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With Bell polynomials and symbolic computation, this paper investigates the (3+1)-dimensional Jimbo-Miwa equation, which is
one of the equations in the Kadomtsev-Petviashvili hierarchy of integrable systems. We derive a bilinear form and construct a
bilinear Bäcklund transformation (BT) for the (3+1)-dimensional Jimbo-Miwa equation, by virtue of which the soliton solutions
are obtained. Bell-polynomial-typed BT is also constructed and cast into the bilinear BT.

1. Introduction

Dynamical systems, such as those for the shallowwaters [1, 2],
plasmas and optical fiber communications [3–6], can often be
described by the nonlinear evolution equations (NLEEs) [7–
9] and studied by the relevant methods including the inverse
scattering [1], Bäcklund transformation (BT) [10–13], and
Hirota method [14–16]. Among them, the Hirota method [17,
18] is a direct tool for dealingwith certainNLEEs and relevant
soliton problems [19, 20]. Based on the bilinear form of a
given NLEE, one can obtain the multisoliton solutions [21],
bilinear auto-BTs [18], nonlinear superposition formulas, Lax
pair, Wronskian formulation [22], and so on [23].

Reflecting the complex nonlinear phenomena in our
real world [24–26], higher-dimensional NLEEs with their
analytic solutions and integrable properties [27–29] have
been of great interest. In fact, some (2 + 1)-dimensional
NLEEs have been investigated with different methods, for
example, the (2 + 1)-dimensional breaking soliton equation,
Kadomtsev-Petviashvili equation, and (2 + 1)-dimensional
Kaup-Kupershmidt equation [30–32]. However, for some (3+
1)-dimensional NLEEs, the conventional integrability test
fails [27], and then a natural problem is whether or not there
exists BT for a given (3+1)-dimensional NLEE.Moreover, for

the higher-dimensional NLEEs, finding a bilinear BT via the
exchange formula is often difficult, even if possible [18, 21].

In this paper, we will study the following (3 + 1)-
dimensional Jimbo-Miwa (JM) equation [32]:

𝑢
𝑥𝑥𝑥𝑦

+ 3𝑢
𝑦
𝑢
𝑥𝑥
+ 3𝑢
𝑥
𝑢
𝑥𝑦
+ 2𝑢
𝑦𝑡
− 3𝑢
𝑥𝑧
= 0, (1)

where 𝑢 is a real scalar function with four independent
variables 𝑥, 𝑦, 𝑧, and 𝑡 and the subscripts denote the corre-
sponding partial derivatives. Seen as one of the equations in
the Kadomtsev-Petviashvili hierarchy of integrable systems
[32, 33], (1) describes certain (3 + 1)-dimensional waves [13,
32] but does not have the Painlevé property [34] as defined in
[35].The soliton [36, 37], periodic [15], rational, and dromion
solutions [38, 39] for (1) have been obtained. BTs and analytic
solitonic solutions have been given in [13] with the truncated
Painlevé expansion at the constant level term.

However, existing literature has not studied the bilinear
BT and Bell-polynomial-typed BT of (1) as yet. Therefore,
in this paper, by means of the Bell polynomials and Hirota
bilinear method, we will obtain two BTs for (1), which are dif-
ferent from those in [13]. In Section 2, we will introduce some
concepts on the Bell polynomials and their connection with
the bilinear forms. In Section 3, using the Bell-polynomial

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2015, Article ID 834521, 5 pages
http://dx.doi.org/10.1155/2015/834521

http://dx.doi.org/10.1155/2015/834521


2 Abstract and Applied Analysis

expressions, we will derive a bilinear form of (1). In Section 4,
based on this bilinear form, we will obtain a bilinear BT with
soliton solutions and aBell-polynomial-typedBT. Finally, our
conclusions will be given in Section 5.

2. Preliminaries

Suppose that𝜑 is𝐶∞-functionwith respect to𝑥, and set𝜑
𝜃𝑥
=

𝜕𝜃
𝑥
𝜑 (𝜃 = 0, 1, 2, . . .). Then the Bell exponential polynomials

are given as [40–43]

𝑌
𝑛𝑥
(𝜑) ≡ 𝑌

𝑛
(𝜑1𝑥, 𝜑2𝑥, . . . , 𝜑𝑛𝑥) = 𝑒

−𝜑

𝜕
𝑛

𝑥
𝑒
𝜑

, (2)

where 𝑛 = 1, 2, . . ..
For example,

𝑌1𝑥 = 𝜑1𝑥,

𝑌2𝑥 = 𝜑2𝑥 +𝜑
2
1𝑥,

𝑌3𝑥 = 𝜑3𝑥 + 3𝜑1𝑥𝜑2𝑥 +𝜑
3
1𝑥, . . . .

(3)

Two-dimensional Bell polynomials are expressed as [40–43]

𝑌
𝑚𝑥,𝑛𝑡

(𝜑) ≡ 𝑌
𝑚,𝑛

(𝜑1𝑥,0𝑡, 𝜑0𝑥,1𝑡, . . . , 𝜑𝑟𝑥,𝑠𝑡, . . . , 𝜑𝑚𝑥,𝑛𝑡) = 𝑒
−𝜑

𝜕
𝑚

𝑥
𝜕
𝑛

𝑡
𝑒
𝜑

,

𝜑
𝑟𝑥,𝑠𝑡

= 𝜕
𝑟

𝑥
𝜕
𝑠

𝑡
𝜑 (𝑥, 𝑡) , (𝑚 = 1, 2, . . . ; 𝑟 = 0, 1, . . . , 𝑚; 𝑠 = 0, 1, . . . , 𝑛)

(4)

with 𝜑 hereby being 𝐶∞-function of 𝑥 and 𝑡.
Based on the Bell polynomials given above, the binary

Bell polynomials, namely,Y-polynomials, can be defined as
[41]

Y
𝑚𝑥,𝑛𝑡

(V, 𝑤) ≡ 𝑌
𝑚𝑥,𝑛𝑡

[𝜑 (V, 𝑤)] = 𝑌
𝑚,𝑛

(𝜑1𝑥,0𝑡, 𝜑0𝑥,1𝑡,

. . . , 𝜑
𝑟𝑥,𝑠𝑡

, . . . , 𝜑
𝑚𝑥,𝑛𝑡

)
󵄨󵄨󵄨󵄨
𝜑
𝑟𝑥,𝑠𝑡
={

V
𝑟𝑥,𝑠𝑡
, if 𝑟+𝑠 is odd,

𝑤
𝑟𝑥,𝑠𝑡
, if 𝑟+𝑠 is even,

(5)

where the vertical line means that the elements on the left-
hand side are chosen according to the rule on the right-
hand side, while V and 𝑤 are the functions that replace 𝜑
in the corresponding positions of the Bell polynomials. For
simplicity, we denoteY

𝑚𝑥,𝑛𝑡
(V, 𝑤) asY

𝑚𝑥
(V, 𝑤) orY

𝑛𝑡
(V, 𝑤)

if 𝑛 = 0 or𝑚 = 0, respectively.
As one special kind of Y-polynomials, 𝑃-polynomials

only possess the even-order partial differential terms and,
with 𝑞 = 𝑤 − V, are defined as [40, 41]

𝑃
𝑚𝑥,𝑛𝑡

(𝑞) ≡ 𝑌
𝑚𝑥,𝑛𝑡

[𝜑 (0, 𝑞)] = 𝑌
𝑚,𝑛

(𝜑1𝑥,0𝑡, 𝜑0𝑥,1𝑡, . . . ,

𝜑
𝑟𝑥,𝑠𝑡

, . . . , 𝜑
𝑚𝑥,𝑛𝑡

)
󵄨󵄨󵄨󵄨
𝜑
𝑟𝑥,𝑠𝑡
={

0, if 𝑟+𝑠 is odd,
𝑞
𝑟𝑥,𝑠𝑡
, if 𝑟+𝑠 is even,

(6)

which vanish unless 𝑛 + 𝑚 is even.
According to the above, the lower-order 𝑃-polynomials

can be given as

𝑃0 (𝑞) = 1,

𝑃2𝑥 (𝑞) = 𝑞2𝑥,

𝑃
𝑥,𝑡
(𝑞) = 𝑞

𝑥𝑡
,

𝑃4𝑥 (𝑞) = 𝑞4𝑥 + 3𝑞
2
2𝑥, . . . .

(7)

For a given pair of exponentials,

𝐹 = exp𝑓 (𝑥, 𝑡) ,

𝐺 = exp𝑔 (𝑥, 𝑡) ,
(8)

where 𝑓 and 𝑔 are 𝐶∞-functions of 𝑥 and 𝑡, while the Hirota
𝐷-operators are defined as [17, 42, 43]

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝐹 ⋅ 𝐺 ≡ (

𝜕

𝜕𝑥
−

𝜕

𝜕𝑥󸀠
)

𝑚

(
𝜕

𝜕𝑡
−
𝜕

𝜕𝑡󸀠
)

𝑛

𝐹 (𝑥, 𝑡)

×𝐺 (𝑥
󸀠

, 𝑡
󸀠

)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥󸀠=𝑥,𝑡󸀠=𝑡

,

(9)

where 𝑥󸀠, 𝑡󸀠 are the formal variables.
It has been found that there exist some relations between

the binary Bell polynomials and the Hirota 𝐷-operators [40,
41]. When V = ln(𝐹/𝐺), 𝑤 = ln𝐹𝐺, a binary Bell polynomial
can be transformed into a bilinear term according to the
identity [40, 41]

(𝐹𝐺)
−1
𝐷
𝑛

𝑥
𝐷
𝑚

𝑡
𝐹 ⋅ 𝐺 = Y

𝑛𝑥,𝑚𝑡
(V= ln 𝐹

𝐺
,𝑤= ln𝐹𝐺) . (10)

Likewise, when 𝑤 = 2 ln𝐺, 𝑃-polynomials can be associated
with the Hirota𝐷-operators according to the identity [40, 41]

(𝐺)
−2
𝐷
𝑛

𝑥
𝐷
𝑚

𝑡
𝐺 ⋅𝐺 = Y

𝑛𝑥,𝑚𝑡
(V= 0, 𝑤 = 2 ln𝐺)

= 𝑃
𝑚𝑥,𝑛𝑡

(𝑞) .
(11)

3. Bilinear Form

We will next investigate (1), to be written in 𝑃-polynomial
form with one independent variable. Based on the relation
between the binary Bell polynomials and Hirota bilinear
operators, namely, identities (10) and (11), (1) can be translated
into the corresponding bilinear forms.

Consider the following scale transformations:

𝑥 󳨀→ 𝜆
𝑘

𝑥
󸀠

,

𝑦 󳨀→ 𝜆
𝑙

𝑦
󸀠

,

𝑧 󳨀→ 𝜆
𝛼

𝑧
󸀠

,

𝑡 󳨀→ 𝜆
𝛽

𝑡
󸀠

,

𝑢 󳨀→ 𝜆
𝜇

𝑢
󸀠

,

(12)

where 𝜆, 𝑘, 𝑙, 𝛼, 𝛽, and 𝜇 are the real constants. Invariance
of (1) under such transformations requires that 𝜇 = −𝑘, 𝛼 =

𝑙 + 2𝑘, and 𝛽 = 3𝑘.
Notice that if we require that 𝜇 = −𝑘, we have to set 𝑢 =

𝑐𝑞
𝑥
in (1) and obtain

𝑞4𝑥,𝑦 + 3𝑐𝑞𝑥𝑦𝑞3𝑥 + 3𝑐𝑞2𝑥𝑞2𝑥,𝑦 + 2𝑞𝑥𝑦𝑡 − 3𝑞2𝑥,𝑧 = 0, (13)

where 𝑐 is an arbitrary constant.
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In order to express (13) with 𝑃-polynomials, we choose
𝑐 = 1. Then

[𝑃3𝑥,𝑦 (𝑞) + 2𝑃𝑦𝑡 (𝑞) − 3𝑃𝑥,𝑧 (𝑞)]
𝑥

= 0, (14)

whose corresponding bilinear form is

(𝐷
3
𝑥
𝐷
𝑦
+ 2𝐷
𝑦
𝐷
𝑡
− 3𝐷
𝑥
𝐷
𝑧
)𝐺 ⋅ 𝐺 = 0. (15)

Therefore, we get the bilinear form of (1), which is (14)
with 𝑃-polynomials or (15) with the bilinear operators. We
note that (15) is the same as that in [15], but the method that
we used is different from that in [15].

4. Bell-Polynomial-Typed BT and Bilinear
BT with Soliton Solutions

To construct a BT, we express (1) with 𝑃-polynomials:

𝐸 (𝑞) = 𝑃3𝑥,𝑦 (𝑞) + 2𝑃𝑦𝑡 (𝑞) − 3𝑃𝑥,𝑧 (𝑞) . (16)

Based on 𝐸(𝑞) we will derive the Bell-polynomial-typed
BT under the homogenous constraints between the primary
and replica fields instead of using exchange formulae.

Using the Bell polynomials, we have

𝑐 (V, 𝑤) = 𝐸 (𝑞
󸀠

) −𝐸 (𝑞)
󵄨󵄨󵄨󵄨󵄨𝑞=2 ln𝐺, 𝑞󸀠=2 ln𝐹 = 𝐸 (𝑤+ V)

− 𝐸 (𝑤− V)|
𝑤=ln𝐹𝐺, V=ln(𝐹/𝐺) = (𝑤+ V)3𝑥,𝑦

+ 3 (𝑤 + V)
𝑥𝑦
(𝑤+ V)2𝑥 + 2 (𝑤 + V)

𝑦𝑡
− 3 (𝑤 + V)

𝑥𝑧

− [(𝑤− V)3𝑥,𝑦 + 3 (𝑤 − V)
𝑥𝑦
(𝑤− V)2𝑥

+ 2 (𝑤 − V)
𝑦𝑡
− 3 (𝑤 − V)

𝑥𝑧
] = 2V3𝑥,𝑦 + 6𝑤𝑥𝑦V𝑥𝑥

+ 6V
𝑥𝑦
𝑤
𝑥𝑥
+ 4V
𝑦𝑡
− 6V
𝑥𝑧
.

(17)

Note that
Y2𝑥,𝑦 = V2𝑥,𝑦 + V𝑦𝑤2𝑥 + 2V𝑥𝑤𝑥𝑦 + V𝑦V

2
𝑥
,

Y3𝑥 = V3𝑥 + 3V𝑥𝑤2𝑥 + V
3
𝑥
.

(18)

Therefore, substituting (18) into (17), we have
𝑐 (V, 𝑤)

2
= V3𝑥,𝑦 + 3𝑤𝑥𝑦V𝑥𝑥 + 3V𝑥𝑦𝑤𝑥𝑥 + 2V𝑦𝑡 − 3V𝑥𝑧

= [𝑎V3𝑥,𝑦 + (1− 𝑎) V3𝑥,𝑦] + 2V𝑦𝑡 − 3V𝑥𝑧

+ 3𝑤
𝑥𝑦
V2𝑥 + 3V𝑥𝑦𝑤2𝑥

= (𝑎Y2𝑥,𝑦)
𝑥

− 𝑎 (V
𝑦
𝑤2𝑥 + 2V

𝑥
𝑤
𝑥𝑦
+ V
𝑦
V2
𝑥
)
𝑥

+ (1− 𝑎) (Y3𝑥)𝑦

− (1− 𝑎) (3V
𝑥
𝑤2𝑥 + V

3
𝑥
)
𝑦

+ 2 (Y
𝑡
)
𝑦

− 3 (Y
𝑧
)
𝑥
+ 3𝑤
𝑥𝑦
V2𝑥 + 3V𝑥𝑦𝑤2𝑥

= (𝑎Y2𝑥,𝑦 − 3Y𝑧)
𝑥

+ [(1− 𝑎)Y3𝑥 + 2Y𝑡]𝑦

+𝐴,

(19)

where

𝐴 = 3𝑤
𝑥𝑦
V2𝑥 + 3V𝑥𝑦𝑤2𝑥

− 𝑎 (V
𝑦
𝑤2𝑥 + 2V

𝑥
𝑤
𝑥𝑦
+ V
𝑦
V2
𝑥
)
𝑥

− (1− 𝑎) (3V
𝑥
𝑤2𝑥 + V

3
𝑥
)
𝑦

,

(20)

and 𝑎 is an arbitrary constant.
Further computation shows that

𝐴 = 2𝑎V
𝑥𝑦
𝑤2𝑥 + (𝑎 − 3) V𝑥𝑤2𝑥,𝑦 + (2𝑎 − 3) V

2
𝑥
V
𝑥𝑦

− (2𝑎 − 3) V2𝑥𝑤𝑥𝑦 − 𝑎V𝑦𝑤3𝑥 − 2𝑎V𝑥V𝑦V2𝑥

= 2𝑎 (V
𝑥
Y2𝑥)𝑦 +(−2𝑎 −

3
2
) V
𝑥
(Y2𝑥)𝑦

− 𝑎V
𝑦
(Y2𝑥)𝑥

+ [(𝑎−
3
2
) V
𝑥
𝑤2𝑥,𝑦 + (−2𝑎 + 3) V2𝑥𝑤𝑥𝑦] .

(21)

Hereby, if we choose 𝑎 = 3/2 and setY2𝑥 = 𝜎, then

𝐴 = 2𝑎 (V
𝑥
Y2𝑥)𝑦 = 3𝜏V

𝑥𝑦
,

𝑐 (V, 𝑤)

= 2 {(𝑎Y2𝑥,𝑦 − 3Y𝑧)
𝑥

+ [(1− 𝑎)Y3𝑥 + 2Y𝑡]𝑦}

+ 6𝜎V
𝑥𝑦
.

(22)

Hence,

𝑐 (V, 𝑤)
2

= [
3
2
Y2𝑥,𝑦 − 3Y𝑧 + (3− 𝑏) 𝜎Y𝑦]

𝑥

+(−
1
2
Y3𝑥 + 2Y𝑡 + 𝑏𝜎Y𝑥)

𝑦

.

(23)

Moreover, a decomposition of (23) leads to the following Bell-
polynomial-typed BT:

Y2𝑥 = 𝜎,

3
2
Y2𝑥,𝑦 − 3Y𝑧 + (3− 𝑏) 𝜎Y𝑦 = 𝜏,

−
1
2
Y3𝑥 + 2Y𝑡 + 𝑏𝜎Y𝑥 = 𝛿,

(24)

where 𝑏, 𝜎, 𝜏, and 𝛿 are the arbitrary constants.
Using the connection between the Bell polynomials and

bilinear operators, we give a bilinear BT between 𝐺 and 𝐺󸀠 as

𝐷
2
𝑥
𝐺
󸀠

⋅ 𝐺 = 𝜎𝐺
󸀠

⋅ 𝐺,

[
3
2
𝐷

2
𝑥
𝐷
𝑦
− 3𝐷
𝑧
+ (3− 𝑏) 𝜎𝐷

𝑦
]𝐺
󸀠

⋅ 𝐺 = 𝜏𝐺
󸀠

⋅ 𝐺,

(−
1
2
𝐷

3
𝑥
+ 2𝐷
𝑡
+ 𝑏𝜎𝐷

𝑥
)𝐺
󸀠

⋅ 𝐺 = 𝛿𝐺
󸀠

⋅ 𝐺.

(25)
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As an application, we derive the one-soliton solutions
from a trivial solution, by virtue of the bilinear BT, that is,
(25). Taking 𝜏 = 0, 𝛿 = 0, and 𝐺󸀠 = 1 in (25), we get

𝐺
𝑥𝑥
= 𝜎𝐺, (26)

3
2
𝐺
𝑥𝑥𝑦

− 3𝐺
𝑧
+ (3− 𝑏) 𝜎𝐺

𝑦
= 0, (27)

−
1
2
𝐺3𝑥 + 2𝐺𝑡 + 𝑏𝜎𝐺𝑥 = 0. (28)

Substituting (26) into (28), we have

(𝑏 −
1
2
)𝐺3𝑥 + 2𝐺𝑡 = 0, (29)

and hence we take

𝐺 = 𝑒
𝜉

+ 𝑒
−𝜉

, (30)

where 𝜉 = 𝑘𝑥+𝑙𝑦+𝑚𝑧+𝜔𝑡+𝜉(0) and 𝜉(0) is a nonzero constant.
On the other hand,we can choose𝜎 = 𝑘2 and substitute it into
(26) and (29), which implies that

𝜔 = (
1
4
−
𝑏

2
)𝑘

3
. (31)

Similarly, substituting (26) into (27) leads to

(
9
2
− 𝑏) 𝑘

2
𝐺
𝑦
= 3𝐺
𝑧
. (32)

Solving (32), we obtain

𝑚 = (
3
2
−
𝑏

3
)𝑘

2
𝑙. (33)

Finally, we can present the one-soliton solutions of (1) as

𝑢 = 2 (ln𝐺)
𝑥
= 2𝑘 tanh 𝜉, (34)

where 𝜉 = 𝑘𝑥+𝑙𝑦+(3/2−𝑏/3)𝑘2𝑙𝑧+(1/4−𝑏/2)𝑘3𝑡+𝜉(0), while
the parameters 𝑘, 𝑙, 𝑏, and 𝜉(0) are all arbitrary constants.

5. Discussions and Conclusions

We have investigated the (3 + 1)-dimensional Jimbo-Miwa
equation, that is, (1). With the aid of the Bell polynomials
and Hirota bilinear operators, we have derived bilinear form
(16) of (1) and then constructed a new BT, that is, (25), with
the Bell polynomials and symbolic computation.The bilinear
form and BT are important integrable property for the non-
linear evolution equations. Moreover, a BT often can be cast
into the Lax pair for integrable equations. It may be possible
to construct the bilinear BTs for the (3 + 1)-dimensional
Jimbo-Miwa equation via the exchange formulae; however,
the computation is tedious. Bell-polynomial-typed BTs (24)
have been constructed hereby and then cast into bilinear BTs
(25), which help us avoid the difficulties in using the exchange
formulae. As an application, one-soliton solutions (34) have
been obtained via BT (25).The existence of solution obtained
via solving this BT indicates that (24) or (25) are genuine ones.
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multiple soliton solutions for the (3 + 1)-dimensional Jimbo-
Miwa equation,” Chinese Physics, vol. 11, no. 5, p. 425, 2002.

[15] Q. L. Zha and Z. B. Li, “Multiple periodic-soliton solutions for
(3+1)-dimensional Jimbo-Miwa equation,” Communications in
Theoretical Physics, vol. 50, no. 5, pp. 1036–1040, 2008.
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