 + 𝐴𝑛−2)

−1
⋅ ⋅ ⋅ (𝐼 + 𝐴1)

−1
}

⋅ {(𝐼 + 𝐴1) ⋅ ⋅ ⋅ (𝐼 + 𝐴𝑛−1) (𝐼 + 𝐴𝑛)}

= lim
𝑛→∞

(𝐼 + 𝐴𝑛) = 𝐼 + lim
𝑛→∞

𝐴𝑛.

(12)

So we have shown that 𝐼 = 𝐼 + lim𝑛→∞𝐴𝑛; therefore
lim𝑛→∞𝐴𝑛 = 0 ∈ C𝑟×𝑟. If there are singular factors in
the matrix infinite product, we discard them and repeat the
previous argument.

3.1. Associated Matrix Logarithm Series. To every infinite
matrix product we can associate an infinite matrix series
whose terms are logarithms. In the following result, we prove
that both the infinite product and series have the same
character. As a consequence, the character of an infinite
matrix product can be studied by means of an infinite matrix
series for which a considerable number of well-established
tests are available.

Theorem 10. Let {𝐴𝑛}
∞

𝑛=1
be a sequence of matrices in C𝑟×𝑟

such that 𝐴𝑛𝐴𝑚 = 𝐴𝑚𝐴𝑛 for every 𝑛,𝑚 ≥ 1. Then
∞

∏

𝑛=1

(𝐼 + 𝐴𝑛) ,

∞

∑

𝑛=1

ln (𝐼 + 𝐴𝑛)

(13)

have the same character; that is, both converge or diverge.

Proof. Since we are assuming that −1 ∉ 𝜎(𝐴𝑛), ∀𝑛 ≥ 1 (see
Remark 8), every matrix term of the form 𝐼 +𝐴𝑛 is invertible
and its logarithm exists [16]. If the infinite matrix product has
(a finite number of) singular factors, we remove them.

Let us denote by 𝑆𝑛 and 𝑃𝑛 the partial sum and the partial
product of (13), respectively:

𝑆𝑛 =

𝑛

∑

𝑘=1

ln (𝐼 + 𝐴𝑘) ,

𝑃𝑛 =

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘) .

(14)

Using Proposition 6 (since 𝐼+𝐴𝑛 and 𝐼+𝐴𝑛 commute because
𝐴𝑛 and 𝐴𝑚 also do by hypothesis),

𝑒
𝑆
𝑛

= 𝑒
∑
𝑛

𝑘=1
ln(𝐼+𝐴

𝑘
)
= 𝑒

ln(𝐼+𝐴
1
)
𝑒
ln(𝐼+𝐴

2
)
⋅ ⋅ ⋅ 𝑒

ln(𝐼+𝐴
𝑛
)

= (𝐼 + 𝐴1) (𝐼 + 𝐴2) ⋅ ⋅ ⋅ (𝐼 + 𝐴𝑛) =

𝑛

∏

𝑘=1

(𝐼 + 𝐴𝑘)

= 𝑃𝑛.

(15)

Then 𝑒
𝑆
𝑛 = 𝑃𝑛. Taking limits when 𝑛 → ∞ one gets

lim
𝑛→∞

𝑒
𝑆
𝑛

= lim
𝑛→∞

𝑃𝑛. (16)

Since

lim
𝑛→∞

𝑒
𝑆
𝑛

= 𝑒
lim
𝑛→∞
𝑆
𝑛

, (17)
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we conclude

𝑒
lim
𝑛→∞
𝑆
𝑛

= lim
𝑛→∞

𝑃𝑛. (18)

Therefore 𝑃𝑛 has a limit if and only if 𝑆𝑛 has a limit. Thus
∏
∞

𝑛=1
(𝐼+𝐴𝑛) and∑

∞

𝑛=1
ln(𝐼+𝐴𝑛)have the same character.

Remark 11. Notice that from (18) we conclude that 𝑃𝑛

approaches an invertible matrix since the exponential matrix
is invertible, as it was required in the definition of conver-
gence of an infinite product where all the singular factors are
assumed to be previously removed.

3.2. Absolute Convergence. Onaccount ofTheorem 10, we can
define the absolute convergence of an infinite matrix product
in terms of the associated series of matrix logarithms. For it,
we remember again that we assume that the infinite matrix
product ∏∞

𝑛=1
(𝐼 + 𝐴𝑛) has had its singular factors, if any,

deleted.

Definition 12. One says that the infinite matrix product
∏
∞

𝑛=1
(𝐼+𝐴𝑛) is absolutely convergent if and only if the infinite

matrix series ∑∞
𝑛=1

ln(𝐼 + 𝐴𝑛) is absolutely convergent.

The following result shows that convergence absolute of
an infinite matrix product can be characterized in terms of
the absolute convergence of an infinite matrix series.

Theorem 13. Let {𝐴𝑛}
∞

𝑛=1
be a sequence of matrices in C𝑟×𝑟

such that 𝐴𝑛𝐴𝑚 = 𝐴𝑚𝐴𝑛 for every 𝑛,𝑚 ≥ 1. Then ∏
∞

𝑛=1
(𝐼 +

𝐴𝑛) absolutely converges if and only if ∑∞
𝑛=1

𝐴𝑛 absolutely
converges.

Proof. Taking into accountDefinition 12, it is enough to prove
that ∑∞

𝑛=1
ln(𝐼 + 𝐴𝑛) is absolutely convergent if and only if

∑
∞

𝑛=1
𝐴𝑛 is absolutely convergent; that is,

∞

∑

𝑛=1

ln (𝐼 + 𝐴𝑛)
 < ∞ ⇐⇒

∞

∑

𝑛=1

𝐴𝑛
 < ∞.

(19)

Let us prove both implications simultaneously. Since∏∞
𝑛=1

(𝐼+

𝐴𝑛) and ∑
∞

𝑛=1
‖𝐴𝑛‖ are convergent, then using Theorem 9 in

the product case and the necessary convergence condition for
matrix series, one gets

lim
𝑛→∞

𝐴𝑛 = 0 ∈ C
𝑟×𝑟

. (20)

Then, there exists 𝑛0 ∈ N, such that ‖𝐴𝑛‖ < 1/2 for all 𝑛 > 𝑛0.
As a consequence, by Proposition 5, the following logarithmic
matrix function is well defined:

ln (𝐼 + 𝐴𝑛) =

∞

∑

𝑘=1

(−1)
𝑘−1

𝑘
(𝐴𝑛)
𝑘
,

∀𝑛 > 𝑛0 :
𝐴𝑛

 <
1

2
.

(21)

Then, for each 𝑛 > 𝑛0 such that ‖𝐴𝑛‖ < 1/2, applying
the triangle inequality and submultiplicativity of the matrix
norm, one gets



ln (𝐼 + 𝐴𝑛)


𝐴𝑛


−1
− 1



=





∞

∑

𝑘=1

(−1)
𝑘−1

𝑘
(𝐴𝑛)
𝑘



𝐴𝑛


−1
− 1



≤



(

∞

∑

𝑘=1

𝐴𝑛


𝑘

𝑘
)
𝐴𝑛



−1
− 1



=



(

∞

∑

𝑘=1

𝐴𝑛


𝑘−1

𝑘
) − 1



=



∞

∑

𝑘=2

𝐴𝑛


𝑘−1

𝑘



=



∞

∑

𝑘=1

𝐴𝑛


𝑘

𝑘 + 1



≤

∞

∑

𝑘=1

1

𝑘 + 1
(
1

2
)

𝑘

<

∞

∑

𝑘=1

1

2
(
1

2
)

𝑘

=

∞

∑

𝑘=1

(
1

2
)

𝑘+1

=
1/4

1 − 1/2
=
1

2
.

(22)

Therefore we have proven that



ln (𝐼 + 𝐴𝑛)


𝐴𝑛


−1
− 1


<
1

2
, ∀𝑛 > 𝑛0; (23)

that is,

1

2
<

ln (𝐼 + 𝐴𝑛)


𝐴𝑛


<
3

2
, ∀𝑛 > 𝑛0. (24)

On one hand, this leads to

ln (𝐼 + 𝐴𝑛)
 <

3
𝐴𝑛



2
, ∀𝑛 > 𝑛0.

(25)

If we assume that ∑∞
𝑛=1

‖𝐴𝑛‖ converges using a comparison
test for positive numerical series we obtain that ∑∞

𝑛=1
‖ln(𝐼 +

𝐴𝑛)‖ converges. This proves the converse implication in (19).
On the other hand, from (24) one gets

𝐴𝑛


ln (𝐼 + 𝐴𝑛)


< 2, ∀𝑛 > 𝑛0; (26)

that is,

𝐴𝑛


< 2


ln (𝐼 + 𝐴𝑛)


, ∀𝑛 > 𝑛0. (27)

If we assume that∑∞
𝑛=1

‖ln(𝐼 + 𝐴𝑛)‖ converges, then again by
a comparison test for positive numerical series we show that
∑
∞

𝑛=1
‖𝐼 + 𝐴𝑛‖ converges, and the result is established.

Remark 14. Because of Theorems 10 and 13, it follows at once
that an infinitematrix product which is absolutely convergent
is also convergent since this property holds for matrix series.

Example 15. The infinite matrix product ∏∞
𝑛=1

(𝐼 + (1/(𝑛 +

1)(𝑛 + 3))𝐼) is absolutely convergent. Notice that matrices
𝐼+𝐴𝑛with𝐴𝑛 = (1/(𝑛+1)(𝑛+3))𝐼 satisfy that𝐴𝑛𝐴𝑚 = 𝐴𝑚𝐴𝑛
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for every 𝑛,𝑚 ≥ 1. In addition, none of the factors of the
product is a singular matrix since

− 1 ∉ 𝜎 (𝐴𝑛) = {𝜆𝑛 : 𝜆𝑛 =
1

(𝑛 + 1) (𝑛 + 3)
̸= −1} ,

∀𝑛 ≥ 1.

(28)

Using Theorem 13 is enough to show that the matrix series
∑
∞

𝑛=1
(1/(𝑛 + 1)(𝑛 + 3))𝐼 is absolutely convergent. In fact,

∞

∑

𝑛=1



1

(𝑛 + 1) (𝑛 + 3)
𝐼



=

∞

∑

𝑛=1

1

(𝑛 + 1) (𝑛 + 3)
<

∞

∑

𝑛=1

1

𝑛
2

< ∞.

(29)

Moreover, it is easy to compute the value of the infinite
product. For it, notice that

𝑃𝑛 =

𝑛

∏

𝑘=1

(𝐼 +
1

(𝑘 + 1) (𝑘 + 3)
𝐼)

=

𝑛

∏

𝑘=1

(
(𝑘 + 1) (𝑘 + 3) + 1

(𝑘 + 1) (𝑘 + 3)
𝐼)

=

𝑛

∏

𝑘=1

(𝑘 + 2)
2

(𝑘 + 1) (𝑘 + 3)
𝐼

=
[3 ⋅ 4 ⋅ 5 ⋅ ⋅ ⋅ (𝑛 + 2)]

2

[2 ⋅ 3 ⋅ 4 ⋅ ⋅ ⋅ (𝑛 + 1)] [4 ⋅ 5 ⋅ 6 ⋅ ⋅ ⋅ (𝑛 + 3)]
𝐼

=
𝑛 + 2

2
⋅

3

𝑛 + 3
𝐼.

(30)

Then,
∞

∏

𝑛=1

(𝐼 +
1

(𝑛 + 1) (𝑛 + 3)
𝐼) = lim
𝑛→∞

𝑃𝑛

= lim
𝑛→∞

3 (𝑛 + 2)

2 (𝑛 + 3)
𝐼 =

3

2
𝐼.

(31)

Let us observe that the necessary condition of convergence
for the infinite matrix product holds, since lim𝑛→∞(1/(𝑛 +

1)(𝑛 + 3))𝐼 = 0 ∈ C𝑟×𝑟.

3.3. Uniform Convergence. In this section we introduce the
concept of uniform convergence of an infinite matrix prod-
uct, which plays a significant role in dealing with matrix
functions defined by infinite products such as the matrix
gamma function.

Definition 16. Let one assume that the factors of the matrix
product depend on a complex variable 𝑧 and denote by 𝑅 a
region of the complex plane C. If this product converges in
such away that given any 𝜖 > 0 there exist 𝑛0 ∈ N independent
of 𝑧, for all 𝑧 ∈ 𝐷, such that



𝑛
0
+𝑝

∏

𝑘=1

(𝐼 + 𝐴𝑛 (𝑧)) −

𝑛
0

∏

𝑘=1

(𝐼 + 𝐴𝑛 (𝑧))



< 𝜖 (32)

for all 𝑝 ∈ N, one says that the infinite product ∏∞
𝑛=1

(𝐼 +

𝐴𝑛(𝑧)) is uniformly convergent in the region 𝑅.

The following result provides a sufficient condition to
guarantee uniform convergence of an infinitematrix product.
Notice that it constitutes an analogous result like Weierstrass
𝑀-test for infinite matrix series.

Theorem 17. Let 𝑅 be a closed region of the complex plane
and {𝐴𝑛(𝑧)}

∞

𝑛=1
a sequence of matrices in C𝑟×𝑟 such that −1 ∉

𝜎(𝐴𝑛(𝑧)), ∀𝑛 ≥ 1 and 𝑧 ∈ C𝑟×𝑟. Let one assume that there
exists a sequence of positive numbers {𝑚𝑛}

∞

𝑛=1
such that

𝐴𝑛 (𝑧)
 < 𝑚𝑛, ∀𝑛 ≥ 1, ∀𝑧 ∈ 𝑅,

∞

∑

𝑛=1

𝑚𝑛 < ∞.

(33)

Then∏∞
𝑛=1

(𝐼 +𝐴𝑛(𝑧)) is uniformly convergent in the region 𝑅.

Proof. By assumption ∑
∞

𝑛=1
𝑚𝑛 is convergent and 𝑚𝑛 > 0

for all 𝑛 ≥ 1; then using the scalar result analogous to
Theorem 13 for infinite numerical products we conclude that
∏
∞

𝑛=1
(1 + 𝑚𝑛) is convergent [17, ch. 1]. Therefore there exists

lim𝑛→∞∏
𝑛

𝑘=1
(1 +𝑚𝑘). So, for any 𝜖 > 0, there is 𝑛0 ∈ N, such

that
𝑛
0
+𝑝

∏

𝑘=1

(1 + 𝑚𝑘) −

𝑛
0

∏

𝑘=1

(1 + 𝑚𝑘) < 𝜖 (34)

for any natural number 𝑝.
By assumption, ‖𝐴𝑛(𝑧)‖ < 𝑚𝑛, ∀𝑛 ≥ 1 and ∀𝑧 ∈ 𝑅.Thus

by the submultiplicative property of thematrix norm one gets


𝑛
0
+𝑝

∏

𝑘=1

(𝐼 + 𝐴𝑘 (𝑧)) −

𝑛
0

∏

𝑘=1

(𝐼 + 𝐴𝑘 (𝑧))



=



𝑛
0

∏

𝑘=1

(𝐼 + 𝐴𝑘 (𝑧))
[

[

𝑛
0
+𝑝

∏

𝑘=𝑛
0
+1

(𝐼 + 𝐴𝑘 (𝑧)) − 𝐼]

]



≤



𝑛
0

∏

𝑘=1

(𝐼 + 𝐴𝑘 (𝑧))



⋅



𝑛
0
+𝑝

∏

𝑘=𝑛
0
+1

(𝐼 + 𝐴𝑘 (𝑧)) − 𝐼



≤

𝑛
0

∏

𝑘=1

(
𝐼 + 𝐴𝑘 (𝑧)

)
[

[

𝑛
0
+𝑝

∏

𝑘=𝑛
0
+1

(
𝐼 + 𝐴𝑘 (𝑧)

) − 1]

]

(35)

applying the triangle inequality and since ‖𝐼‖ = 1,

≤

𝑛
0

∏

𝑘=1

(1 +
𝐴𝑘 (𝑧)

)
[

[

𝑛
0
+𝑝

∏

𝑘=𝑛
0
+1

(1 +
𝐴𝑘 (𝑧)

) − 1]

]

≤

𝑛
0

∏

𝑘=1

(1 + 𝑚𝑘)
[

[

𝑛
0
+𝑝

∏

𝑘=𝑛
0
+1

(1 + 𝑚𝑘) − 1]

]

=

𝑛
0
+𝑝

∏

𝑘=1

(1 + 𝑚𝑘) −

𝑛
0

∏

𝑘=1

(1 + 𝑚𝑘) < 𝜖,

(36)
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where in the last step inequality (34) has been applied. This
ends the proof.

4. The Matrix Gamma Function

In this section, we will apply the results presented in the
foregoing section related to matrix infinite products in order
to extend the definition of the Weierstrass gamma function
to the matrix scenario.

Definition 18. Given𝑀 ∈ C𝑟×𝑟 such that −𝑛 ∉ 𝜎(𝑀), ∀𝑛 ≥ 1,
one defines the matrix gamma function, denoted by Γ(𝑀), as

Γ
−1
(𝑀) = 𝑀𝑒

𝛾𝑀

∞

∏

𝑛=1

[(𝐼 +
1

𝑛
𝑀) 𝑒
−(1/𝑛)𝑀

] , (37)

where 𝛾 is Euler-Mascheroni’s constant defined by (2).

Let us show that this function is well defined by showing
that such matrix infinite product is absolutely convergent.
Rather than dealing with infinite matrix product (37), we will
prove a more general statement; namely, we will prove that
the matrix infinite product

∞

∏

𝑛=1

(𝐼 −
1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴 (38)

is absolutely convergent with 𝐴 ∈ C𝑟×𝑟 and 𝑐 ∉ Z − N; that
is, 𝑐 is a nonpositive integer. Denoting 𝐵𝑛 = (𝐼 − (1/(𝑐 +

𝑛))𝐴)𝑒
(1/𝑛)𝐴

− 𝐼, it is obvious that 𝐵𝑛𝐵𝑚 = 𝐵𝑚𝐵𝑛 for every
𝑛,𝑚 ≥ 1. By Theorem 13 it is sufficient to show that

∞

∑

𝑛=1

[(𝐼 −
1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴

− 𝐼] (39)

is absolutely convergent; that is, we have to show that the
numerical series

∞

∑

𝑛=1


[(𝐼 −

1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴

− 𝐼]


(40)

is convergent. For this, wewill compare it with the convergent
series∑∞

𝑛=1
(1/𝑛
2
) and therefore it will be sufficient to show, by

a comparison test, that

lim
𝑛→∞

𝑛
2

(𝐼 −

1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴

− 𝐼


= 𝑎 < ∞,

lim
𝑛→∞

𝑛
2

(𝐼 −

1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴

− 𝐼



=


lim
𝑛→∞

𝑛
2
[(𝐼 −

1

𝑐 + 𝑛
𝐴) 𝑒
(1/𝑛)𝐴

− 𝐼]


=

(41)

to compute this limit, now we make the change of variable
𝛽 = 1/(𝑐 + 𝑛), so 𝑛 = (1 − 𝛽𝑐)/𝛽 and 1/𝑛 = 𝛽/(1 − 𝛽𝑐); then

=



lim
𝛽→0

(1 − 𝛽𝑐)
2

𝛽
2

[(𝐼 − 𝛽𝐴) 𝑒
(𝛽/(1−𝛽𝑐))𝐴

− 𝐼]



=
1

2
‖𝐴 (2𝑐𝐼 − 𝐴)‖ = 𝑎 < ∞,

(42)

where the L’Hôpital rule has been applied twice in the last
step. Therefore ∑∞

𝑛=1
[(𝐼 − (1/(𝑐 + 𝑛))𝐴)𝑒

(1/𝑛)𝐴
− 𝐼] absolutely

converges.
In particular, for 𝑐 = 0 we get that

∞

∏

𝑛=1

(𝐼 −
1

𝑛
𝐴) 𝑒
(1/𝑛)𝐴 (43)

absolutely converges. Also, the result applies to 𝐴 = −𝑀 ∈

C𝑟×𝑟, so

∞

∏

𝑛=1

(𝐼 +
1

𝑛
𝑀) 𝑒
−(1/𝑛)𝑀 (44)

absolutely converges and therefore

Γ
−1
(𝑀) = 𝑀𝑒

𝛾𝑀

∞

∏

𝑛=1

[(𝐼 +
1

𝑛
𝑀) 𝑒
−(1/𝑛)𝑀

] (45)

is absolutely convergent. Finally, notice that under the
hypothesis −𝑛 ∉ 𝜎(𝑀), ∀𝑛 ≥ 1, none of the factors of the
above infinitematrix product is singular since it is the product
of two invertible matrices. Indeed, each of these factors is the
product of the exponentialmatrix 𝑒−(1/𝑛)𝑀, which is invertible
for all 𝑛 ≥ 1, and 𝐵𝑛 = 𝐼 + (1/𝑛)𝑀. Since 𝜎(𝐵𝑛) = {𝜆𝑛 : 𝜆𝑛 =

1 + (1/𝑛)𝜇, 𝜇 ∈ 𝜎(𝑀)} and 𝜇 ̸= −𝑛 for all 𝑛 ≥ 1, one gets
0 ∉ 𝜎(𝐵𝑛) ∀𝑛 ≥ 1, which means that 𝐵𝑛 is invertible for each
𝑛 ≥ 1. Thus Γ−1(𝑀) is well defined for each matrix𝑀 ∈ C𝑟×𝑟

such that −𝑛 ∉ 𝜎(𝑀), ∀𝑛 ≥ 1. This extends to the matrix
scenario theWeierstrass definition of the gamma function by
an infinite product.

One of the most useful applications from our results is to
prove the existence of certain matrix limits. Next, we present
an illustrative example.

Example 19. Let us show that if 𝑀 ∈ C𝑟×𝑟 such that −𝑛 ∉

𝜎(𝑀) for all 𝑛 ≥ 1, then the following limit exists:

lim
𝑛→∞

(𝑛 − 1)!

⋅ [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀
,

(46)

where 𝑛𝑀 = 𝑒
𝑀ln𝑛. As we will show later, this limit plays an

important role in the study of thematrix gamma function. To
verify that this limit exists, we consider an infinite product
whose 𝑛th partial product 𝑃𝑛 coincides with the limit; that is,

𝑃𝑛 = (𝑛

− 1)! [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀
.

(47)
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If we prove that the infinite product converges, we conclude
the existence of lim𝑛→∞𝑃𝑛. Let us observe that

𝑃𝑛+1 = 𝑛! [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + 𝑛𝐼)]
−1
(𝑛 + 1)

𝑀

= 𝑛! [(𝑀 + 𝑛𝐼) ⋅ ⋅ ⋅ (𝑀 + 2𝐼) (𝑀 + 𝐼)]
−1
(𝑛 + 1)

𝑀

= 𝑛! (𝑀 + 𝐼)
−1

⋅ (𝑀 + 2𝐼)
−1
⋅ ⋅ ⋅ (𝑀 + 𝑛𝐼)

−1

⋅ (𝑛 + 1)
𝑀
= [1 (𝑀 + 𝐼)

−1
2
𝑀
1
−𝑀

]

⋅ [2 (𝑀 + 2𝐼)
−1
3
𝑀
2
−𝑀

]

⋅ ⋅ ⋅ [𝑛 (𝑀 + 𝑛𝐼)
−1
(𝑛 + 1)

𝑀
𝑛
−𝑀

]

=

𝑛

∏

𝑘=1

[𝑘 (𝑀 + 𝑘𝐼)
−1

⋅ (𝑘 + 1)
𝑀
⋅ 𝑘
−𝑀

]

=

𝑛

∏

𝑘=1

[(
1

𝑘
𝑀 + 𝐼)

−1

(1 +
1

𝑘
)

𝑀

] .

(48)

Consider the product ∏∞
𝑛=1

𝐵𝑛 being 𝐵𝑛 = ((1/𝑛)𝑀 +

𝐼)
−1
(1 + 1/𝑛)

𝑀. Since 𝐵𝑛𝐵𝑚 = 𝐵𝑚𝐵𝑛 for every 𝑛,𝑚 ≥ 1, to
show that it absolutely converges, byTheorem 13, it is enough
to show that the matrix series

∞

∑

𝑛=1

[(
1

𝑛
𝑀 + 𝐼)

−1

(1 +
1

𝑛
)

𝑀

− 𝐼] (49)

absolutely converges, that is, that the numerical series

∞

∑

𝑛=1



(
1

𝑛
𝑀 + 𝐼)

−1

(1 +
1

𝑛
)

𝑀

− 𝐼



(50)

converges. This is shown by comparison with the convergent
series ∑∞

𝑛=1
(1/𝑛
2
). In fact, notice that

lim
𝑛→∞

𝑛
2



(
1

𝑛
𝑀 + 𝐼)

−1

(1 +
1

𝑛
)

𝑀

− 𝐼



=



lim
𝑛→∞

𝑛
2
[(

1

𝑛
𝑀 + 𝐼)

−1

(1 +
1

𝑛
)

𝑀

− 𝐼]



=

(51)

and making the change of variable 𝛽 = 1/𝑛, one gets 𝑛 = 1/𝛽

and

=



lim
𝛽→0

(𝑀𝛽 + 𝐼)
−1

⋅ (1 + 𝛽)
𝑀
− 𝐼

𝛽
2



=
1

2
‖𝑀 (𝑀 − 𝐼)‖ ,

(52)

where the L’Hôpital rule has been applied twice. Therefore,
since the matrix infinite product

∞

∏

𝑛=1

[(
1

𝑛
𝑀 + 𝐼)

−1

(1 +
1

𝑛
)

𝑀

] (53)

converges, then the matrix limit

lim
𝑛→∞

𝑃𝑛 = lim
𝑛→∞

(𝑛

− 1)! [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀

(54)

exists. Notice that the assumption −𝑛 ∉ 𝜎(𝑀) for all 𝑛 ≥

1 guarantees that the product has no singular matrices as
factors.

As a consequence we have the following limit representa-
tion of the matrix gamma function.

Theorem 20. If
𝑀 ∈ C

𝑟×𝑟
: −𝑛 ∉ 𝜎 (𝑀) , ∀𝑛 ≥ 0, (55)

and (𝑀)𝑛 denotes Pochhammer’s matrix symbol (𝑀)𝑛 =

𝑀(𝑀 + 𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1)𝐼), 𝑛 ≥ 1, (𝑀)0 = 𝐼, then

Γ (𝑀) = lim
𝑛→∞

(𝑛 − 1)! ((𝑀)𝑛)
−1
𝑛
𝑁
. (56)

Proof. We know that

Γ
−1
(𝑀) = 𝑀𝑒

𝛾𝑀

∞

∏

𝑛=1

[(𝐼 +
1

𝑛
𝑀) 𝑒
−(1/𝑛)𝑀

] (57)

and by assumption −𝑛 ∉ 𝜎(𝑀), for all 𝑛 = 1, 2, . . ., 𝑀 + 𝑛𝐼

with 𝑛 ≥ 1 is invertible, and also the matrices 𝐼 + (1/𝑛)𝑀,
for 𝑛 ≥ 1, are invertible since 𝐼 + (1/𝑛)𝑀 = (1/𝑛)(𝑀 + 𝑛𝐼).
With this fact and since the exponential matrix is invertible
and that (𝑒𝑀)−1 = 𝑒

−𝑀, ∀𝑀 ∈ C𝑟×𝑟, we get

𝑀Γ (𝑀) = 𝑒
−𝛾𝑀

∞

∏

𝑛=1

[(𝐼 +
1

𝑛
𝑀)

−1

𝑒
(1/𝑛)𝑀

] . (58)

Then

𝑀Γ (𝑀) = 𝑒
−𝛾𝑀 lim
𝑛→∞

𝑛

∏

𝑘=1

[(𝐼 +
1

𝑘
𝑀)

−1

𝑒
(1/𝑘)𝑀

] . (59)

On the other hand, by (2) we know that

𝛾 = lim
𝑛→∞

[𝐻𝑛 − ln (𝑛 + 1)]

= lim
𝑛→∞

[𝐻𝑛 −

𝑛

∑

𝑘=1

ln(𝑘 + 1

𝑘
)] , 𝐻𝑛 =

𝑛

∑

𝑘=1

1

𝑘
,

(60)

and thus

𝑒
−𝛾𝑀

= 𝑒
−lim
𝑛→∞
[𝐻
𝑛
−∑
𝑛

𝑘=1
ln((𝑘+1)/𝑘)]𝑀

= lim
𝑛→∞

{𝑒
−𝐻
𝑛
𝑀+(∑

𝑛

𝑘=1
ln((𝑘+1)/𝑘))𝑀

}

= lim
𝑛→∞

{𝑒
−(∑
𝑛

𝑘=1
(1/𝑘))𝑀+(∑

𝑛

𝑘=1
ln((𝑘+1)/𝑘))𝑀

}

= lim
𝑛→∞

{𝑒
−(∑
𝑛

𝑘=1
(1/𝑘))𝑀

𝑒
(∑
𝑛

𝑘=1
ln((𝑘+1)/𝑘))𝑀

}

= lim
𝑛→∞

{[

𝑛

∏

𝑘=1

𝑒
−(1/𝑘)𝑀

][

𝑛

∏

𝑘=1

(
𝑘 + 1

𝑘
)

𝑀

]}

= lim
𝑛→∞

{

𝑛

∏

𝑘=1

[𝑒
−(1/𝑘)𝑀

(
𝑘 + 1

𝑘
)

𝑀

]} .

(61)
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Substituting this last expression in (59),

𝑀Γ (𝑀)

= lim
𝑛→∞

{

𝑛

∏

𝑘=1

[𝑒
−(1/𝑘)𝑀

(
𝑘 + 1

𝑘
)

𝑀

(𝐼 +
1

𝑘
𝑀)

−1

𝑒
(1/𝑘)𝑀

]}

= lim
𝑛→∞

𝑛

∏

𝑘=1

[(𝐼 +
1

𝑘
𝑀)

−1

(
𝑘 + 1

𝑘
)

𝑀

] .

(62)

It is already proven that the limit in the right-hand side exists
and also that

lim
𝑛→∞

𝑃𝑛 = lim
𝑛→∞

(𝑛

− 1)! [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀
;

(63)

therefore,

𝑀Γ (𝑀) = lim
𝑛→∞

(𝑛

− 1)! [(𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀
,

(64)

or taking into account that by hypothesis 0 ∉ 𝜎(𝑀) this is
equivalent to

Γ (𝑀) = lim
𝑛→∞

(𝑛

− 1)! [𝑀 (𝑀 + 𝐼) (𝑀 + 2𝐼) ⋅ ⋅ ⋅ (𝑀 + (𝑛 − 1) 𝐼)]
−1
𝑛
𝑀

= lim
𝑛→∞

(𝑛 − 1)! ((𝑀)𝑛)
−1
𝑛
𝑀
.

(65)

5. Conclusions

In this paper we have introduced infinite matrix products
and some of their main properties related to convergence.
We have taken advantage of these results to extend the
definition of the scalar gamma function by an infinite product
to the matrix framework including a limit representation
of this special function. The provided results can also be
applied to generalize in thematrix sense numerous significant
functions defined through infinite products. Apart from the
scalar gamma function, specific examples of scalar functions
defined by an infinite product areWeierstrass sigma function,
𝑄-Pochhammer symbol, Ramanujan theta function, sinus
function, Riemann zeta function, and so forth. Even more,
according to the classical Weierstrass factorization theorem
every entire function can be factored into an infinite product
of entire functions. As a consequence, the obtained results
about infinite matrix products are potentially applicable to a
large class of functions beyond the matrix gamma function.
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