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Fractional functional differential equations with delay (FDDEs) have recently played a significant role in modeling of many real
areas of sciences such as physics, engineering, biology, medicine, and economics. FDDEs often cannot be solved analytically so the
approximate and numerical methods should be adapted to solve these types of equations. In this paper we consider a new method
of backward differentiation formula- (BDF-) type for solving FDDEs. This approach is based on the interval approximation of the
true solution using the Clenshaw and Curtis formula that is based on the truncated shifted Chebyshev polynomials. It is shown that
the new approach can be reformulated in an equivalent way as a Runge-Kutta method and the Butcher tableau of this method is
given. Estimation of local and global truncating errors is deduced and this leads to the proof of the convergence for the proposed
method. Illustrative examples of FDDEs are included to demonstrate the validity and applicability of the proposed approach.

1. Introduction

Fractional differential equations have been the focus of many
studies due to their frequent appearance in various sciences
[1–4]. Some approximate and numerical methods are used
to obtain approximate solutions [5–11]. The general theory of
differential equations with delays (DDEs) is widely developed
and discussed in the literature [12–16]. DDEs are differential
equations in which the rate of change of 𝑦(𝑡) does not depend
only on the values of 𝑦 for the same time value but also on
time values less than 𝑡. In the simplest case, DDEs have the
form

𝑦
󸀠

(𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝐿] , 𝜏 > 0, (1)

under the following initial conditions:

𝑦 (𝑡) = 𝜙 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0, (2)

where 𝜏 is the delay term. DDEs arise in scientific models.
These models of DDEs appeared in [13, 14, 17, 18]. Recently,
fractional differential equations with delay (FDDEs) gain
the attention of many researchers. FDDEs have appeared also
in some scientific areas [19–23]. Some approaches are built to
obtain numerical and approximate solutions for FDDEs:

𝐷
(𝛽)
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝐿] , 𝑡 ≥ 0,

𝑚 − 1 < 𝛽 ≤ 𝑚, 𝑚 = 1, 2, 3, . . . ,

(3)

under the following initial conditions:

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ≤ 0. (4)

Yang and Cao [24] studied the existence and uniqueness
of initial value problems for nonlinear higher fractional
equations with delay by fixed point theory. The theory of
fractional functional differential equation and the asymp-
totic properties of fractional delay differential equations are
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discussed, respectively, in [25–27]. Bhalekar and Daftardar-
Gejji adapted the Adams Bashforth Moulton predictor cor-
rector method (EABMPC method) [28] to solve this form
of FDDEs (3)-(4), where 0 < 𝛽 ≤ 1. Besides, Wang [29]
combined Adams BashforthMoulton method with the linear
interpolation method to approximate FDDEs. In addition,
Wang et al. [30] introduced a numerical method based on
Grunwald Letnikov definition to solve nonlinear FDDEswith
constant time varying delay.

In addition to that, Morgado et al. [31] made an analysis
and numerical methods for linear fractional differential
equations with positive finite delay:

𝐷
(𝛽)
𝑦 (𝑡) = 𝑎𝑦 (𝑡 − 𝜏) + 𝑏𝑦 (𝑡) + 𝑓 (𝑡) ,

𝑡 ≥ 0, 0 < 𝛽 ≤ 1,

(5)

under the following initial conditions:

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] . (6)

Also, Moghaddam and Mostaghim [32] discussed and intro-
duced a novel matrix approach to fractional finite difference
for solving models based on nonlinear fractional delay
differential equations of the form (5)-(6). Also, Moghaddam
and Mostaghim [33] developed a numerical method based
on finite difference for solving fractional delay differential
equations of the form (5)-(6). In [34] the authors consider
a fourth-order method of BDF-type for solving stiff initial-
value problems, based on the interval approximation of the
true solution by truncated Chebyshev series. It is shown that
the method may be formulated as a Runge-Kutta method
having stage order four.

In this paper, we focus on FDDEs with finite delay which
has the following form:

𝐷
(𝛽)
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) , 𝑡 ∈ [0, 𝐿] , 𝑡 ≥ 0,

𝑚 − 1 < 𝛽 ≤ 𝑚,

𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] .

(7)

We present fractional order Runge-Kutta method of back-
ward differentiation formula- (BDF-) type based on approxi-
mations by truncated shifted Chebyshev series of Clenshaw
and Curtis formula in the sense that we do not take an
approximation of the function 𝑓 in the right-hand side of
the differential equation, which will be integrated later, but
we take a truncated Chebyshev series instead.

The structure of this paper is arranged in the following
way: in Section 2, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory.
In Section 3, we introduce the derivation of the method and
the fundamental related relations. In Section 4,we present the
proposed method as a one-step recurrence formula, obtain
the local truncating error, and prove that the order of the
proposedmethod is 𝑛𝛽 such that 𝑛 is the approximation order
of Clenshaw andCurtis formula. In Section 5, the global trun-
cating error of our proposedmethod is deduced. In Section 6,

numerical examples are given to solve FDDEs and show the
accuracy of the presented method. Finally, in Section 7, the
paper ends with a brief conclusion and some remarks.

2. Preliminaries and Notations

In this section, we present some necessary definitions and
mathematical preliminaries of the fractional calculus theory
required for our subsequent development.

2.1. The Caputo Fractional Derivatives

Definition 1. The Caputo fractional derivative operator 𝐷(])
of order ] is defined in the following form:

𝐷
(])
𝑓 (𝑥) =

1

Γ (𝑚 − ])
∫

𝑥

0

𝑓
(𝑚)
(𝜉)

(𝑥 − 𝜉)
]−𝑚+1 𝑑𝜉, ] > 0, (8)

where𝑚 − 1 < ] ≤ 𝑚,𝑚 ∈ N, 𝑥 > 0.

Similar to integer-order differentiation, the Caputo frac-
tional derivative operator is a linear operation:

𝐷
(])
(𝜆𝑝 (𝑥) + 𝜇𝑞 (𝑥)) = 𝜆𝐷

(])
𝑝 (𝑥) + 𝜇𝐷

(])
𝑞 (𝑥) , (9)

where 𝜆 and 𝜇 are constants.
For Caputo’s derivative we have

𝐷
(])
𝐶 = 0, 𝐶 is a constant,

𝐷
(])
𝑥
𝑛
=

{{

{{

{

0, for 𝑛 ∈ N
0
, 𝑛 < ⌈]⌉ ;

Γ (𝑛 + 1)

Γ (𝑛 + 1 − ])
𝑥
𝑛−]
, for 𝑛 ∈ N

0
, 𝑛 ≥ ⌈]⌉ .

(10)

We use the ceiling function ⌈]⌉ to denote the smallest integer
greater than or equal to ] and N

0
= {0, 1, 2, . . .}. Recall that,

for ] ∈ N, the Caputo differential operator coincides with the
usual differential operator of integer order.

For more details on fractional derivatives definitions and
their properties, see [35–38].

2.2. The Definition and Properties of the Shifted Chebyshev
Polynomials. The well-known Chebyshev polynomials [39]
are defined on the interval [−1, 1] and can be determinedwith
the aid of the following recurrence formula:

𝑇
𝑛+1
(𝑧) = 2𝑧𝑇

𝑛
(𝑧) − 𝑇

𝑛−1
(𝑧) ,

𝑇
0
(𝑧) = 1, 𝑇

1
(𝑧) = 𝑧, 𝑛 = 1, 2, . . . .

(11)

It is well known that 𝑇
𝑛
(1) = 1, 𝑇

𝑛
(−1) = (−1)

𝑛. The analytic
form of the Chebyshev polynomials𝑇

𝑛
(𝑧) of degree 𝑛 is given

by

𝑇
𝑛
(𝑧) =

⌊𝑛/2⌋

∑

𝑖=0

(−1)
𝑖
2
𝑛−2 𝑖−1 𝑛 (𝑛 − 𝑖 − 1)!

(𝑖)! (𝑛 − 2𝑖)!
𝑧
𝑛−2𝑖
, (12)
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where ⌊𝑛/2⌋ denotes the integer part of 𝑛/2. The orthogonal-
ity condition is

∫

1

−1

𝑇
𝑖
(𝑧) 𝑇
𝑗
(𝑧)

√1 − 𝑧2
𝑑𝑧 =

{{{{

{{{{

{

𝜋, for 𝑖 = 𝑗 = 0;
𝜋

2
, for 𝑖 = 𝑗 ̸= 0;

0, for 𝑖 ̸= 𝑗.

(13)

In order to use these polynomials on the interval [0, 𝐿]
we define the so-called shifted Chebyshev polynomials by
introducing the change of variable 𝑧 = 2𝑥/𝐿 − 1. The shifted
Chebyshev polynomials are defined as

𝑇
∗

𝑛
(𝑥) = 𝑇

𝑛
(
2𝑥

𝐿
− 1) , where

𝑇
∗

0
(𝑥) = 1, 𝑇

∗

1
(𝑥) =

2𝑥

𝐿
− 1.

(14)

The analytic form of the shifted Chebyshev polynomial𝑇∗
𝑛
(𝑥)

of degree 𝑛 is given by

𝑇
∗

𝑛
(𝑥) = 𝑛

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘 (𝑛 + 𝑘 − 1)!2

2𝑘

(𝑛 − 𝑘)! (2𝑘)!𝐿𝑘
𝑥
𝑘
, (15)

where 𝑇∗
𝑛
(0) = (−1)

𝑛 and 𝑇∗
𝑛
(𝐿) = 1. The orthogonality

condition of these polynomials is

∫

𝐿

0

𝑇
∗

𝑗
(𝑥) 𝑇
∗

𝑘
(𝑥) 𝑤 (𝑥) 𝑑𝑥 = 𝛿

𝑗𝑘
ℎ
𝑘
, (16)

where the weight function𝑤(𝑥) = 1/√𝐿𝑥 − 𝑥2, ℎ
𝑘
= (𝑏
𝑘
/2)𝜋,

with 𝑏
0
= 2, 𝑏
𝑘
= 1, 𝑘 ≥ 1.

The function 𝑦(𝑥), which belongs to the space of square
integrable in [0, 𝐿], may be expressed in terms of shifted
Chebyshev polynomials as

𝑦 (𝑥) =

∞

∑

𝑛=0

𝑐
𝑛
𝑇
∗

𝑛
(𝑥) , (17)

where the coefficients 𝑐
𝑛
are given by

𝑐
𝑛
=
1

ℎ
𝑛

∫

𝐿

0

𝑦 (𝑥) 𝑇
∗

𝑛
(𝑥) 𝑤 (𝑥) 𝑑𝑥, 𝑛 = 0, 1, 2, . . . . (18)

The well-known shifted Chebyshev polynomials of the first
kind of degree 𝑛 are defined on the interval [0, 𝐿] as in (15).We
choose the grid (interpolation) points to be the Chebyshev-
Gauss Lobatto points associated with the interval [0, 𝐿], 𝑥

𝑟
=

𝐿/2 − (𝐿/2) cos(𝜋𝑟/𝑁), 𝑟 = 0, 1, . . . , 𝑁. These grids can be
written as 𝐿 = 𝑥

𝑁
< 𝑥
𝑁−1

< ⋅ ⋅ ⋅ < 𝑥
1
< 𝑥
0
= 0.

Clenshaw and Curtis [40] introduced an approximation
of the function 𝑦(𝑥), and we reformulate it to be used on the
shifted Chebyshev polynomials as follows:

𝑦
𝑁
(𝑥) =

𝑁

∑

𝑛=0

󸀠󸀠
𝑎
𝑛
𝑇
∗

𝑛
(𝑥) , 𝑎

𝑛
=
2

𝑁

𝑁

∑

𝑟=0

󸀠󸀠
𝑦 (𝑥
𝑟
) 𝑇
∗

𝑛
(𝑥
𝑟
) .

(19)

The summation symbol with double primes denotes a sum
with both first and last terms halved.

3. Derivation of the Numerical
Approximation Scheme

Let us consider the initial value problem for arbitrary order
fractional differential equation with delay of the form

𝐷
(𝛽)
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) ,

𝑡 ∈ [0, 𝐿] , 𝑡 ≥ 0, 𝑦 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(20)

such that𝑚 − 1 < 𝛽 ≤ 𝑚 and𝑚 is an integer.
Yang and Cao studied the existence and uniqueness of

these types of (20) using the fixed point theory [24]. Now, let
𝑦
𝑠
be an approximation of the theoretical solution 𝑦(𝑡) at 𝑡

𝑠
.

We are interested in obtaining a numerical approximation at
the point 𝑡

𝑠+1
= 𝑡
𝑠
+ ℎ such that ℎ is the step size.

If we rewrite the solution 𝑦(𝑡) in the interval [𝑡
𝑠
, 𝑡
𝑠+1
] in

terms of a new variable 𝛼 defined by

𝑡 = 𝑡
𝑠
+
ℎ𝛼

𝐿
, 𝛼 ∈ [0, 𝐿] , (21)

we can approximate the solution of FDDEs expressed in the
form

𝑦 (𝑡) = 𝑦(𝑡
𝑠
+
ℎ𝛼

𝐿
) = 𝑦 (𝛼) . (22)

Approximate (22) in terms of Clenshaw and Curtis finite sum
approximations as follows:

𝑦 (𝛼) =

𝑁

∑

𝑛=0

󸀠󸀠
𝑎
𝑛
𝑇
∗

𝑛
(𝛼) , 𝑎

𝑛
=
2

𝑁

𝑁

∑

𝑟=0

󸀠󸀠
𝑦 (𝑡
𝑠
+ 𝜁
𝑟
ℎ) 𝑇
∗

𝑛
(𝛼
𝑟
) ,

(23)

such that

𝜁
𝑟
=
𝛼
𝑟

𝐿
, 𝛼

𝑟
=
𝐿

2
−
𝐿

2
cos(𝜋𝑟

𝑁
) ,

𝐷
(𝛽)

𝑡
𝑦 (𝛼)

=
2

𝑁

𝑁

∑

𝑛=0

󸀠󸀠

𝑁

∑

𝑟=0

󸀠󸀠
𝑦 (𝑡
𝑠
+ 𝜁
𝑟
ℎ) 𝑇
∗

𝑛
(𝛼
𝑟
)𝐷
(𝛽)

𝑡
𝑇
∗

𝑛
(𝛼 (𝑡)) .

(24)
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Using the analytic form of shifted Chebyshev polynomials
(15) and the properties of Caputo fractional derivatives (10)
gives

𝐷
(𝛽)

𝑡
𝑇
∗

𝑛
(𝛼 (𝑡))

=

𝑛

∑

𝑘=0

𝑛 (−1)
(𝑛−𝑘)

2
(2𝑘)
(𝑛 + 𝑘 − 1)!

(𝑛 − 𝑘)! (2𝑘)!𝐿𝑘
𝐷
(𝛽)

𝑡
((
𝐿

ℎ
𝑡 −
𝐿

ℎ
𝑡
𝑠
)

𝑘

)

(25)

=

𝑛

∑

𝑘=⌈𝛽⌉

𝑛 (−1)
(𝑛−𝑘)

2
(2𝑘)
(𝑛 + 𝑘 − 1)!Γ (𝑘 + 1)

(𝑛 − 𝑘)! (2𝑘)!𝐿𝑘Γ (𝑘 + 1 − 𝛽)

⋅ ((
𝐿

ℎ
)

(𝛽)

(
𝐿

ℎ
(𝑡 − 𝑡
𝑠
))

𝑘−𝛽

)

(26)

=

𝑛

∑

𝑘=⌈𝛽⌉

𝑛 (−1)
(𝑛−𝑘)

2
(2𝑘)
(𝑛 + 𝑘 − 1)!Γ (𝑘 + 1) 𝐿

𝛽

(𝑛 − 𝑘)! (2𝑘)!𝐿𝑘Γ (𝑘 + 1 − 𝛽) ℎ𝛽
𝛼
𝑘−𝛽
. (27)

Now, 𝛼𝑘−𝛽 can be expressed approximately in terms of shifted
Chebyshev series as follows:

𝛼
𝑘−𝛽
≅

𝑁

∑

𝑗=0

𝑐
𝑘𝑗
𝑇
∗

𝑗
(𝛼) , (28)

where 𝑐
𝑘𝑗
is obtained from (18) as clarified by Doha et al. [5],

𝑐
𝑘𝑗
=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

1

√𝜋

𝐿
𝑘−𝛽
Γ (𝑘 − 𝛽 + 1/2)

Γ (𝑘 − 𝛽 + 1)
,

for 𝑗 = 0;

𝑗𝐿
𝑘−𝛽

√𝜋

⋅

𝑗

∑

𝑟=0

(−1)
𝑗−𝑟
(𝑗 + 𝑟 − 1)!2

2𝑟+1
Γ (𝑘 + 𝑟 − 𝛽 + 1/2)

(𝑗 − 𝑟)! (2𝑟)!Γ (𝑘 + 𝑟 − 𝛽 + 1)
,

for 𝑗 = 1, 2, . . . .
(29)

From (27)–(29), we get

𝐷
(𝛽)

𝑡
𝑇
∗

𝑛
(𝛼 (𝑡)) =

1

ℎ𝛽

∞

∑

𝑗=0

𝜔
𝛽
(𝑛, 𝑗) 𝑇

∗

𝑗
(𝛼) ,

𝑛 = ⌈𝛽⌉ , ⌈𝛽⌉ + 1, . . . ,

(30)

where 𝜔
𝛽
(𝑛, 𝑗) = ∑

𝑛

𝑘=⌈𝛽⌉
𝜓
𝑛,𝑗,𝑘

,

𝜓
𝑛,𝑗,𝑘

=

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

𝑛 (−1)
𝑛−𝑘
(𝑛 + 𝑘 − 1)!2

2𝑘
𝑘!Γ (𝑘 − 𝛽 + 1/2)

𝐿𝛽 (𝑛 − 𝑘)! (2𝑘)!√𝜋Γ (𝑘 − 𝛽 + 1)
2

,

for 𝑗 = 0;

(−1)
𝑛−𝑘
𝑛𝑗 (𝑛 + 𝑘 − 1)!2

2𝑘+1
𝑘!

𝐿𝛽 (𝑛 − 𝑘)! (2𝑘)!Γ (𝑘 − 𝛽 + 1)√𝜋

⋅

𝑗

∑

𝑟=0

(−1)
𝑗−𝑟
(𝑗 + 𝑘 − 1)!2

2𝑟
Γ (𝑘 + 𝑟 − 𝛽 + 1/2)

(𝑗 − 𝑟)! (2𝑟)!Γ (𝑘 + 𝑟 − 𝛽 + 1)
,

for 𝑗 = 1, 2, . . . .
(31)

Then, 𝜓
𝑛,𝑗,𝑘

can be put in the following form:

𝜓
𝑛,𝑗,𝑘

= (−1)
𝑛−𝑘
2𝑛 (𝑛 + 𝑘 − 1)!Γ (𝑘 − 𝛽 +

1

2
)

⋅ (𝑏
𝑗
𝐿
𝛽
Γ (𝑘 +

1

2
) (𝑛 − 𝑘)!Γ (𝑘 − 𝛽 − 𝑗 + 1)

⋅ Γ (𝑘 + 𝑗 − 𝛽 + 1) )
−1

, 𝑗 = 0, 1, . . . .

(32)

Then,

𝐷
(𝛽)

𝑡
𝑇
∗

𝑛
(𝛼 (𝑡))

=
1

ℎ𝛽

𝑁

∑

𝑗=0

𝑛

∑

𝑘=⌈𝛽⌉

((−1)
(𝑛−𝑘)

2𝑛 (𝑛 + 𝑘 − 1)!Γ (𝑘 − 𝛽 +
1

2
)

⋅ (𝑏
𝑗
Γ (𝑘 +

1

2
) (𝑛 − 𝑘)!Γ (𝑘 − 𝛽 + 𝑗 + 1)

⋅ Γ (𝑘 − 𝛽 − 𝑗 + 1) )
−1

)𝑇
∗

𝑗
(𝛼) .

(33)

From (23) and (33), we obtain the following approximate
equation:

𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏))

=
4

𝑁ℎ𝛽

𝑁

∑

𝑛=⌈𝛽⌉

󸀠󸀠

𝑁

∑

𝑟=0

󸀠󸀠

𝑁

∑

𝑗=0

𝑛

∑

𝑘=⌈𝛽⌉

(−1)
(𝑛−𝑘)

𝑛 (𝑛 + 𝑘 − 1)!Γ (𝑘 − 𝛽 + 1/2) 𝑦 (𝑡
𝑠
+ 𝜁
𝑟
ℎ) 𝑇
∗

𝑛
(𝛼
𝑟
)

𝑏
𝑗
Γ (𝑘 + 1/2) (𝑛 − 𝑘)!Γ (𝑘 − 𝛽 + 𝑗 + 1) Γ (𝑘 − 𝛽 − 𝑗 + 1)

𝑇
∗

𝑗
(𝛼) .

(34)
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Evaluating the formula (34) at 𝛼
ℓ
= 𝐿/2 − (𝐿/2) cos(𝜋ℓ/𝑁),

ℓ = 1, 2, . . . , 𝑁 gives an implicit system of algebraic equations

𝑓 (𝑡
𝑠
+ 𝜁
ℓ
ℎ, 𝑦 (𝑡

𝑠
+ 𝜁
ℓ
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
ℓ
ℎ − 𝜏))

=
4

𝑁ℎ𝛽

𝑁

∑

𝑛=⌈𝛽⌉

󸀠󸀠

𝑁

∑

𝑟=0

󸀠󸀠

𝑁

∑

𝑗=0

𝑛

∑

𝑘=⌈𝛽⌉

(−1)
(𝑛−𝑘)

𝑛 (𝑛 + 𝑘 − 1)!Γ (𝑘 − 𝛽 + 1/2) 𝑦 (𝑡
𝑠
+ 𝜁
𝑟
ℎ) 𝑇
∗

𝑛
(𝛼
𝑟
)

𝑏
𝑗
Γ (𝑘 + 1/2) (𝑛 − 𝑘)!Γ (𝑘 − 𝛽 + 𝑗 + 1) Γ (𝑘 − 𝛽 − 𝑗 + 1)

𝑇
∗

𝑗
(𝛼
ℓ
) .

(35)

It can be observed that, for any delayed term 𝜏, (𝑡
𝑠
+ 𝜁
ℓ
ℎ −

𝜏) may not be a grid point 𝑡
ℓ
for any ℓ. So, we establish the

approximation for the delayed function 𝑦(𝑡 − 𝜏) as follows:

𝑑
ℓ
= 𝑦 (𝑡

ℓ
− 𝜏 (𝑡
ℓ
)) = 𝑦 (𝑡

𝑠
+ 𝜁
ℓ
ℎ − 𝜏 (𝑡

𝑠
+ 𝜁
ℓ
ℎ)) . (36)

So, we define the delayed term as 𝜏 = (𝑚
𝑠
+ 𝛿
ℓ
)ℎ such that

0 ≤ 𝛿
ℓ
< 1 and𝑚

𝑠
is a positive integer. As 𝑡

𝑠+1
= 𝑡
𝑠
+ ℎ, then

𝑑
ℓ
= 𝑦 (𝑡

0
+ (𝑠 − 𝑚

𝑠
) ℎ + (𝜁

ℓ
− 𝛿
ℓ
) ℎ) . (37)

Then, we have two different cases.

The First Case (𝛿
ℓ
= 0). Consider

𝑑
ℓ
= {
𝑦 (𝑡
𝑠−𝑚
𝑠

+ 𝜁
ℓ
ℎ) , for 𝑠 > 𝑚

𝑠
;

Λ
ℓ
, for 𝑠 ≤ 𝑚

𝑠
,

(38)

such that

Λ
ℓ
=

{{{

{{{

{

𝑦 (𝑡
0
+ 𝜁
ℓ
ℎ) , for 𝑠 = 𝑚

𝑠
;

𝑦 (𝑡
0
) , for 𝑠 + 𝜁

ℓ
= 𝑚
𝑠
;

𝜙 (𝑡
ℓ
− 𝜏 (𝑡
ℓ
)) , for 𝑠 + 𝜁

ℓ
< 𝑚
𝑠
.

(39)

The Second Case (0 < 𝛿
ℓ
< 1). In this case, 𝑦(𝑡 − 𝜏) is not

a grid point. To overcome this, we introduce the following
approximation:

𝑑
ℓ
= 𝑦 (𝑡

0
+ (𝑠 − 𝑚

𝑠
− 1) ℎ + 𝜁

ℓ
ℎ − (1 − 𝛿

ℓ
) ℎ)

= 𝑦 ((𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ) + (1 − 𝛿

ℓ
) ℎ)

≃ 𝑦 (𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ)

+ (1 − 𝛿
ℓ
) ℎ𝑦
󸀠
(𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ) + 𝑂 (ℎ

2
)

≃ 𝑦 (𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ) + (1 − 𝛿

ℓ
) ℎ

⋅ [
𝑦 (𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ + ℎ) − 𝑦 (𝑡

𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ)

ℎ
]

≃ (1 − 𝛿
ℓ
) 𝑦 (𝑡
𝑠−𝑚
𝑠

+ 𝜁
ℓ
ℎ) + 𝛿

ℓ
𝑦 (𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ) .

(40)

Then, we have

𝑑
ℓ
=

{{{{{{{

{{{{{{{

{

(1 − 𝛿
ℓ
) 𝑦 (𝑡
𝑠−𝑚
𝑠

+ 𝜁
ℓ
ℎ)

+𝛿
ℓ
𝑦 (𝑡
𝑠−𝑚
𝑠
−1
+ 𝜁
ℓ
ℎ) , for 𝑠 > 𝑚

𝑠
;

(1 − 𝛿
ℓ
) 𝑦 (𝑡
0
+ 𝜁
ℓ
ℎ) + 𝛿

ℓ
𝜙 (𝑡
ℓ
− 𝜏 (𝑡
ℓ
)) , for 𝑠 = 𝑚

𝑠
;

ℏ
ℓ
, for 𝑠 < 𝑚

𝑠
,

(41)

such that

ℏ
ℓ
=
{

{

{

(1 − 𝛿
ℓ
) 𝑦 (𝑡
0
) + 𝛿
ℓ
𝜙 (𝑡
ℓ
− 𝜏 (𝑡
ℓ
)) , for 𝑠 + 𝜁

ℓ
= 𝑚
𝑠
;

𝜙 (𝑡
ℓ
− 𝜏 (𝑡
ℓ
)) , for 𝑠 + 𝜁

ℓ
< 𝑚
𝑠
.

(42)

From (35)–(42), we have the following numerical approxima-
tion scheme:

ℎ
𝛽
𝑓 (𝑡
𝑠
+ 𝜁
ℓ
ℎ, 𝑦 (𝑡

𝑠
+ 𝜁
ℓ
ℎ) , 𝑑
ℓ
)

=
4

𝑁

𝑁

∑

𝑛=⌈𝛽⌉

󸀠󸀠

𝑁

∑

𝑟=0

󸀠󸀠

𝑁

∑

𝑗=0

𝑛

∑

𝑘=⌈𝛽⌉

(−1)
(𝑛−𝑘)

𝑛 (𝑛 + 𝑘 − 1)!Γ (𝑘 − 𝛽 + 1/2) 𝑦 (𝑡
𝑠
+ 𝜁
𝑟
ℎ) 𝑇
∗

𝑛
(𝛼
𝑟
)

𝑏
𝑗
Γ (𝑘 + 1/2) (𝑛 − 𝑘)!Γ (𝑘 − 𝛽 + 𝑗 + 1) Γ (𝑘 − 𝛽 − 𝑗 + 1)

𝑇
∗

𝑗
(𝛼
ℓ
) ,

(43)

where the unknowns are the values of the solution at the
intermediate points 𝑦(𝑡

𝑠
+ 𝜁
ℓ
ℎ).

For DDEs (𝛽 = 1), explicitly, if we put𝑁 = 4 in (43), the
algebraic system will have the following form:

ℎf
1
= − (2 + √2) 𝑦 (𝑡

𝑠
) + √2𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ)

+ 2√2𝑦 (𝑡
𝑠
+ 𝜁
2
ℎ) − √2𝑦 (𝑡

𝑠
+ 𝜁
3
ℎ)

+ (2 − √2) 𝑦 (𝑡
𝑠
+ 𝜁
4
ℎ) ,

ℎf
2
= 1𝑦 (𝑡

𝑠
) − 2√2𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ) + 0𝑦 (𝑡

𝑠
+ 𝜁
2
ℎ)

+ 2√2𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ) − 1𝑦 (𝑡

𝑠
+ 𝜁
4
ℎ) ,

ℎf
3
= − (2 − √2) 𝑦 (𝑡

𝑠
) + √2𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ)

− 2√2𝑦 (𝑡
𝑠
+ 𝜁
2
ℎ) − √2𝑦 (𝑡

𝑠
+ 𝜁
3
ℎ)

+ (2 + √2) 𝑦 (𝑡
𝑠
+ 𝜁
4
ℎ) ,
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ℎf
4
= 1𝑦 (𝑡

𝑠
) − (8 − 4√2) 𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ) + 4𝑦 (𝑡

𝑠
+ 𝜁
2
ℎ)

− (8 + 4√2) 𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ) + 11𝑦 (𝑡

𝑠
+ 𝜁
4
ℎ) .

(44)

For FDDEs (𝛽 = 1/2), also, if we put 𝑁 = 4 in (43), the
algebraic system will have the following form:

ℎ
0.5f
1
= − (√2 (335 + 182√2) 𝑎) 𝑦 (𝑡

𝑠
)

+ ((280 + 320√2) 𝑎) 𝑦 (𝑡
𝑠
+ 𝜁
1
ℎ)

− (12√2 (1 − 7√2) 𝑎) 𝑦 (𝑡
𝑠
+ 𝜁
2
ℎ)

− ((56 + 16√2) 𝑎) 𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ)

+ ((−28 + 43√2) 𝑎) 𝑦 (𝑡
𝑠
+ 𝜁
4
ℎ) ,

ℎ
0.5f
2
= − (

71√2

𝑑
)𝑦 (𝑡

𝑠
)

− (
(168 + 40√2)

𝑑
)𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ)

+ (
180√2

𝑑
)𝑦 (𝑡

𝑠
+ 𝜁
2
ℎ)

+ (
(168 − 40√2)

𝑑
)𝑦 (𝑡

𝑠
+ 𝜁
3
ℎ)

− (
(29√2)

𝑑
) 8𝑦 (𝑡

𝑠
+ 𝜁
4
ℎ) ,

ℎ
0.5f
3
= − (√2 (335 − 182√2) 𝑏) 𝑦 (𝑡

𝑠
)

+ ((56 − 16√2) 𝑏) 𝑦 (𝑡
𝑠
+ 𝜁
1
ℎ)

− (12√2 (1 + 7√2) 𝑏) 𝑦 (𝑡
𝑠
+ 𝜁
2
ℎ)

+ (−280 + 320√2) 𝑏𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ)

+ ((28 + 43√2) 𝑏) 𝑦 (𝑡
𝑠
+ 𝜁
4
ℎ) ,

ℎ
0.5f
4
= − (43√2𝑐) 𝑦 (𝑡

𝑠
)

+ ((168 − 152√2) 𝑐) 𝑦 (𝑡
𝑠
+ 𝜁
1
ℎ)

+ (12√2𝑐) 𝑦 (𝑡
𝑠
+ 𝜁
2
ℎ)

− ((168 + 152√2) 𝑐) 𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ)

+ 335√2𝑐𝑦 (𝑡
𝑠
+ 𝜁
4
ℎ) ,

(45)

such that

𝑎 =
1

105
√
2

𝜋
sin(𝜋

8
) , 𝑏 =

1

105
√
2

𝜋
cos(𝜋

8
) ,

𝑐 =
1

105
√
2

𝜋
, 𝑑 = 105√𝜋.

(46)

For the sake of simplicity, we take this abbreviation

f
ℓ
= 𝑓 (𝑡

𝑠
+ 𝜁
ℓ
ℎ, 𝑦 (𝑡

𝑠
+ 𝜁
ℓ
ℎ) , 𝑑
ℓ
) , ℓ = 1, 2, 3, 4. (47)

Solving this system, we obtain in particular the required value
at the final point on the interval 𝑦(𝑡

𝑠
+ 𝜁
4
ℎ) = 𝑦(𝑡

𝑠
+ ℎ) =

𝑦
𝑠+1

. If we repeat this procedure along the integration interval
[0, 𝐿], a discrete solution for the problem in (20) will be
deduced.

4. One-Step Recurrence Formula Expression
and the Local Truncating Error

The method in (43) at 𝑁 = 4 can be expressed by one step
recurrence formula:

𝐶𝑌
𝑠
= 𝐵𝑌
𝑠−1
+ ℎ
𝛽
𝐹
𝑠
, (48)

where

𝐹
𝑠
= [f
1
, f
2
, f
3
, f
4
]
𝑇

,

𝑌
𝑠
= [𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
2
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
3
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
4
ℎ)]
𝑇

,

𝑌
𝑠−1
= [𝑦 (𝑡

𝑠−1
+ 𝜁
1
ℎ) , 𝑦 (𝑡

𝑠−1
+ 𝜁
2
ℎ) , 𝑦 (𝑡

𝑠−1
+ 𝜁
3
ℎ) ,

𝑦 (𝑡
𝑠−1
+ 𝜁
4
ℎ)]
𝑇

.

(49)

Remark 2. Consider

𝑦 (𝑡
𝑠
− 𝜁
4−ℓ
ℎ) = 𝑦 (𝑡

𝑠−1
+ 𝜁
ℓ
ℎ) , ℓ = 1, 2, 3, 4,

𝑌
𝑠−1

= [𝑦 (𝑡
𝑠
+ 𝜁
3
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
2
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
1
ℎ) , 𝑦 (𝑡

𝑠
+ 𝜁
0
ℎ)]
𝑇

.

(50)

For DDEs (𝛽 = 1), the constant matrices 𝐵 and 𝐶 are given
by

𝐵 =(

0 0 0 2 + √2

0 0 0 1

0 0 0 2 − √2

0 0 0 −1

),

𝐶 =(

(

√2 2√2 −√2 2 − √2

−2√2 0 2√2 −1

√2 −2√2 −√2 2 + √2

−8 + 4√2 4 −8 − 4√2 11

)

)

,

(51)
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which have a completely agreement with the work done by
Ramos and Vigo-Aguiar [34].

For FDDEs (𝛽 = 0.5), the constant matrices 𝐵 and 𝐶 are
also given by

𝐵 =(

(

0 0 0 √2 (335 + 182√2) 𝑎

0 0 0
71√2

𝑑

0 0 0 √2 (335 − 182√2) 𝑏

0 0 0 43√2𝑐

)

)

,

𝐶 =
(
(
(

(

(280 + 320√2) 𝑎 −12√2 (1 − 7√2) 𝑎 − (56 + 16√2) 𝑎 (−28 + 43√2) 𝑎

(−168 − 40√2)

𝑑

180√2

𝑑

(168 − 40√2)

𝑑

(−29√2)

𝑑

(56 − 16√2) 𝑏 −12√2 (1 + 7√2) 𝑏 (−280 + 320√2) 𝑏 (28 + 43√2) 𝑏

(168 − 152√2) 𝑐 12√2𝑐 (−168 − 152√2) 𝑐 335√2𝑐

)
)
)

)

.

(52)

As the matrix 𝐶 is nonsingular, multiplying the formula (48)
by the inverse matrix 𝐶−1 yields

𝑌
𝑠
= 𝐶
−1
𝐵𝑌
𝑠−1
+ ℎ
𝛽
𝐶
−1
𝐹
𝑠
. (53)

Remark 3. Theproduct𝐶−1𝐵 is a square matrix of dimension
4 on the following form:

(

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

). (54)

Remark 4. The method expressed finally by (53) can be
considered as a Runge-Kutta method where the Butcher
tableau [41] is given by the following.

(i) For DDEs (𝛽 = 1), see Table 1.

When we compare this tableau with the tableau
obtained by Ramos and Vigo-Aguiar [34], we find a
complete agreement.

(ii) For FDDEs (𝛽 = 0.5), see Table 2.

The contents of Butcher tableau at 𝛽 = 0.5 can be written also
in terms of fractions but it will be complicated. So, we write it
in decimal form.

In the names of Remark 4, we can say that the theory of
Runge-Kuttamethodsmay be applied here. For our approach,
when we deal with DDEs (𝛽 = 1), the Butcher conditions for
order four are verified. So, this method has the fourth order
for DDEs.

Consider the difference operators associated with each
stage in our method as follows:

𝐿
𝑖
(𝑦 (𝑡) , ℎ)

= 𝑦 (𝑡
𝑠
+ 𝜁
𝑖
ℎ) − 𝑦 (𝑡

𝑠
) − ℎ
𝛽

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑦
(𝛽)
(𝑡
𝑠
+ 𝜁
𝑖
ℎ) ,

𝑖 = 1, 2, 3, 4,

(55)

𝐿
𝑖
(𝑦 (𝑡) , ℎ)

= 𝑦 (𝑡
𝑠
+ 𝜁
𝑖
ℎ) − 𝑦 (𝑡

𝑠
)

− ℎ
𝛽

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑓 (𝑡
𝑠
+ 𝜁
𝑖
ℎ, 𝑦 (𝑡

𝑠
+ 𝜁
𝑖
ℎ) , 𝑑
𝑖
) ,

(56)

and using the fractional Taylor series about 𝑡
𝑠
, we obtain

𝑦 (𝑡
𝑠
+ 𝜁
𝑖
ℎ)

= 𝑦 (𝑡
𝑠
) + 𝑦
(𝛽)
(𝑡
𝑠
)
(𝜁
𝑖
ℎ)
𝛽

Γ (𝛽 + 1)
+ 𝑦
(2𝛽)
(𝑡
𝑠
)
(𝜁
𝑖
ℎ)
2𝛽

Γ (2𝛽 + 1)

+ ⋅ ⋅ ⋅ + 𝑦
((𝑁+1)𝛽)

(𝑡
𝑠
+ 𝜃𝜁
𝑖
ℎ)

(𝜁
𝑖
ℎ)
(𝑁+1)𝛽

Γ ((𝑁 + 1) 𝛽 + 1)
,

𝑓 (𝑡
𝑠
+ 𝜁
𝑖
ℎ, 𝑦 (𝑡

𝑠
+ 𝜁
𝑖
ℎ) , 𝑑
𝑖
)

= f
𝑖
(𝜁
𝑖
ℎ) = f

𝑖
(0) + f(𝛽)

𝑖
(0)

(𝜁
𝑖
ℎ)
𝛽

Γ (𝛽 + 1)

+ f(2𝛽)
𝑖
(0)

(𝜁
𝑖
ℎ)
2𝛽

Γ (2𝛽 + 1)

+ ⋅ ⋅ ⋅ + f(𝑁𝛽)
𝑖

(𝜃𝜁
𝑖
ℎ)

(𝜁
𝑖
ℎ)
𝑁𝛽

Γ (𝑁𝛽 + 1)
.

(57)
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Table 1

𝛼
1

(1/384)(88 − 4√2) (1/384)(40 − 64√2) (1/384) (88 − 28√2) −1/16

𝛼
2

(1/384)(64 + 48√2) 1/6 (1/384)(64 − 48√2) 0
𝛼
3

(1/384)(88 + 28√2) (1/384)(40 + 64√2) (1/384) (88 + 4√2) −1/16

𝛼
4

1/3 1/3 1/3 0
1/3 1/3 1/3 0

Table 2

𝛼
1

0.414917 −0.0779 0.0557512 −0.0254207

𝛼
2

0.317636 0.528742 −0.101593 0.0415419

𝛼
3

0.172975 0.420603 0.495111 −0.0645867

𝛼
4

0.169572 0.313329 0.409383 0.221557

0.169572 0.313329 0.409383 0.221557

Theorem 5. If the proposed Runge-Kutta method with shifted
Chebyshev polynomials (48) is of order 𝑁𝛽 and if all partial
fractional derivatives of 𝑓(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)) up to order 𝑁𝛽
exist and are continuous, then the local error of (56) admits
the rigorous bound:
󵄩󵄩󵄩󵄩𝐿 𝑖
󵄩󵄩󵄩󵄩

≤ ℎ
(𝑁+1)𝛽

(
1

Γ ((𝑁 + 1) 𝛽)
max
𝜖∈[0,1]

󵄩󵄩󵄩󵄩󵄩
𝑦
((𝑁+1)𝛽)

(𝑡
𝑠
+ 𝜖𝜁
𝑖
ℎ)
󵄩󵄩󵄩󵄩󵄩

+
1

Γ ((𝑁 + 1) 𝛽)

𝑁

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
max
𝜖∈[0,1]

󵄩󵄩󵄩󵄩󵄩󵄩
f((𝑁)𝛽)
𝑖

(𝜖𝜁
𝑖
ℎ)
󵄩󵄩󵄩󵄩󵄩󵄩
) ,

(58)

and so
󵄩󵄩󵄩󵄩𝐿 𝑖
󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ

(𝑁+1)𝛽
. (59)

Proof. Because of the order conditions and using (57), the
first terms in the ℎ expansion of (56) vanish. Then (58) is
obtained and the proof is complete.

Under the assumption of Theorem 5, we see that the
expressions (58) and (59) are bounded by a constant inde-
pendent of ℎ(𝑁+1)𝛽.

Remark 6. The proposed Runge-Kutta method with shifted
Chebyshev polynomials (48) has order 𝑁𝛽 for sufficiently
smooth problem FDDEs (20) if (59) is achieved.

5. Estimation of the Global Truncating Error

Theglobal error is the error of the approximated solution after
many steps.

Theorem 7. Suppose that 𝑦(𝑡) is the exact solution of the
system of FDDEs (20) and that ](𝑡) is the approximate solution.
If the following inequalities are held:

󵄩󵄩󵄩󵄩] (𝑡0) − 𝑦 (𝑡0)
󵄩󵄩󵄩󵄩 ≤ 𝜙 (𝑡0) , 𝑡

0
∈ [−𝜏, 0] , (60)

󵄩󵄩󵄩󵄩󵄩󵄩
𝐷
(𝛽)

𝑡
] (𝑡) − 𝑓 (𝑡, ] (𝑡) , ] (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝜀, (61)

󵄩󵄩󵄩󵄩𝑓 (𝑡, ] (𝑡) , ] (𝑡 − 𝜏)) − 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏))
󵄩󵄩󵄩󵄩

≤ 𝑙
󵄩󵄩󵄩󵄩] (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 ,

(62)

then for 𝑡 ≥ 𝑡
0
, one has the following error estimate:

󵄩󵄩󵄩󵄩] (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩

≤ 𝜙 (𝑡) exp(𝑙 ( 𝑡
𝛼

Γ (𝛼 + 1)
−

𝑡
𝛼

0

Γ (𝛼 + 1)
))

+
𝜀

𝑙
(exp(𝑙 ( 𝑡

𝛼

Γ (𝛼 + 1)
−

𝑡
𝛼

0

Γ (𝛼 + 1)
)) − 1) .

(63)

Proof. For any chosen norm, we investigate the error esti-
mated by

𝑚(𝑡) =
󵄩󵄩󵄩󵄩] (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩 , (64)

and now, we try to estimate its natural growth.
Operate on both sides of (64) by the Caputo fractional

derivative operator 𝐷(𝛽)
𝑡

and using the triangle inequality
yields

𝐷
(𝛽)

𝑡
𝑚(𝑡) ≤

󵄩󵄩󵄩󵄩󵄩󵄩
𝐷
(𝛽)

𝑡
] (𝑡) − 𝑓 (𝑡, ] (𝑡) , ] (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩𝑓 (𝑡, ] (𝑡) , ] (𝑡 − 𝜏)) − 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩 ,

(65)

from Lipchitz condition (62), and we introduce 𝛿(𝑡) =

‖𝐷
(𝛽)

𝑡
](𝑡) − 𝑓(𝑡, ](𝑡), ](𝑡 − 𝜏))‖ which is called the defect of

the approximate solution ](𝑡) such that 𝛿(𝑡) ≤ 𝜀; we have

𝐷
(𝛽)

𝑡
𝑚(𝑡) ≤ 𝛿 (𝑡) + 𝑙𝑚 (𝑡) , 𝛿 (𝑡) ≤ 𝜀, (66)

𝑚(𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] . (67)

Now, we are about to solve instead of (67) the fractional
differential equation and conclude that

𝑚(𝑡) ≤ 𝑢 (𝑡) , (68)

𝐷
(𝛽)

𝑡
𝑢 (𝑡) = 𝑙𝑢 (𝑡) + 𝜀, (69)

𝑢 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] . (70)

To solve (69)-(70), we use the fractional complex transform
𝑇 = 𝑡

𝛽
/Γ(𝛽 + 1) and the modified Riemann-Liouville

fractional derivative defined by

𝐷
(𝛽)

𝑡
𝑢 (𝑡) =

1

Γ (𝑛 − 𝛽)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝜏)
𝑛−𝛽

(𝑢 (𝜏) − 𝑢 (0)) 𝑑𝜏,

(71)

where 𝑛 − 1 ≤ 𝛽 < 𝑛 and 𝑛 ≥ 1.



Abstract and Applied Analysis 9

Modified Riemann-Liouville fractional derivative has the
following property:

𝐷
(𝛽)

𝑡
𝑢 (𝑇 (𝑡)) = 𝑢

󸀠

𝑇
(𝑇) 𝑇
(𝛽)

(𝑡) . (72)

Then (69)-(70) are transformed to

𝑑𝑢

𝑑𝑇
= 𝑙𝑢 (𝑇) + 𝜀, 𝑢 (𝑇) = 𝜙 (𝑇) , ∀𝑇 ∈ [−𝜏, 0] . (73)

The exact solution for (73) can be written as

𝑢 (𝑇) = 𝜙 (𝑡) exp (𝑙 (𝑇 − 𝑇
0
)) +

𝜀

𝑙
(exp (𝑙 (𝑇 − 𝑇

0
)) − 1) .

(74)

Then the solution can be written using the original variables
as follows:

𝑢 (𝑡) = 𝜙 (𝑡) exp(𝑙 ( 𝑡
𝛼

Γ (𝛼 + 1)
−

𝑡
𝛼

0

Γ (𝛼 + 1)
))

+
𝜀

𝑙
(exp(𝑙 ( 𝑡

𝛼

Γ (𝛼 + 1)
−

𝑡
𝛼

0

Γ (𝛼 + 1)
)) − 1) .

(75)

A combination of (68) and (75) yields the desired result (63).

Theorem 8. Let 𝑈 be a neighborhood of (𝑡, 𝑦(𝑡) | 𝑡
0
≤ 𝑡 ≤ 𝑡

𝑁
)

where 𝑦(𝑡) is the exact solution of (20). Suppose that in 𝑈
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑑𝑓

𝑑𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑙, 𝜇 (

𝑑𝑓

𝑑𝑦
) ≤ 𝑙 (76)

and that the local error estimates (59) are valid in 𝑈. Then the
global error 𝐸 can be estimated by

‖𝐸‖

≤
Γ (𝛽) ℎ

𝑁𝛽

𝑡
𝛽−1

𝑁

⋅
𝐶
󸀠

𝑙
((
𝑡
𝑁

𝑡
0

)

1−𝛽

exp(𝑙(
𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

0

Γ (𝛽 + 1)
) − 1)) ,

(77)

where ℎ = max
1<𝑠≤𝑁

ℎ
𝑠−1

,

𝐶
󸀠
=
{

{

{

𝐶, 𝑓𝑜𝑟 𝑙 ≥ 0;

𝐶 exp (−𝑙ℎ𝛽) , 𝑓𝑜𝑟 𝑙 < 0.
(78)

And ℎ is small enough for the numerical solution to remain in
𝑈.

Proof. Our task is to estimate the global error

𝐸 = 𝑦 (𝑡
𝑁
) − 𝑦
𝑁
, (79)

and this estimate is found along𝑁 − 𝑠 steps of the numerical
method (see Figure 1).

y0

y1

y2

y3

yN

E1

E2

E3

...

· · ·x0 x1 x2 x3 xN = X

Exact solutions

EN = eN

e1

e2

y(xN)

Approximate solutions

eN−1

Figure 1: Global error estimation [42].

Estimate the local error using Theorem 5 and Figure 1 to
obtain

󵄩󵄩󵄩󵄩𝑒𝑠
󵄩󵄩󵄩󵄩 ≤ 𝐶ℎ

(𝑁+1)𝛽

𝑠−1
. (80)

FromTheorem 7 with 𝜀 = 0, we obtain

󵄩󵄩󵄩󵄩𝐸𝑠
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑒𝑠
󵄩󵄩󵄩󵄩 exp(𝑙(

𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

𝑠

Γ (𝛽 + 1)
)) , (81)

from Figure 1, 𝐸 = 𝐸
1
+ 𝐸
2
+ ⋅ ⋅ ⋅ + 𝐸

𝑁−1
+ 𝐸
𝑁
,

‖𝐸‖ ≤

𝑁

∑

𝑠=1

󵄩󵄩󵄩󵄩𝐸𝑠
󵄩󵄩󵄩󵄩 , (82)

as ℎ = max
1<𝑠≤𝑁

ℎ
𝑠−1

, then we can deduce that

ℎ
(𝑁+1)𝛽

𝑠−1
≤ ℎ
𝑁𝛽
ℎ
𝛽

𝑠−1
, (83)

and from (81)–(83), we deduce that

‖𝐸‖ ≤ 𝐶ℎ
𝑁𝛽

𝑁

∑

𝑠=1

ℎ
𝛽

𝑠−1
exp(𝑙(

𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

𝑠

Γ (𝛽 + 1)
))

= 𝐶ℎ
𝑁𝛽
𝐼,

𝐼 ≤

{{{{{{{{{{

{{{{{{{{{{

{

∫

𝑡
𝑁

𝑡
0

exp(𝑙(
𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

Γ (𝛽 + 1)
))𝑑𝑡,

for 𝑙 ≥ 0;

∫

𝑡
𝑁

𝑡
0

exp(𝑙(
𝑡
𝛽

𝑁

Γ (𝛽 + 1)
− ℎ
𝛽
−

𝑡
𝛽

Γ (𝛽 + 1)
))𝑑𝑡,

for 𝑙 < 0.
(84)
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Then

𝐼 ≤

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

Γ (𝛽)

𝑙𝑡
𝛽−1

𝑁

(
𝑡
𝑁

𝑡
0

)

1−𝛽

⋅ exp(𝑙(
𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

0

Γ (𝛽 + 1)
) − 1) ,

for 𝑙 ≥ 0;

Γ (𝛽)

𝑙𝑡
𝛽−1

𝑁

exp (−𝑙ℎ𝛽) (
𝑡
𝑁

𝑡
0

)

1−𝛽

⋅ exp(𝑙(
𝑡
𝛽

𝑁

Γ (𝛽 + 1)
−

𝑡
𝛽

0

Γ (𝛽 + 1)
) − 1) ,

for 𝑙 < 0.

(85)

A combination of (84)-(85) yields the desired result (77).

Remark 9 (see [43]). Since the global truncating error 𝐸 (77)
tends to zero as ℎ tends to zero, then the proposed method
(43) is convergent; that is, |𝐸| → 0 as ℎ → 0.

6. Applications and Numerical Simulation

In this section, we illustrate the theoretical results obtained in
the previous sections. In order to do this we will consider the
following examples whose exact solutions are known.

Example 1. Consider

𝐷
(𝛽)

𝑡
𝑦 (𝑡) =

2

Γ (3 − 𝛽)
𝑡
2−𝛽
−

1

Γ (2 − 𝛽)
𝑡
1−𝛽

+ 2𝜏𝑡 − 𝜏
2
− 𝜏 − 𝑦 (𝑡) + 𝑦 (𝑡 − 𝜏) ,

𝑦 (𝑡) = 𝑡
2
− 𝑡, 𝑡 ∈ [−𝜏, 0] .

(86)

The exact solution for this problem is 𝑦(𝑡) = 𝑡2 − 𝑡.

For FDDEs (86) at (𝛽 = 1, 𝜏 = 1, ℎ = 0.25) and
(𝛽 = 0.1, 𝜏 = 0.1, ℎ = 0.25) the absolute errors between the
computed points and exact ones are presented in Figures 2
and 3 respectively.

Example 2. Consider

𝐷
(3/4)

𝑡
𝑦 (𝑡) = 𝑦 (𝑡 − 1) − 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑡 > 0,

𝑦 (𝑡) = sin (𝑡) , 𝑡 ∈ [−1, 0] ,

(87)

where 𝑔(𝑡) is defined by

𝑔 (𝑡) = sin (𝑡) − sin (𝑡 − 1) + 4 𝑡
1/4

Γ (1/4)
1
𝐹
2
[1;
5

8
,
9

8
;
−𝑡
2

4
] ,

(88)

such that
1
𝐹
2
is a special case of hypergeometric function.

The exact solution for this problem is 𝑦(𝑡) = sin(𝑡).

0.2 0.4 0.6 0.8 1.0

0.5

−0.5

−1.0

−1.5

−2.0

−2.5

×10−16

Figure 2: Plot of the absolute error with ℎ = 0.25, 𝑡 ∈ [0, 1], 𝛽 = 1,
𝜏 = 1.

0.2 0.4 0.6 0.8 1.0

−1.0

−2.0

−3.0

−4.0

×10−15

Figure 3: Plot of the absolute error with ℎ = 0.25, 𝑡 ∈ [0, 1], 𝛽 = 0.1,
𝜏 = 0.1 exp(−10𝑡).

In Table 3, ℎ = 1/2𝑛10, we present the results obtained
with the proposed method at 𝑁 = 4 for different step sizes
such that the maximum of the absolute error is given by

Error = max
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦exact (𝑡𝑗) − 𝑦numerical (𝑡𝑗)

󵄨󵄨󵄨󵄨󵄨
. (89)

In the third column, the numerical convergence order
which is defined by log

2
(Error(2ℎ)/Error(ℎ)) is introduced.

Example 3. Consider

𝐷
(1/2)

𝑡
𝑦 (𝑡) = 𝑦 (𝑡 − 1) − 𝑦 (𝑡) + 𝑔 (𝑡) , 𝑡 > 0,

𝑦 (𝑡) = sin (𝑡) , 𝑡 ∈ [−1, 0] ,

(90)

where 𝑔(𝑡) is defined by

𝑔 (𝑡) = sin (𝑡) − sin (𝑡 − 1) + 2√ 𝑡
𝜋
1
𝐹
2
[1;
3

4
,
5

4
;
−𝑡
2

4
] . (91)

The exact solution for this problem is 𝑦(𝑡) = sin(𝑡).
In Table 4, the computational results of the maximum of

absolute errors are displayed at𝑁 = 8 for different time steps
ℎ = 1/2

𝑛
10 with 𝑛 = 0, 1, 2, 3, 4, 5. In the third column, the

numerical convergence order is introduced also.These results
are in concordance with our theoretical results.
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Table 3

𝑛 Error(ℎ) Numerical convergence order
0 0.001761

1 0.000264 2.73779
2 0.0000373 2.82329
3 4.821 × 10

−6 2.95177
4 5.732 × 10

−7 3.07222
5 6.850 × 10

−8 3.06486

Table 4

𝑛 Error(ℎ) Numerical convergence order
0 9.876 × 10

−6

1 7.876 × 10
−7 3.64839

2 5.866 × 10
−8 3.74701

3 3.856 × 10
−9 3.9272

4 1.846 × 10
−10 4.38463

5 8.360 × 10
−12 4.46476

7. Conclusion and Remarks

In this paper, a new fractional order Runge-Kutta method
based onBDF-typeChebyshev approximations is introduced.
This approach is applicable to initial value problems for
arbitrary order fractional differential equations with delay.
This new method can be expressed as one-step recurrence
formula. It is shown that the method may be formulated in
an equivalent way as a Runge-Kutta method of order 𝑁𝛽.
The local and global truncating errors for this new scheme
are obtained and proved. Numerical examples with constant
delay or time varying delay are proposed to justify the effec-
tiveness of the proposed scheme and find a good agreement
with the theoretical results. For the futurework, themethod is
also applicable to systems of fractional functional differential
equations with delay.
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