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This paper investigates the fault detection problem for discrete-time nonlinear impulsive switched systems. Attention is focused
on designing the fault detection filters to guarantee the robust performance and the detection performance. Based on these
performances, sufficient conditions for the existence of filters are given in the framework of linear matrix inequality; furthermore,
the filter gains are characterized by a convex optimization problem.The presented technique is validated by an example. Simulation
results indicate that the proposed method can effectively detect the faults.

1. Introduction

Fault detection (FD) is an important topic in system engi-
neering from the viewpoint of the higher demands for safety
and reliability of control systems [1, 2]. The basic idea of
the model-based FD is to design observers [3] or filters [4]
and generate an residual signal. Since the value counted by
the residual evaluation function is larger than the predefined
threshold, an alarm is generated. To date, there are many
methods to solve the FD problem. As one of the typical
methods, the FD problem is converted into a robust filtering
problem; then𝐻

∞
technique is presented [5, 6]. For another

method, FD systems have been directly considered to be sen-
sitive to the faults and simultaneously robust to the unknown
disturbance, then the 𝐻

∞
/𝐻
−
technique investigates this

important issue [7, 8].
On the other hand, switched systems which belong

to hybrid systems consist of a finite number of subsys-
tems and a logical rule that orchestrates switching between
these subsystems [9]. The primary motivation for studying
switched systems comes partly from the fact that switched
systems and switchedmulticontroller systems have numerous
applications in control of flight control [10], missile autopilot
design [11], chemical systems [12], networked control systems
[13], and many other fields. Until now, a number of recent
results are focused on stability and stabilizability under

arbitrary switching [14], restricted switching (like dwell time
and average dwell time [15, 16]), multiple Lyapunov functions
method, and piecewise quadratic Lyapunov functions. As one
of the special switched systems, impulsive switched systems
produce impulses when the system is switching among
subsystems, and There is also a wide range of actual systems
such as engineering, economics, and biology. This kind of
impulses will cause instability and oscillations and lead to
poor performance. Recently, a number of papers have focused
on stability problem of the impulsive switched systems [17–
21].

However, the problem of FD design in switched systems
schemes is still in the early stage of development and a
few results have been reported in the literatures [22–26].
To the best of the authors’ knowledge, the FD problem for
impulsive switched systems, especially discrete-time nonlin-
ear impulsive switched systems, has not been investigated
yet. It is worth noting that the FD approaches for switched
systems without impulses are not appropriate for switched
systems with impulses due to the effect of the impulse in
switching point. Therefore, a new FD technique is needed to
solve the impulsive case. Moreover, even if the mathematics
model for the actual system are established with neglecting
the impulse in switching point, the inaccurate mathematics
model may reduce the robustness of the actual system, and
the results may increase the risk of the false alarm. Thus, it is
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necessary to directly investigate the fault detection problem
for impulsive switched systems. As the significance in theory
and practice, the FD problem for discrete-time nonlinear
impulsive switched systems should be investigated, which
motivates us to study this interesting issue.

In this paper, we consider a general class nonlinear
impulsive switched system with nonlinear impulsive incre-
ments, and the fault detection problem for this class of
systems is investigated. Firstly, a weighted 𝑙2 performance
for discrete-time nonlinear impulsive switched systems is
presented; meanwhile, the 𝐻

−
performance of discrete-time

nonlinear impulsive switched systems is derived to reflect the
effect on the residual signal from the faults. Subsequently,
sufficient conditions for the weighted 𝑙2 performance and the
𝐻
−
performance are formulated by linear matrix inequalities

(LMIs) with less conservatism. Finally, the filters gains are
characterized in terms of the solution of a convex optimiza-
tion problem.

The paper is organized as follows. Section 2 introduces
the problem under consideration and presents the design
objectives. Section 3 illustrates the FD filter design approach
in detail. An example is given in Section 4 to demonstrate the
proposed method. Conclusions of this paper are given in the
last section.

Notation. The superscripts 𝑇, −1 stand for the transposition
and the inverse of a matrix, respectively. The matrices 𝐴 >
0 (𝐴 ≥ 0) and 𝐴 < 0 (𝐴 ≤ 0) denote positive-definite-
ness (positive semidefinite matrix) and negative-definiteness
(negative semidefinite matrix). 𝐼 and 0 represent the identity
matrix and the zero matrix with appropriate dimensions,
respectively. The Hermitian part of a square matrix 𝑀 is
denoted by He(𝑀) := 𝑀+𝑀𝑇.The symbol ∗within amatrix
represents the symmetric entries.

2. Problem Formulation

2.1. SystemModel. Consider the following discrete-time non-
linear impulsive switched systems:

𝑥 (𝑘 + 1) =
𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘)

⋅ (𝐴
𝑗
𝑥 (𝑘) + 𝐵

𝑗1𝑑 (𝑘) + 𝐵𝑗2𝑓 (𝑘) +Υ𝑗 (𝑘, 𝑥 (𝑘))) ,

𝑘 ̸= 𝑘
𝑖
,

Δ𝑥 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (𝐻

𝑗
𝑥 (𝑘) +Ω

𝑗
(𝑘, 𝑥 (𝑘))) , 𝑘 = 𝑘

𝑖
,

𝑦 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (𝐶

𝑗
𝑥 (𝑘) +𝐷

𝑗1𝑑 (𝑘) +𝐷𝑗2𝑓 (𝑘)) ,

𝑥 (𝑘
+

0 ) = 𝑥0,

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state and 𝑦(𝑘) ∈ 𝑅𝑚 is the
measured output. 𝑑(𝑘) ∈ 𝑅𝑛𝑑 and 𝑓(𝑘) ∈ 𝑅𝑛𝑓 are the
disturbance input and the fault, respectively, which are energy

bounded; then they are demanded to belong to 𝑙2[0 ∞).
𝑘
𝑖
, 𝑖 = 0, 1, 2, . . ., is impulsive switching time points. Denote

N = {1 ⋅ ⋅ ⋅ 𝑁}. The switching signal 𝜉
𝑗
(𝑘) : 𝑍

+

→ {0, 1}
specifies that 𝑗th subsystem is activated when 𝜉

𝑗
(𝑘) = 1,

and ∑𝑁
𝑗=1 𝜉𝑗(𝑘) = 1. Υ

𝑗
(𝑘, 𝑥(𝑘)) : [𝑘0,∞) × 𝑅

𝑛

→ 𝑅
𝑛,

which is globally Lipschitz continuous, and Υ
𝑗
(𝑘, 0) ≡ 0

for all 𝑘 ∈ [𝑘0,∞) Δ𝑥(𝑘𝑖) = 𝑥(𝑘
+

𝑖
) − 𝑥(𝑘

−

𝑖
) = 𝑥(𝑘

+

𝑖
) −

𝑥(𝑘
𝑖
), with 𝑥(𝑘+

𝑖
) = lim

𝑘→𝑘
+

𝑖

𝑥(𝑘) and 𝑥(𝑘
𝑖
) = 𝑥(𝑘

−

𝑖
) =

lim
𝑘→𝑘

−

𝑖

𝑥(𝑘); that is, the solution 𝑥(𝑡) is left continuous.
Ω
𝑗
(𝑘, 𝑥(𝑘)) : [𝑘0,∞) × 𝑅

𝑛

→ 𝑅
𝑛 is nonlinear functions,

and Ω
𝑘
(𝑘, 0) ≡ 0 for all 𝑡 ∈ [𝑘0,∞). The 𝑗th subsystem is

denoted by thematrices𝐴
𝑗
, 𝐵
𝑗1, 𝐵𝑗2, 𝐻𝑗, 𝐶𝑗, 𝐷𝑗1, and𝐷𝑗2

with appropriate dimensions.
The following assumptions for nonlinear impulsive

switched system (1) are introduced.

Assumption 1. There exist nonnegative scalars 𝑔
𝑗
> 0, such

that

Υ
𝑇

𝑗
(𝑘, 𝑥 (𝑘)) Υ

𝑗
(𝑘, 𝑥 (𝑘)) ≤ 𝑔

𝑗
𝑥
𝑇

(𝑘) 𝑥 (𝑘) , 𝑗 ∈N. (2)

Assumption 2. Denote by 𝜌(⋅) the spectral radius for each
subsystem and 𝜌

ℎ
= max

𝑗∈N𝜌(𝐻𝑗 + 𝐼); then ‖Ω𝑗(𝑘𝑖, 𝑥(𝑘𝑖))‖ ≤
𝜌
ℎ
‖𝑥(𝑘
𝑖
)‖.

Remark 3. Note that owing to the presence of system non-
linearity, the above assumptions essentially draw from the
analysis of the stability for the system.Moreover, they are two
basic conditions for this kind of systems (see [27] for further
discussion). Therefore we consider the nonlinear impulsive
switched systems, which satisfies Assumptions 1 and 2.

For the purpose of the fault detection, the following FD
filters are designed:

𝑥
𝑓
(𝑘 + 1) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (𝐴

𝑓𝑗
𝑥
𝑓
(𝑘) + 𝐵

𝑓𝑗
𝑦 (𝑘)) ,

𝑟 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (𝐶

𝑓𝑗
𝑥
𝑓
(𝑘) +𝐷

𝑓𝑗
𝑦 (𝑘)) ,

(3)

where 𝑥
𝑓
(𝑘) is the state of the filter, 𝑟(𝑘) is the residual

signal, and 𝑗 ∈ N. The matrices 𝐴
𝑓𝑗
, 𝐵
𝑓𝑗
, 𝐶
𝑓𝑗
, and 𝐷

𝑓𝑗
with

appropriate dimensions are to be determined.
Denoting the augmented state vector 𝑥(𝑘) = [𝑥(𝑘)𝑇,

𝑥
𝑓
(𝑘)
𝑇

]
𝑇 and augmenting the model of system (1) to include

the states of (3), we can obtain the augmented system as
follows:

𝑥 (𝑘 + 1) =
𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (A

𝑗
𝑥 (𝑘) +B

𝑗1𝑑 (𝑘) +B𝑗2𝑓 (𝑘)

+ Υ̃
𝑗
(𝑘, 𝑥 (𝑘))) , 𝑘 ̸= 𝑘

𝑖
,

Δ𝑥 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (H

𝑗
𝑥 (𝑘) + Ω̃

𝑗
(𝑘, 𝑥 (𝑘))) , 𝑘 = 𝑘

𝑖
,
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𝑟 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (C

𝑗
𝑥 (𝑘) +D

𝑗1𝑑 (𝑘) +D𝑗2𝑓 (𝑘)) ,

𝑥 (𝑘
+

0 ) = 𝑥0,

(4)

where 𝑗 ∈N,

A
𝑗
= [

𝐴
𝑗

0
𝐵
𝑓𝑗
𝐶
𝑗
𝐴
𝑓𝑗

] ,

B
𝑗1 = [

𝐵
𝑗1

𝐵
𝑓𝑗
𝐷
𝑗1
] ,

B
𝑗2 = [

𝐵
𝑗2

𝐵
𝑓𝑗
𝐷
𝑗2
] ,

H
𝑗
= [

𝐻
𝑗
0

0 0
] ,

Υ̃
𝑗
(𝑘, 𝑥 (𝑘)) = [

Υ
𝑗
(𝑘, 𝑥 (𝑘))

0
] ,

Ω̃
𝑗
(𝑘, 𝑥 (𝑘)) = [

Ω
𝑗
(𝑘, 𝑥 (𝑘))

0
] ,

C
𝑗
= [𝐷
𝑓𝑗
𝐶
𝑗
𝐶
𝑓𝑗
] ,

D
𝑗1 = 𝐷𝑓𝑗𝐷𝑗1,

D
𝑗2 = 𝐷𝑓𝑗𝐷𝑗2.

(5)

To present the purpose of this paper more precisely, the
following definition is introduced.

Definition 4. Let Assumptions 1 and 2 be satisfied and 𝑑(𝑘) =
0. Nonlinear impulsive switched system (4) under zero-initial
conditions is said to be stable with the 𝐻

−
-gain 𝛽, if the

condition holds that
∞

∑

𝑘=0
𝑟 (𝑘)
𝑇

𝑟 (𝑘) ≥ 𝛽
2
∞

∑

𝑘=0
𝑓 (𝑘)
𝑇

𝑓 (𝑘) . (6)

2.2. Problem Formulation. The Frameworks of FD Filter De-
sign. Given nonlinear impulsive switched system (1), the FD
filters (3) are designed such that nonlinear impulsive switched
system (4) is stable, and the fault effects on the residual signal
are maximized, while the disturbance effects on the residual
signals are minimized. Our design objective of the FD filters
can be formulated as the following performances:

∞

∑

𝑘=0
(1−𝛼)𝑘 𝑟 (𝑘)𝑇 𝑟 (𝑘) ≤ 𝛾2

∞

∑

𝑘=0
𝑑 (𝑘)
𝑇

𝑑 (𝑘) , (7)

∞

∑

𝑘=0
𝑟 (𝑘)
𝑇

𝑟 (𝑘) ≥ 𝛽
2
∞

∑

𝑘=0
𝑓 (𝑘)
𝑇

𝑓 (𝑘) . (8)

Remark 5. Condition (7) is used for the disturbance attenua-
tion performance, which minimizes the disturbance effects
on the residual output and ensures that the disturbance is
not disastrous. Condition (8) is expressed to maximize the
effects of the fault 𝑓(𝑘) on the residual output 𝑟(𝑘). That is,
the residual output 𝑟(𝑘) is sensitive to the fault 𝑓(𝑘).

After designing the residual generator, how to evaluate
the generated residual is considered. One of the widely
adopted approaches is to select an appropriate threshold and
an appropriate residual evaluation function. Similar to that
proposed in [28], the residual evaluation function 𝐽

𝑟(𝑘)
(𝑘) can

be chosen as

𝐽
𝑟(𝑘)
(𝑘) = √

1
𝑘

𝑘

∑

𝑠=1
𝑟𝑇 (𝑠) 𝑟 (𝑠), (9)

where 𝑘 denotes the evaluation time step.
Let 𝐽th = sup

𝑑(𝑘)∈𝑙2 ,𝑓(𝑘)=0𝐽𝑟(𝑘)(𝑘) be the threshold. Based
on this, the occurrence of faults can be detected by comparing
𝐽
𝑟(𝑘)
(𝑘) and 𝐽th according to the following logical relationship:

󵄩󵄩󵄩󵄩𝐽𝑟(𝑘)
󵄩󵄩󵄩󵄩 ≤ 𝐽th 󳨐⇒ no fault 󳨐⇒ no alarm,

󵄩󵄩󵄩󵄩𝐽𝑟(𝑘)
󵄩󵄩󵄩󵄩 > 𝐽th 󳨐⇒ fault 󳨐⇒ alarm.

(10)

3. The Fault Detection Filter Design

Before beginning this section, the following lemmas are
needed to present our main results.

Lemma 6 (see [27]). Let 𝜖 > 0 be a given scalar and Ξ ∈ 𝑅𝑝×𝑞
a matrix such that Ξ𝑇Ξ ≤ 𝐼, where 𝐼 is an identity matrix with
appropriate dimension. Then 2𝑥𝑇Ξ𝑦 ≤ 𝜖𝑥𝑇𝑥 + 𝜖−1𝑦𝑇𝑦 for all
𝑥 ∈ 𝑅

𝑝 and 𝑦 ∈ 𝑅𝑞.

Lemma 7 (see [29]). Let 𝑃 ∈ 𝑅𝑛×𝑛 be a given symmetric
positive definite matrix and let 𝑄 ∈ 𝑅𝑛×𝑛 be a given sym-
metric matrix. Then 𝜆min{𝑃

−1
𝑄}𝑥(𝑡)

𝑇

𝑃𝑥(𝑡) ≤ 𝑥(𝑡)
𝑇

𝑄𝑥(𝑡) ≤

𝜆max{𝑃
−1
𝑄}𝑥(𝑡)

𝑇

𝑃𝑥(𝑡) for all 𝑥(𝑡) ∈ 𝑅
𝑛, while 𝜆max{⋅}

and 𝜆min{⋅} denote, respectively, the largest and the smallest
eigenvalues of the matrix inside the brackets.

In this section, sufficient conditions on the existence of
the FD filters for nonlinear impulsive switched systems (4)
would be given, and the desired filter gains can be obtained.

3.1. The Disturbance Attenuation Performance (8). Consid-
ering discrete-time nonlinear impulsive switched system (4)
with 𝑓(𝑘) = 0, we have

𝑥 (𝑘 + 1)

=

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (A

𝑗
𝑥 (𝑘) +B

𝑗1𝑑 (𝑘) + Υ̃𝑗 (𝑘, 𝑥 (𝑘))) ,

𝑘 ̸= 𝑘
𝑖
,
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Δ𝑥 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (H

𝑗
𝑥 (𝑘) + Ω̃

𝑗
(𝑘, 𝑥 (𝑘))) , 𝑘 = 𝑘

𝑖
,

𝑟 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (C

𝑗
𝑥 (𝑘) +D

𝑗1𝑑 (𝑘)) ,

𝑥 (𝑘
+

0 ) = 𝑥0.

(11)

Firstly, the weighted 𝑙2 performance for nonlinear impul-
sive switched system (11) is given.

Lemma 8. Let 𝛼, 𝜀
𝑗1, 𝜀𝑗2, and 𝜀𝑗3 be constants satisfying 0 <

𝛼 < 1, 𝜀
𝑗1 > 0, 𝜀

𝑗2 > 0, and 𝜀
𝑗3 > 0, and Assumptions 1

and 2 hold. Furthermore, suppose that discrete-time nonlinear
impulsive switched system (11) switches from 𝑝th subsystem to
𝑗th subsystem as switched time point 𝑘

𝑖
. If there exist 𝜆

𝑗
>

0 and Lyapunov functions candidate 𝑉
𝑗
(𝑘) = 𝑥(𝑘)

𝑇

P
𝑗
𝑥(𝑘)

satisfying

0 ≤ P
𝑗
≤ 𝜆
𝑗
𝐼, (12)

[

[

Θ
𝑗

A𝑇
𝑗
P
𝑗
B
𝑗1 +C

𝑇

𝑗
D
𝑗1

∗ −𝛾
2
𝐼 +B𝑇

𝑗1 (P𝑗 + 𝜀
−1
𝑗2P

2
𝑗
)B
𝑗1 +D

𝑇

𝑗1D𝑗1

]

]

< 0, 𝑗 ∈N,

(13)

whereΘ
𝑗
= A𝑇
𝑗
(P
𝑗
+𝜀
−1
𝑗1P

2
𝑗
)A
𝑗
−(1−𝛼)P

𝑗
+(𝜀
𝑗1+𝜀𝑗2+𝜆𝑗)𝑔𝑗𝐼+

C𝑇
𝑗
C
𝑗
, then nonlinear impulsive switched system (11) is stable

with the weight 𝑙2-gain 𝛾 for any switching signal satisfying

𝜏
𝑝
≥ ceil[−

ln 𝜇
𝑝𝑗

ln (1 − 𝛼)
] , (14)

where 𝜇
𝑝𝑗
= ((𝜀
𝑗3 + 1)𝜆max{(H𝑗 + 𝐼)

𝑇

P
𝑗
(H
𝑗
+ 𝐼)} + (𝜀

−1
𝑗3 +

1)𝜌2
ℎ
𝜆max{P𝑗})/𝜆min{P𝑝}, 𝑝, 𝑗 ∈N, and the function ceil(])

represents rounding real number ] to the nearest integer greater
than or equal to ].

Proof. See the appendices.

Subsequently, inequality conditions for the disturbance
attenuation performance (8) are constructed.

Theorem 9. Let 𝛾, 𝛼, 𝜀
𝑗1, and 𝜀𝑗2 be constants satisfying 𝛾 > 0,

0 < 𝛼 < 1, 𝜀
𝑗1 > 0, and 𝜀

𝑗2 > 0. If there exist matrix vari-
ables𝐴

𝑓𝑗
, 𝐵
𝑓𝑗
, 𝐶
𝑓𝑗
, 𝐷
𝑓𝑗
, 𝑅
𝑗
, and 𝜆

𝑗
and symmetric positive-

definite matrices

P
𝑗
= [

P
𝑗1 P
𝑗2

∗ P
𝑗2
] > 0, 𝑗 ∈N, (15)

satisfying the following inequalities:

0 ≤ P
𝑗
≤ 𝜆
𝑗
𝐼, (16)

[
[
[
[
[
[
[
[
[
[
[

[

−𝛼P
𝑗
+ 𝜑
𝑎𝑗
𝐼 0 Ξ

𝑎13 Ξ𝑎14 0 Ξ
𝑎16

∗ −𝛾
2
𝐼 Ξ
𝑎23 0 Ξ

𝑎25 𝐷
𝑇

𝑗1𝐷
𝑇

𝑓𝑗

∗ ∗ −P
𝑗

0 0 0
∗ ∗ ∗ −𝜀

𝑗1𝐼 0 0
∗ ∗ ∗ ∗ −𝜀

𝑗2𝐼 0

∗ ∗ ∗ ∗ 0 𝐼 −He (𝑅
𝑗
)

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(17)

where 𝛼 = 1 − 𝛼, 𝜑
𝑎𝑗
= (𝜀
𝑗1 + 𝜀𝑗2 + 𝜆𝑗)𝑔𝑗,

Ξ
𝑎13 = Ξ𝑎14 = [

𝐴
𝑇

𝑗
P
𝑗1 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑗
𝐴
𝑇

𝑗
P
𝑗2 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑗

𝐴
𝑇

𝑓𝑗
𝐴
𝑇

𝑓𝑗

] ,

Ξ
𝑎23 = Ξ𝑎25 = [𝐵

𝑇

𝑗1P𝑗1 + 𝐷
𝑇

𝑗1𝐵
𝑇

𝑓𝑗
𝐵
𝑇

𝑗1P𝑗2 + 𝐷
𝑇

𝑗1𝐵
𝑇

𝑓𝑗
] ,

Ξ
𝑎16 = [

𝐶
𝑇

𝑗
𝐷
𝑇

𝑓𝑗

𝐶
𝑇

𝑓𝑗

] ,

(18)

then switched system (11) is asymptotically stable for any
switching signal satisfying (14) and guarantees the weighted 𝑙2
performance ∑∞

𝑘=0(1 − 𝛼)
𝑘

𝑟(𝑘)
𝑇

𝑟(𝑘) ≤ 𝛾
2
∑
∞

𝑘=0 𝑑(𝑘)
𝑇

𝑑(𝑘).

Proof. See the appendices.

3.2. The Fault Sensitiveness Performance (8). Considering
discrete-time nonlinear impulsive switched system (4) with
𝑑(𝑘) = 0, we have

𝑥 (𝑘 + 1)

=

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (A

𝑗
𝑥 (𝑘) +B

𝑗2𝑓 (𝑘) + Υ̃𝑗 (𝑘, 𝑥 (𝑘))) ,

𝑘 ̸= 𝑘
𝑖
,

Δ𝑥 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (H

𝑗
𝑥 (𝑘) + Ω̃

𝑗
(𝑘, 𝑥 (𝑘))) , 𝑘 = 𝑘

𝑖
,

𝑟 (𝑘) =

𝑁

∑

𝑗=1
𝜉
𝑗
(𝑘) (C

𝑗
𝑥 (𝑘) +D

𝑗2𝑓 (𝑘)) ,

𝑥 (𝑘
+

0 ) = 𝑥0.

(19)

𝐻
−
performance for discrete-time nonlinear impulsive

switched system (19) is given.

Lemma 10. Let 𝛼, 𝜀
𝑗1, and 𝜀𝑗4 be constants satisfying 0 <

𝛼 < 1, 𝜀
𝑗1 > 0, and 𝜀

𝑗4 > 0, and Assumptions 1 and 2
hold. Furthermore, suppose that nonlinear impulsive switched
system (19) switches from 𝑝th subsystem to 𝑗th subsystem as
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switched time point 𝑘
𝑖
. If there exist 𝜆

𝑗
> 0 and Lyapunov

functions candidate 𝑉
𝑗
(𝑘) = 𝑥(𝑘)

𝑇

P
𝑗
𝑥(𝑘) satisfying

0 ≤ P
𝑗
≤ 𝜆
𝑗
𝐼, (20)

[

[

Φ𝑗 B𝑇
𝑗2P𝑗A𝑗 −C

𝑇

𝑗
D
𝑗2

∗ 𝛽
2
𝐼 +B𝑇

𝑗2 (P𝑗 + 𝜀
−1
𝑗4P

2
𝑗
)B
𝑗2 −D

𝑇

𝑗2D𝑗2

]

]

< 0, 𝑗 ∈N,

(21)

whereΦ𝑗 = A𝑇
𝑗
(P
𝑗
+𝜀
−1
𝑗1P

2
𝑗
)A
𝑗
−(1−𝛼)P

𝑗
+(𝜀
𝑗1+𝜀𝑗4+𝜆𝑗)𝑔𝑗𝐼−

C𝑇
𝑗
C
𝑗
, then discrete-time nonlinear impulsive switched system

(19) is stable with the 𝐻
−
-gain 𝛽 for any switching signal

satisfying (14).

Proof. See the appendices.

Based on Lemma 10, the following theorem is given to
obtain sufficient conditions by linear matrix inequalities.

Theorem11. Let𝛽,𝛼, 𝜀
𝑗1, and 𝜀𝑗4 be constants satisfying𝛽 > 0,

0 < 𝛼 < 1, 𝜀
𝑗1 > 0, and 𝜀

𝑗4 > 0. If there exist matrix variables
𝐴
𝑓𝑗
, 𝐵
𝑓𝑗
, 𝐶
𝑓𝑓𝑗
= [𝐶
𝑓𝑗

0],𝐷
𝑓𝑓𝑗
= [𝐷
𝑓𝑗

0],R
𝑗
= [𝑅
𝑗
, 0], and

𝜆
𝑗
and symmetric positive-definite matrices

P
𝑗
= [

P
𝑗1 P
𝑗2

∗ P
𝑗2
] > 0, 𝑗 ∈N, (22)

satisfying the following inequalities:

0 ≤ P
𝑗
≤ 𝜆
𝑗
𝐼, (23)

[
[
[
[
[
[
[
[
[
[
[

[

−𝐼 Ξ
𝑏12 −𝑅

𝑗
0 0 0

∗ Ξ
𝑏22 + 𝜑𝑏𝑗𝐼 Ξ

𝑏23 Ξ
𝑏24 Ξ𝑏25 0

∗ ∗ 𝛽
2
𝐼 +He (𝐷𝑇

𝑗2𝐷𝑓𝑗) Ξ𝑏34 0 Ξ
𝑏36

∗ ∗ ∗ −P
𝑗

0 0
∗ ∗ ∗ ∗ −𝜀

𝑗1𝐼 0
∗ ∗ ∗ ∗ ∗ −𝜀

𝑗4𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(24)

where 𝛼 = 1 − 𝛼, 𝜑
𝑏𝑗
= (𝜀
𝑗1 + 𝜀𝑗4 + 𝜆𝑗)𝑔𝑗,

Ξ
𝑏12 = [−R𝑗 −R𝑗] ,

Ξ
𝑏22

= [

[

−𝛼P
𝑗1 +He (𝐶

𝑇

𝑗
𝐷
𝑇

𝑓𝑓𝑗
) −𝛼P

𝑗2 + 𝐶
𝑇

𝑗
𝐷
𝑇

𝑓𝑓𝑗
+ 𝐶
𝑓𝑓𝑗

∗ −𝛼P
𝑗2 +He (𝐶

𝑇

𝑓𝑓𝑗
)

]

]

,

Ξ
𝑏23 = [

𝐶
𝑇

𝑗
𝐷
𝑇

𝑓𝑗
+ 𝐷
𝑓𝑓𝑗
𝐷
𝑗2

𝐶
𝑇

𝑓𝑗
+ 𝐷
𝑓𝑓𝑗
𝐷
𝑗2
] ,

Ξ
𝑏24 = Ξ𝑏25 = [

𝐴
𝑇

𝑗
P
𝑗1 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑗
𝐴
𝑇

𝑗
P
𝑗2 + 𝐶

𝑇

𝑗
𝐵
𝑇

𝑓𝑗

𝐴
𝑇

𝑓𝑗
𝐴
𝑇

𝑓𝑗

] ,

Ξ
𝑏34 = Ξ𝑏36 = [𝐵

𝑇

𝑗2P𝑗1 + 𝐷
𝑇

𝑗2𝐵
𝑇

𝑓𝑗
𝐵
𝑇

𝑗2P𝑗2 + 𝐷
𝑇

𝑗2𝐵
𝑇

𝑓𝑗
] ,

(25)

then discrete-time nonlinear impulsive switched system (19) is
asymptotically stable for any switching signal satisfying (14)
and guarantees𝐻

−
performance:

∞

∑

𝑘=0
𝛽
2
𝑓 (𝑘)
𝑇

𝑓 (𝑘) ≤

∞

∑

𝑘=0
𝑟 (𝑘)
𝑇

𝑟 (𝑘) . (26)

Proof. See the appendices.

3.3. Algorithm. In the previous sections, Theorems 9 and
11 have formulated the inequality conditions for the perfor-
mances (7) and (8), respectively. Summarily, we have the
following algorithm.

It is noted that conditions (16), (17), (23), and (24) are all
convex. Hence, the problem of FD filter design can directly
translate into the following optimization problem:

max 𝛽,

s.t. (16) , (17) , (23) and (24) , 𝑗 ∈N.
(27)

Moreover, if (27) is feasible, then the FD filter gains can
be given by

[

𝐴
𝑓𝑗
𝐵
𝑓𝑗

𝐶
𝑓𝑗
𝐷
𝑓𝑗

] = [

P
𝑗2 0

0 𝑅
𝑇

𝑗

]

−1

[

𝐴
𝑓𝑗
𝐵
𝑓𝑗

𝐶
𝑓𝑗
𝐷
𝑓𝑗

] . (28)

4. Examples

In this section, we present a numerical example to illus-
trate the effectiveness of FD design approach. Consider the
discrete-time nonlinear impulsive switched systems (1) with
two subsystems and two parameters:

𝐴1 = [
−0.12 0.53
−0.23 0.59

] ,

𝐴2 = [
−0.60 0.23
−0.49 −0.05

] ,

𝐵11 = 𝐵21 = [
−0.17
−0.16

] ,

𝐵12 = 𝐵22 = [
−0.14
0.05
] ,

Ω1 (𝑘𝑖, 𝑥 (𝑘𝑖)) = Ω2 (𝑡, 𝑥 (𝑡)) = [
0.2 sin (𝑥1 (𝑘𝑖))
0.2 sin (𝑥2 (𝑘𝑖))

] ,

Υ1 (𝑘, 𝑥 (𝑘)) = [
0.1 sin (𝑥1 (𝑘)) 𝑒

−0.5𝑘

0
] ,
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Υ2 (𝑘, 𝑥 (𝑘)) = [
0

0.1 sin (𝑥2 (𝑘)) 𝑒
−0.5𝑘] ,

𝐻1 = 𝐻2 = [
0.3 0
0 0.3

] ,

𝐶1 = 𝐶2 = [0.3 −0.1] ,

𝐷11 = 𝐷21 = 0.1.
(29)

Given 𝛾 = 1, 𝛼
𝑗
= 0.4, and 𝜀

𝑗1 = 𝜀j2 = 𝜀𝑗3 = 𝜀𝑗4 = 1 and
choosing 𝑔

𝑗
= 1, 𝜌

𝑗
= 0.32, we solve the convex optimization

problem (27) and get the optimal sensitivity performance
gain 𝛽 = 0.3561. The gain matrices of fault detection filters
and matrix in Lyapunov functions are obtained as

𝐴
𝑓1 = [

0.0664 0.2438
−0.1053 0.3415

] ,

𝐵
𝑓1 = [

0.6063
−0.2671

] ,

𝐶
𝑓1 = [−0.4074 0.0660] ,

𝐷
𝑓1 = − 2.0153,

𝐴
𝑓2 = [

−0.2878 0.1567
−0.3807 −0.0119

] ,

𝐵
𝑓2 = [

1.0665
0.0108

] ,

𝐶
𝑓2 = [−0.4265 0.0314] ,

𝐷
𝑓2 = − 2.1530,

P1 =

[
[
[
[
[

[

1.5526 −1.0070 0.6676 −0.2132
−1.0070 1.8900 −0.2132 0.4465
0.6676 −0.2132 0.6676 −0.2132
−0.2132 0.4465 −0.2132 0.4465

]
]
]
]
]

]

,

P2 =

[
[
[
[
[

[

2.5529 −1.0351 1.1314 −0.3521
−1.0351 1.3644 −0.3521 0.5526
1.1314 −0.3521 1.1314 −0.3521
−0.3521 0.5526 −0.3521 0.5526

]
]
]
]
]

]

.

(30)

Then, according to (14), the dwell time for each subsystem
is obtained:

dwell time for subsystem 1 󳨐⇒ 𝜏1 ≥ 11,

dwell time for subsystem 2 󳨐⇒ 𝜏2 ≥ 10.
(31)

To illustrate the simulation results of the FD objec-
tive, two cases which include the fault for subsystem 1
and subsystem 2, respectively, are considered. Furthermore,

the switching signal is generated by satisfying (31) as shown
in Figure 1. The threshold can be determined as 𝐽th = 0.1842.

Case 1. The fault for subsystem 1 is simulated as a pulse signal
with amplitude 1 that occurred from 90 to 120 steps. The
generated residual signal 𝑟(𝑘) and evaluation of residual eval-
uation function 𝐽

𝑟(𝑘)
are shown in Figure 2. The simulation

results show that when the fault for subsystem 1 occurs, the
subsystem 1 is not activated. Since subsystem 1 is activated
at 93 steps the residual signal varies sharply, and 𝐽

𝑟(𝑡)
> 𝐽th

at 99 steps, which means that the fault for subsystem 1 can be
detected 6 steps after subsystem 1 is activated. Hence, the fault
for subsystem 1 can be detected.

Case 2. The fault for subsystem 2 is simulated as a pulse
signal with amplitude 1 that occurred from 170 to 220 steps.
The generated residual signal 𝑟(𝑘) and evaluation of residual
evaluation function 𝐽

𝑟(𝑘)
are shown in Figure 3. It can be seen

that when the fault for subsystem 2 occurs at 170 steps, the
residual signal is changed sharply and 𝐽

𝑟(𝑘)
> 𝐽th at 182 steps.

Thus, the fault for subsystem 2 can be detected.

From Cases 1 and 2, we see that both faults for subsystem
1 and subsystem 2, respectively, can be detected, and they
demonstrate the effectiveness of the proposed designmethod.

5. Conclusion

In this paper, the problem of FDfilter design for discrete-time
nonlinear impulsive switched systems has been investigated.
Firstly, the weight 𝑙2 performance and the 𝐻

−
performance

are presented, and sufficient conditions to characterize given
performances have been formulated as the form of LMI.
Subsequently, the gains of FD filters are obtained by a mul-
tiobjective optimization problem. Finally, the effectiveness of
the proposed method for discrete-time nonlinear impulsive
switched systems is illustrated by the example.

Appendices

A. Proof of Lemma 8

When 𝑘 ∈ (𝑘
𝑖
, 𝑘
𝑖+1] and 𝑗th subsystem is activated, along the

trajectory of nonlinear, impulsive switched system (4) gives

Δ𝑉
𝑗
(𝑘) = 𝑥

𝑇

(𝑘) (A
𝑇

𝑗
P
𝑗
A
𝑗
−P
𝑗
) 𝑥 (𝑘)

+ 𝑥
𝑇

(𝑘)A
𝑇

𝑗
P
𝑗
B
𝑗1𝑑 (𝑘)

+ 𝑑
𝑇

(𝑘)B
𝑇

𝑗1P𝑗A𝑗𝑥 (𝑘)

+ 𝑑
𝑇

(𝑘)B
𝑇

𝑗1P𝑗B𝑗1𝑑 (𝑘)

+ Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

𝑇

P
𝑗
Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

+ 2Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

𝑇

P
𝑗
A
𝑗
𝑥 (𝑘)

+ 2Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

𝑇

P
𝑗
B
𝑗1𝑑 (𝑘) .

(A.1)
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Figure 1: Switching signal.

By Lemma 6, it is clear that

2Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

𝑇

P
𝑗
A
𝑗
𝑥 (𝑘)

≤ 𝜀
𝑗1Υ̃𝑗 (𝑘, 𝑥 (𝑘))

𝑇

Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

+ 𝜀
−1
𝑗1 𝑥
𝑇

(𝑘)A
𝑇

𝑗
P

2
𝑗
A
𝑗
𝑥 (𝑘) ,

2Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

𝑇

P
𝑗
B
𝑗1𝑑 (𝑘)

≤ 𝜀
𝑗2Υ̃𝑗 (𝑘, 𝑥 (𝑘))

𝑇

Υ̃
𝑗
(𝑘, 𝑥 (𝑘))

+ 𝜀
−1
𝑗2 𝑑 (𝑘)

𝑇

B
𝑇

𝑗1P
2
𝑗
B
𝑗1𝑑 (𝑘) .

(A.2)

Therefore, when assuming the zero input and using (12),
Lemma 7, and Assumption 1, we have the following condi-
tion: Δ𝑉

𝑗
|
𝑑(𝑘)=0(𝑘) ≤ 𝑥

𝑇

(𝑘)Q
𝑎𝑗
𝑥(𝑘), where Q

𝑎𝑗
= A𝑇
𝑗
(P
𝑗
+

𝜀
−1
𝑗1P

2
𝑗
)A
𝑗
−P
𝑗
+(𝜀
𝑗1+𝜆𝑗)𝑔𝑗𝐼. If (13) holds, thenQ𝑎𝑗+𝛼𝑗P𝑗+

𝜀
𝑗2𝑔𝑗𝐼 ≤ 0, which implies that Q

𝑎𝑗
≤ −𝛼

𝑗
P
𝑗
− 𝜀
𝑗2𝑔𝑗𝐼 ≤

−𝛼
𝑗
P
𝑗
≤ 0.Thus, we have

𝑉
𝑗
(𝑘 + 1)󵄨󵄨󵄨󵄨󵄨𝑑(𝑘)=0 ≤ (1−𝛼)𝑉𝑗 (𝑘) . (A.3)

At the impulsive switching time point 𝑘
𝑖
, it has

𝑉
𝑗
(𝑘
+

𝑖
) = (Δ𝑥 (𝑘

𝑖
) + 𝑥 (𝑘

𝑖
))
𝑇

P
𝑗
(Δ𝑥 (𝑘

𝑖
) + 𝑥 (𝑘

𝑖
))

= [(H
𝑗
+ 𝐼) 𝑥 (𝑘

𝑖
)]
𝑇

P
𝑗
[(H
𝑗
+ 𝐼) 𝑥 (𝑘

𝑖
)]

+ 2Ω̃𝑇
𝑗
(𝑘
𝑖
, 𝑥 (𝑘
𝑖
))P
𝑗
[(H
𝑗
+ 𝐼) 𝑥 (𝑘

𝑖
)]

+ Ω̃
𝑇

𝑗
(𝑘
𝑖
, 𝑥 (𝑘
𝑖
))P
𝑗
Ω̃
𝑗
(𝑘
𝑖
, 𝑥 (𝑘
𝑖
)) .

(A.4)

By Lemmas 6 and 7 and Assumption 2, it has

𝑉
𝑗
(𝑘
+

𝑖
) ≤ (𝜀

𝑗3 + 1) [(H𝑗 + 𝐼) 𝑥 (𝑘𝑖)]
𝑇

⋅P
𝑗
[(H
𝑗
+ 𝐼) 𝑥 (𝑘

𝑖
)] + (𝜀

−1
𝑗3 + 1) Ω̃

𝑇

𝑗
(𝑘
𝑖
, 𝑥 (𝑘
𝑖
))

⋅P
𝑗
Ω̃
𝑗
(𝑘
𝑖
, 𝑥 (𝑘
𝑖
))

≤ {(𝜀
𝑗3 + 1) 𝜆max {(H𝑗 + 𝐼)

𝑇

P
𝑗
(H
𝑗
+ 𝐼)}

+ (𝜀
−1
𝑗3 + 1) 𝜌

2
𝑗
𝜆max {P𝑗}} 𝑥

𝑇

(𝑘
𝑖
) 𝑥 (𝑘
𝑖
) ≤ 𝜇
𝑝𝑗

󵄨󵄨󵄨󵄨󵄨𝑖

⋅ 𝑉
𝑗
(𝑘
𝑖
) ,

(A.5)

where 𝜇
𝑝𝑗
|
𝑖
= ((𝜀
𝑗3 + 1)𝜆max{(H𝑗 + 𝐼)

𝑇

P
𝑗
(H
𝑗
+ 𝐼)} + (𝜀

−1
𝑗3 +

1)𝜌2
ℎ
𝜆max{P𝑗})/𝜆min{P𝑝}. Therefore, from (A.3) and (A.5),

we have

𝑉
𝑗
(𝑘) ≤ (1−𝛼)𝑘−𝑘𝑖 𝑉

𝑗
(𝑘
+

𝑖
)

≤ 𝜇
𝑝𝑗

󵄨󵄨󵄨󵄨󵄨𝑖
(1−𝛼)𝑘−𝑘𝑖 𝑉

𝑝
(𝑘
𝑖
) ≤ ⋅ ⋅ ⋅

≤

𝑖

∏

𝑙=1,𝑠 ̸=𝑞
𝑠∈N,𝑞∈N

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙
(1−𝛼)𝑘−𝑘0 𝑉

𝑗0
(𝑘0) .

(A.6)

Since (14) holds, that is, there exists 𝜇
𝑝𝑗
|
𝑖
> 0 such that

ln(𝜇
𝑝𝑗
|
𝑖
) + (𝑘
𝑖
− 𝑘
𝑖−1) ln(1 − 𝛼) < 0, then

𝑖

∏

𝑙=1,𝑠 ̸=𝑞
𝑠∈N,𝑞∈N

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙
(1−𝛼)𝑘𝑙−𝑘𝑙−1 < 1. (A.7)

Therefore, we conclude that 𝑉
𝑗
(𝑘) converges to zero as

𝑘 → ∞; then nonlinear impulsive switched system (11) with
𝑑(𝑘) = 0 is stable.

For any nonzero 𝑑(𝑘) ∈ 𝑙2[0,∞) and zero initial
condition 𝑥(𝑘0). Let Γ(𝑘) = 𝑟

𝑇

(𝑘)𝑟(𝑘) − 𝛾
2
𝑑
𝑇

(𝑘)𝑑(𝑘), we can
have

Δ𝑉
𝑗
(𝑘) + 𝛼𝑉

𝑗
(𝑘) + Γ (𝑘) ≤ [

𝑥 (𝑘)

𝑑 (𝑘)
]

𝑇

⋅ [

[

Q
𝑎𝑗
+ 𝛼P

𝑗
+ 𝜀
𝑗2𝑔𝑗𝐼 +C

𝑇

𝑗
C
𝑗

A𝑇
𝑗
P
𝑗
B
𝑗1 +C

𝑇

𝑗
D
𝑗1

∗ −𝛾
2
𝐼 +B𝑇

𝑗1 (P𝑗 + 𝜀
−1
𝑗2P

2
𝑗
)B
𝑗1 −D

𝑇

𝑗1D𝑗1

]

]

[

𝑥 (𝑘)

𝑑 (𝑘)
] .

(A.8)
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Figure 2: Residual signal and residual evaluation function for (Case 1).
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Figure 3: Residual signal and residual evaluation function for (Case 2).

If (13) holds, it is equivalent to Δ𝑉
𝑗
(𝑘) + 𝛼𝑉

𝑗
(𝑘) + Γ(𝑘) ≤ 0.

For 𝑘 ∈ (𝑘
𝑖
, 𝑘
𝑖+1], it can have the following inequality as the

similar way:

𝑉
𝑗
(𝑘)

≤

𝑖

∏

𝑙=1,𝑠 ̸=𝑞
𝑠∈N,𝑞∈N

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙
(1−𝛼)𝑘−𝑘0 𝑉

𝑗0
(𝑘0)

−

𝑘−1
∑

ℎ=𝑘0

{{{{

{{{{

{

𝑖

∏

𝑙=𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1) ,

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙

}}}}

}}}}

}

(1−𝛼)𝑘−ℎ−1 Γ (ℎ) .

(A.9)

Under the zero initial condition, it implies that

𝑘−1
∑

ℎ=𝑘0

{{{{

{{{{

{

𝑖

∏

𝑙=𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1) ,

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙

}}}}

}}}}

}

(1−𝛼)𝑘−ℎ−1 Γ (ℎ) < 0. (A.10)

Multiplying both sides of (A.10) by ∏𝑖
𝑙=1

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞
|
−1
𝑙
, one

can obtain
𝑘−1
∑

ℎ=𝑘0

𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1)

∏

𝑙=1
𝑠∈N,𝑞∈N,𝑠 ̸=𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨

−1
𝑙

(1−𝛼)𝑘−ℎ−1 𝑟𝑇 (𝑘) 𝑟 (𝑘)

≤

𝑘−1
∑

ℎ=𝑘0

𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1)

∏

𝑙=1
𝑠∈N,𝑞∈N,𝑠 ̸=𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨

−1
𝑙

(1−𝛼)𝑘−ℎ−1 𝛾2𝑑𝑇 (𝑘) 𝑑 (𝑘) .

(A.11)
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Moreover, it follows from the switching sinal that
∏
𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1)

𝑙=1
𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞
|
−1
𝑙
≥ (1 − 𝛼)ℎ−𝑘0 . Then

𝑘−1
∑

ℎ=𝑘0

(1−𝛼)𝑘−1−𝑘0 𝑟 (𝑠)𝑇 𝑟 (𝑠)

≤

𝑘−1
∑

ℎ=𝑘0

𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1)

∏

𝑙=1
𝑠∈N,𝑞∈N,𝑠 ̸=𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨

−1
𝑙

(1 − 𝛼)
𝑘−ℎ−1

𝑟
𝑇

(𝑘) 𝑟 (𝑘)

≤

𝑘−1
∑

ℎ=𝑘0

𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1)

∏

𝑙=1
𝑠∈N,𝑞∈N,𝑠 ̸=𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨

−1
𝑙

(1 − 𝛼)
𝑘−ℎ−1

𝛾
2
𝑑
𝑇

(𝑘) 𝑑 (𝑘)

≤

𝑘−1
∑

ℎ=𝑘0

𝛾
2
𝑑
𝑇

(𝑘) 𝑑 (𝑘) .

(A.12)

It further implies that

∞

∑

𝑘=𝑘0

(1−𝛼)𝑘−𝑘0 𝑟 (𝑘)𝑇 𝑟 (𝑘) ≤
∞

∑

ℎ=𝑘0

𝛾
2
𝑑
𝑇

(𝑘) 𝑑 (𝑘) . (A.13)

Therefore, we conclude that discrete-time nonlinear impul-
sive switched system (11) has the weighted 𝑙2 performance
for any switching signal satisfying (14), which completes the
proof.

B. Proof of Theorem 9

Suppose that (17) holds, and partitioning 𝐴
𝑓𝑗
= P
𝑗2𝐴𝑓𝑗,

𝐵
𝑓𝑗
= P
𝑗2𝐵𝑓𝑗, 𝐶𝑓𝑗 = 𝑅

𝑇

𝑗
𝐶
𝑓𝑗
, and𝐷

𝑓𝑗
= 𝑅
𝑇

𝑗
𝐷
𝑓𝑗
, (17) means

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼P
𝑗
+ 𝜑
𝑎𝑗
𝐼 0 A𝑇

𝑗
P
𝑗

A𝑇
𝑗
Pj 0 C𝑇

𝑗
𝑅
𝑗

∗ −𝛾
2
𝐼 B𝑇
𝑗1P𝑗 0 B𝑇

𝑗1P𝑗 D𝑇
𝑗1𝑅𝑗

∗ ∗ −P
𝑗

0 0 0
∗ ∗ ∗ −𝜀

𝑗1𝐼 0 0
∗ ∗ ∗ ∗ −𝜀

𝑗2𝐼 0

∗ ∗ ∗ ∗ 0 𝐼−He (𝑅
𝑗
)

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0;

(B.1)

then it is easy to see from (B.1) that (𝑅
𝑗
− 𝐼)
𝑇

(𝑅
𝑗
− 𝐼) ≥ 0,

which implies 𝐼 −He(𝑅
𝑗
) ≥ −𝑅

𝑇

𝑗
𝑅
𝑗
. Then (17) is transformed

to

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝛼P
𝑗
+ 𝜑
𝑎𝑗
𝐼 0 A𝑇

𝑗
P
𝑗

A𝑇
𝑗
P
𝑗

0 C𝑇
𝑗
𝑅
𝑗

∗ −𝛾
2
𝐼 B𝑇
𝑗1P𝑗 0 B𝑇

𝑗1P𝑗 D𝑇
𝑗1𝑅𝑗

∗ ∗ −P
𝑗

0 0 0
∗ ∗ ∗ −𝜀

𝑗1𝐼 0 0
∗ ∗ ∗ ∗ −𝜀

𝑗2𝐼 0

∗ ∗ ∗ ∗ 0 −𝑅
𝑇

𝑗
𝑅
𝑗

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0.

(B.2)

Premultiplying diag{𝐼, 𝐼,P−1
𝑗
, 𝐼, 𝐼, 𝑅

−𝑇

𝑗
} and postmulti-

plying diag{𝐼, 𝐼,P−1
𝑗
, 𝐼, 𝐼, 𝑅

−1
𝑗
} to (B.2), it is transformed into

[
[
[
[
[
[
[
[
[
[
[

[

−𝛼P
𝑗
+ 𝜑
𝑎𝑗
𝐼 0 A𝑇

𝑗
A𝑇
𝑗
P
𝑗

0 C𝑇
𝑗

∗ −𝛾
2
𝐼 B𝑇

𝑗1 0 B𝑇
𝑗1P𝑗 D𝑇

𝑗1

∗ ∗ −P−1
𝑗

0 0 0
∗ ∗ ∗ −𝜀

𝑗1𝐼 0 0
∗ ∗ ∗ ∗ −𝜀

𝑗2𝐼 0
∗ ∗ ∗ ∗ 0 −𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(B.3)

Then, by using the Schur complement formula, we can see
that (B.3) is equivalent to (13). Then, according to Lemma 8,
if the conditions (16), (17) hold, the switched system (11) is
asymptotically stable with a weighted 𝑙2 performance for any
switching signal satisfying (14), which completes the proof.

C. Proof of Lemma 10

Following the same lines as that for Lemma 8, the switched
system (19) satisfying switching signal (14) is stable.Then, the
𝐻
−
performance defined in (6) for discrete-time nonlinear

impulsive switched system (19) is established.
For any nonzero 𝑓(𝑘) ∈ 𝑙2[𝑘0,∞), consider the following

index: 𝐽(𝑘) = 𝛽2𝑓𝑇(𝑘)𝑓(𝑘) − 𝑟𝑇(𝑘)𝑟(𝑘). It has the following:

Δ𝑉
𝑗
(𝑘) + 𝛼𝑉

𝑗
(𝑘) + 𝐽 (𝑘) ≤ [

𝑥 (𝑘)

𝑓 (𝑘)
]

𝑇

⋅ [

[

Q
𝑏𝑗
+ 𝛼P

𝑗
+ 𝜀
𝑗4𝑔𝑗𝐼 −C

𝑇

𝑗
C
𝑗

B𝑇
𝑗2P𝑗A𝑗 −C

𝑇

𝑗
D
𝑗2

∗ 𝛽
2
𝐼 +B𝑇

𝑗2 (P𝑗 + 𝜀
−1
𝑗4P

2
𝑗
)B
𝑗2 +D

𝑇

𝑗2D𝑗2

]

]

[

𝑥 (𝑘)

𝑓 (𝑘)
] ,

(C.1)
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where Q
𝑏𝑗
= Q
𝑎𝑗
. If (21) holds, it is equivalent to Δ𝑉

𝑗
(𝑘) +

𝛼𝑉
𝑗
(𝑘) + 𝐽(𝑘) ≤ 0. By iteration operation on the above

inequality for 𝑘 ∈ (𝑘
𝑖
, 𝑘
𝑖+1], we have

𝑉
𝑗
(𝑘)

≤

𝑖

∏

𝑙=1,𝑠 ̸=𝑞
𝑠∈N,𝑞∈N

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙
(1−𝛼)𝑘−𝑘0 𝑉

𝑗0
(𝑘0)

−

𝑘−1
∑

ℎ=𝑘0

{{{{

{{{{

{

𝑖

∏

𝑙=𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1) ,

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙

}}}}

}}}}

}

(1−𝛼)𝑘−ℎ−1 𝐽 (ℎ) .

(C.2)

Under the zero initial condition, one has 𝑉
𝑗
(𝑘0) = 0 and

𝑉
𝑗
(𝑘) > 0; thus

𝑘−1
∑

ℎ=𝑘0

{{{{

{{{{

{

𝑖

∏

𝑙=𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1) ,

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙

}}}}

}}}}

}

(1−𝛼)𝑘−ℎ−1 𝐽 (ℎ) ≤ 0. (C.3)

Thus, from 𝜇
𝑠𝑞
|
𝑙
> 1, we obtain that

𝑘−1
∑

ℎ=𝑘0

(1−𝛼)𝑘−ℎ−1 𝐽 (ℎ)

≤

𝑘−1
∑

ℎ=𝑘0

{{{{

{{{{

{

𝑖

∏

𝑙=𝑔‖ℎ∈[𝑘𝑔,𝑘𝑔+1) ,

𝑠∈N,𝑞∈N,𝑠≠𝑞

𝜇
𝑠𝑞

󵄨󵄨󵄨󵄨󵄨𝑙

}}}}

}}}}

}

(1−𝛼)𝑘−ℎ−1 𝐽 (ℎ) ≤ 0.

(C.4)

Then we have

𝑘−1
∑

ℎ=𝑘0

(1−𝛼)𝑘−ℎ−1 𝛽2𝑓𝑇 (ℎ) 𝑓 (ℎ)

≤

𝑘−1
∑

ℎ=𝑘0

(1−𝛼)𝑘−ℎ−1 𝑟𝑇 (ℎ) 𝑟 (ℎ) .

(C.5)

When taking 𝑘 from 𝑘0 to∞, we can further obtain that

∞

∑

ℎ=𝑘0

𝛽
2
𝑓
𝑇

(ℎ) 𝑓 (ℎ) ≤

∞

∑

ℎ=𝑘0

𝑟
𝑇

(ℎ) 𝑟 (ℎ) . (C.6)

Therefore, we conclude that discrete-time nonlinear
impulsive switched system (19) has the 𝐻

−
performance for

any switching signal satisfying (14), which completes the
proof.

D. Proof of Theorem 11

Denote 𝛼 = 1 − 𝛼, 𝜑
𝑏𝑗
= (𝜀
𝑗1 + 𝜀𝑗4 + 𝜆𝑗)𝑔𝑗, and

M
𝑏𝑗
=

[
[
[

[

−𝐼 0 0

0 A𝑇
𝑗
(P
𝑗
+ 𝜀
−1
𝑗1P

2
𝑗
)A
𝑗
− 𝛼P

𝑗
+ 𝜑
𝑏𝑗
𝐼 B𝑇

𝑗2P𝑗A𝑗

0 A𝑇
𝑗
P
𝑗
B
𝑗2 𝛽

2
𝐼 +B𝑇

𝑗2 (P𝑗 + 𝜀
−1
𝑗4P

2
𝑗
)B
𝑗2

]
]
]

]

. (D.1)

To establish the convex condition, (21) can be rewritten as
follows:

[
[

[

C
𝑗
D
𝑗2

𝐼 0
0 𝐼

]
]

]

𝑇

M
𝑏𝑗

[
[

[

C
𝑗
D
𝑗2

𝐼 0
0 𝐼

]
]

]

< 0. (D.2)

On the other hand,

[𝐼 0 0]M
𝑏𝑗
[𝐼 0 0]𝑇 = − 𝐼 < 0. (D.3)

Based on Projection Lemma, it follows from (D.2) and (D.3)
that

M
𝑏𝑗
+He(

[
[
[

[

−𝐼

C𝑇
𝑗

D𝑇
𝑗2

]
]
]

]

W
𝑏𝑗
[

0 𝐼 0
0 0 𝐼

]) < 0, (D.4)

where W
𝑏𝑗
introduced by Projection Lemma is the matrix

variable of appropriate dimensions. Partition W
𝑏𝑗
as W
𝑏𝑗
=

[W
𝑏𝑗1 W

𝑏𝑗2] . By Schur complement, (D.4) is equivalent to



Abstract and Applied Analysis 11

[
[
[
[
[
[
[
[
[
[
[
[

[

−𝐼 −W
𝑏𝑗1 −W

𝑏𝑗2 0 0 0

∗ −𝛼P
𝑗
+ 𝜑
𝑏𝑗
𝐼 +He (C𝑇

𝑗
W
𝑏𝑗1) C𝑇

𝑗
W
𝑏𝑗2 +W

𝑇

𝑏𝑗1D𝑗2 A𝑇
𝑗
P
𝑗

A𝑇
𝑗
P
𝑗

0

∗ ∗ 𝛽
2
𝐼 +He (D𝑇

𝑗2W𝑏𝑗2) B𝑇
𝑗2P𝑗 0 B𝑇

𝑗2P𝑗

∗ ∗ ∗ −P
𝑗

0 0
∗ ∗ ∗ ∗ −𝜀

𝑗1𝐼 0
∗ ∗ ∗ ∗ ∗ −𝜀

𝑗3𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

< 0. (D.5)

Let W
𝑏𝑗1 = [R𝑗 R

𝑗
], W
𝑏𝑗2 = 𝑅𝑗, and R

𝑗
= [𝑅
𝑗
0] and

define 𝐴
𝑓𝑗
= P
𝑗2𝐴𝑓𝑗, 𝐵𝑓𝑗 = P

𝑗2𝐵𝑓𝑗, 𝐶𝑓𝑗 = 𝑅
𝑇

𝑗
𝐶
𝑓𝑗
, 𝐷
𝑓𝑗
=

𝑅
𝑇

𝑗
𝐷
𝑓𝑗
𝐶
𝑓𝑓𝑗
= R𝑇
𝑗
𝐶
𝑓𝑗
, and 𝐷

𝑓𝑓𝑗
= R𝑇
𝑗
𝐷
𝑓𝑗
; then (D.5) be-

comes (17). Hence if the conditions (16) and (17) hold, non-
linear impulsive switched system (19) is stable and guarantees
the𝐻

−
performance, which completes the proof.
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