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Let f be a diffeomorphism on a 𝐶
∞ closed surface. In this paper, we show that if f has the 𝐶

2-stably limit shadowing property, then
we have the following: (i) f satisfies the Kupka-Smale condition; (ii) if P(f ) is dense in the nonwandering set Ω(f ) and if there is a
dominated splitting on 𝑃

𝑠
(f ), then f satisfies both Axiom A and the strong transversality condition.

1. Introduction

The theory of shadowing was developed intensively in recent
years and became a significant part of the qualitative theory
of dynamical systems containing a lot of interesting and deep
results (see [1]). Let 𝑀 be a 𝐶

∞ closed manifold and let
Diff(𝑀) be the space of diffeomorphisms of𝑀 endowed with
the 𝐶

1-topology. Denote by 𝑑 the distance on 𝑀 induced
from a Riemannian metric ‖ ⋅ ‖ on the tangent bundle 𝑇𝑀.
Let 𝑓 ∈ Diff(𝑀). A sequence {𝑥

𝑛
}
𝑛∈Z of points in 𝑀 is called

a 𝛿-pseudo orbit of 𝑓 if 𝑑(𝑓(𝑥
𝑛
), 𝑥

𝑛+1
) < 𝛿 for all 𝑛 ∈ Z. LetΛ

be a closed𝑓-invariant subset of𝑀.We say that𝑓 satisfies the
shadowing property onΛ if, for every 𝜖 > 0, there is 𝛿 > 0 such
that, for every 𝛿-pseudo orbit {𝑥

𝑛
}
𝑛∈Z ⊂ Λ of 𝑓, there exists

𝑦 ∈ 𝑀 such that 𝑑(𝑓𝑛

(𝑦), 𝑥
𝑛
) < 𝜖 for all 𝑛 ∈ Z. If Λ = 𝑀, we

say that 𝑓 has the shadowing property.
The limit shadowing property was originally introduced

by Eirola et al. [2], and it was slightly modified in [3]. In
this paper we will adapt the definition of the limit shadowing
property in [3] as follows. We say that 𝑓 has the limit
shadowing property on Λ if there is 𝛿 > 0 such that, for
any 𝛿-pseudo orbit {𝑥

𝑖
}
𝑖∈Z ⊂ Λ with 𝑑(𝑓(𝑥

𝑖
), 𝑥

𝑖+1
) → 0

as 𝑖 → ±∞, which is called a 𝛿-limit pseudo orbit, there
is a point 𝑦 ∈ 𝑀 such that 𝑑(𝑓

𝑖

(𝑦), 𝑥
𝑖+1

) → 0 as 𝑖 →

±∞. If Λ = 𝑀, we say that 𝑓 has the limit shadowing
property. From the numerical point of view this property
of a dynamical system 𝑓 means the following: if we apply
a numerical method that approximates 𝑓 with “improving
accuracy” so that one-step errors tend to zero as time goes

to infinity, then the numerically obtained orbits tend to real
ones. Such situations arise, for example, when we are not so
interested in the initial behaviour of orbits but want to get
areas where “interesting things” happen (e.g., attractors) and
then improve accuracy.

Note that the limit shadowing property is different from
the shadowing property. In fact, the limit shadowing property
needs not have the shadowing property as we can see in [3,
Example 4].

The following example shows that every irrational rota-
tion map of the unit circle does not have the limit shadowing
propertywhichwill be used in the proof of ourmain theorem.

Example 1. Let 𝑀 = 𝑆
1 be the unit circle and let 𝑔 : 𝑆

1

→ 𝑆
1

be defined by 𝑔(𝑥) = 𝑥 + 𝛽 (mod 1), where 𝑥 ∈ [0, 1) and 𝛽

is irrational.
Assume, by contradiction, that 𝑔 has the limit shadowing

property. It is clear that, for any 𝛿 > 0, there exists rational
𝛾 = 𝑝/𝑚 (𝑝 ∈ Z, 𝑚 ∈ Z − {0}) such that |𝛾 − 𝛽| < 𝛿. Let
𝑔
1
(𝑥) = 𝑥 + 𝛾 (mod 1). Then 𝑔

𝑚

1
(𝑥) = 𝑥 (mod 1) for any 𝑥 ∈

[0, 1).
Now, we can construct a 𝛿-limit pseudo orbit of 𝑔 by

𝜉 = {. . . , 𝑥, 𝑥 = 𝑥
0
, 𝑔

1
(𝑥) , . . . , 𝑔

𝑚

1
(𝑥) = 𝑥, 𝑥, . . .}

= {. . . , 𝑥
−1

= 𝑥, 𝑥
0
= 𝑥, . . . , 𝑥

𝑚−1
, 𝑥

𝑚
= 𝑥, 𝑥

𝑚+1
= 𝑥, . . .} .

(1)
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Then, since 𝑔 has the limit shadowing property, there is a
point 𝑦 ∈ 𝑆

1 such that 𝑑(𝑔𝑛

(𝑦), 𝑥
𝑛
) → 0 as 𝑛 → ±∞. Then

we consider the following cases.
Firstly, if 𝑥 = 𝑦 then 𝑔

𝑛

(𝑦) = 𝑦+𝑛𝛽 = 𝑥+𝑛𝛽 for all 𝑛 ∈ N.
And 𝑑(𝑔

𝑚

(𝑥), 𝑔
𝑚

1
(𝑥)) = |𝑥 + 𝑚𝛽 − 𝑥| = 𝑚𝛽. For any 𝑛 ≥ 𝑚,

𝑑 (𝑔
𝑛

(𝑦) , 𝑥
𝑛
) = 𝑑 (𝑔

𝑛

(𝑥) , 𝑥) =
󵄨󵄨󵄨󵄨
𝑥 + 𝑛𝛽 − 𝑥

󵄨󵄨󵄨󵄨
= 𝑛𝛽 󴀀󴀂󴀠 0.

(2)

Finally, if 𝑦 ∈ 𝑆
1 with 𝑥 ̸= 𝑦 then it is clear that, for 𝑖 ≥ 𝑚,

𝑑 (𝑔
𝑖

(𝑦) , 𝑥
𝑖
) = 𝑑 (𝑔

𝑖

(𝑦) , 𝑥) =
󵄨󵄨󵄨󵄨𝑦 + 𝑖𝛽 − 𝑥

󵄨󵄨󵄨󵄨 >
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨 󴀀󴀂󴀠 0.

(3)

This is a contradiction. Therefore, the irrational rotation
map does not have the limit shadowing property.

It is a well-known fact that 𝐶
∞ maps are dense in

Diff𝑟(𝑀) (𝑟 ≥ 1), and so we can consider the following.
We say that 𝑓 satisfies the 𝐶

2-stably shadowing property if
there exists a𝐶

2-neighborhoodU(𝑓) of𝑓 such that, for every
𝑔 ∈ U(𝑓), 𝑔 satisfies the shadowing property. When 𝑀 is
a 𝐶

∞ closed surface, Sakai [4] proved that if 𝑓 has the 𝐶
2-

stably shadowing property then 𝑓 is Kupka-Smale; that is,
every periodic point of 𝑓 is hyperbolic and all their invariant
manifolds are transverse. If, in addition, the periodic points of
𝑓 are dense in the nonwandering set and there is a dominated
splitting on the closure of periodic points of saddle type,
then 𝑓 satisfies both Axiom 𝐴 and the strong transversality
condition; that is, 𝑓 is structurally stable.

Definition 2. One says that 𝑓 has the 𝐶
2-stably limit shad-

owing property if 𝑓 is in the 𝐶
2-interior of the set of all

diffeomorphisms having the limit shadowing property.

Let Λ be an invariant set for 𝑓 ∈ Diff(𝑀). We say that a
compact 𝑓-invariant set Λ admits a dominated splitting if the
tangent bundle 𝑇

Λ
𝑀 has a continuous𝐷𝑓-invariant splitting

𝐸 ⊕ 𝐹 and there exist 𝐶 > 0, 0 < 𝜆 < 1 such that
󵄩󵄩󵄩󵄩󵄩
𝐷𝑓

𝑛󵄨󵄨󵄨󵄨𝐸(𝑥)

󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝐷𝑓

−𝑛󵄨󵄨󵄨󵄨𝐹(𝑓𝑛(𝑥))

󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝜆

𝑛 (4)

for all 𝑥 ∈ Λ, 𝑛 ≥ 0.
We say that Λ is hyperbolic for 𝑓 if there is a tangent

bundle 𝑇
Λ
𝑀 which has a 𝐷𝑓-invariant continuous splitting

𝐸
𝑠

⊕ 𝐸
𝑢 and constants 𝐶 > 0 and 0 < 𝜆 < 1 such that

󵄩󵄩󵄩󵄩𝐷𝑥
𝑓
𝑛󵄨󵄨󵄨󵄨𝐸𝑠

󵄩󵄩󵄩󵄩 ≤ 𝐶𝜆
𝑛

,
󵄩󵄩󵄩󵄩𝐷𝑥

𝑓
−𝑛󵄨󵄨󵄨󵄨𝐸𝑢

󵄩󵄩󵄩󵄩 ≤ 𝐶𝜆
𝑛 (5)

for all 𝑥 ∈ Λ and 𝑛 ≥ 0.
A set Λ is a basic set if it is compact and locally maximal,

and 𝑓 is transitive on Λ. A basic set Λ is called of saddle type
if 0 < dim𝑊

𝑠

(𝑥) < dim𝑀 for 𝑥 ∈ Λ. As usual, we denote
𝑃(𝑓) by the set of periodic points of 𝑓 and let 𝑃

𝑠
(𝑓) be the set

of periodic points of saddle type. In this paper, we prove the
following theorem.

Theorem 3. Let 𝑀 be a 𝐶
∞ closed surface. If 𝑓 has the 𝐶

2-
stably limit shadowing property, then one has the following:

(i) 𝑓 satisfies the Kupka-Smale condition,
(ii) if 𝑃(𝑓) is dense in the nonwandering set Ω(𝑓) and if

there is a dominated splitting on 𝑃
𝑠
(𝑓), then 𝑓 satisfies

both Axiom 𝐴 and the strong transversality condition.

2. Proof of Theorem 3

First, we show that if 𝑓 has the 𝐶
2-stably limit shadowing

property, then every periodic point of 𝑓 is hyperbolic. For
the proof, we need to perturb some maps but, unfortunately,
we cannot use a perturbation lemma, so-called “Franks’
Lemma” which only works for the𝐶

1-topology.Therefore, by
a technical reason in the proof, we restrict the manifold to a
surface. The proof is motivated by [4].

Proposition 4. If 𝑓 has the 𝐶
2-stably limit shadowing prop-

erty, then every 𝑝 ∈ 𝑃(𝑓) is hyperbolic.

Proof. Let𝑓 have the𝐶2-stably limit shadowing property and
fix 𝑝 ∈ 𝑃(𝑓) with period 𝑛 > 0. Assume that 𝑝 is not
hyperbolic. To simplify, suppose 𝑛 = 1. With a 𝐶

2-small
perturbation, we can find 𝑔 𝐶

2-nearby 𝑓 such that 𝑔(𝑝) = 𝑝

and

𝐷
𝑝
𝑔 = (

𝐴 𝑂

𝑂 𝐵

) , (6)

where 𝐴 is a constant 𝜇 ∈ R or 2 × 2 matrix and 𝐵

is a hyperbolic matrix (with respect to some coordinates),
satisfying one of the following three possible cases:

(a) 𝜇 = 1,
(b) 𝜇 = −1,
(c) the eigenvalues of𝐴 are of the form 𝜇

1
= 𝑒

𝑖𝜃, 𝜇
2
= 𝑒

−𝑖𝜃

for some real 𝜃 ̸= 𝑘𝜋 and 𝑘 ∈ Z.

Since the dimension of 𝑀 is 2, we can put

𝐷
𝑝
𝑔 = (

𝜇 𝑂

𝑂 𝜌

) . (7)

In cases (a) and (b), we approximate 𝑔 by 𝐶
3-diffe-

omorphism 𝑔
1
(with respect to the 𝐶

2-topology) such that

(i) 𝑔
1
(𝑝) = 𝑝,

(ii) there is a 𝐶
3-𝑔

1
-invariant curve 𝑊

𝑐

(𝑝, 𝑔
1
), so-called

the center manifold of 𝑝, which is tangent to the
eigenspace associated with 𝜇 = 1 (case (a)) or 𝜇 = −1

(case (b)),
(iii) if we consider 𝑊

𝑐

(𝑝, 𝑔
1
) ⊂ R and 𝑝 is the origin 0

(with respect to corresponding coordinates), then the
restriction 𝑔

1
|
𝑊
𝑐
(𝑝,𝑔
1
)
has the following expressions

(see [5, page 38]):

𝑔
1

󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)
(𝑡) = 𝑡 + 𝑎𝑡

2

+ 𝑜 (𝑡
3

) ,

𝑔
1

󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)
(𝑡) = −𝑡 + 𝑎𝑡

3

+ 𝑜 (𝑡
4

) ,

(8)
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for 𝑡 ∈ 𝑊
𝑐

(𝑝, 𝑔
1
) (⊂ R) if |𝑡| is small enough.Wemay assume

that 𝑎 > 0 (since the condition is satisfied generically).
In case (a), denote the two disjoint components of

𝑊
𝑐

(𝑝, 𝑔
1
) \ {𝑝} by 𝐶

−

(𝑝) and 𝐶
+

(𝑝). Take 𝑥 ∈ 𝐶
−

(𝑝) and
𝑧 ∈ 𝐶

+

(𝑝) and consider the limit pseudo orbit

{. . . , 𝑔
−2

1
(𝑥) , 𝑔

−1

1
(𝑥) , 𝑥, 𝑔

1
(𝑥) , . . . , 𝑔

𝑙−1

1
(𝑥) , 𝑧, 𝑔

1
(𝑧) , . . .}

(9)

in 𝑊
𝑐

(𝑝, 𝑔
1
) \ {𝑝}. We can make 𝑑(𝑔

𝑙

1
(𝑥), 𝑧) as small as we

want by letting 𝑙 → ∞ and 𝑑(𝑝, 𝑧) → 0. If there exists the
limit shadowing point 𝑦 ∈ 𝐶

−

(𝑝), then its forward orbit is
contained in 𝐶

−

(𝑝). If 𝑦 ∈ 𝐶
+

(𝑝) then its backward orbit is
contained in 𝐶

+

(𝑝). If 𝑦 ∉ 𝐶
−

(𝑝)∪𝐶
+

(𝑝) then there is 𝑛 such
that 𝑔𝑛

1
(𝑦) ∉ 𝑉, where 𝑉 is a small fixed neighborhood of 𝑝.

Therefore, there does not exist the limit shadowing point of
𝑔
1
. This is a contradiction since 𝑔

1
has the limit shadowing

property.
In case (b), since

𝑑

𝑑𝑡
𝑔
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)

(𝑡) =
𝑑

𝑑𝑡
(−𝑡 + 𝑎𝑡

3

+ 𝑜 (𝑡
4

))

= −1 + 3𝑎𝑡
2

+ 𝑜 (𝑡
3

) ,

𝑑
2

𝑑𝑡
2
𝑔
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)

(𝑡) = 6𝑎𝑡 + 𝑜 (𝑡
2

)

(10)

with respect to the corresponding coordinates, we see that

𝑑

𝑑𝑡
𝑔
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)

(0) = −1,
𝑑
2

𝑑𝑡
2
𝑔
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑊𝑐(𝑝,𝑔
1
)

(0) = 0. (11)

Thus perturbing 𝑔
1
in a neighborhood of 𝑝 with respect to

the 𝐶
2-topology, there exists 𝑔

2
(𝐶3-nearby 𝑔

1
) which has

the limit shadowing property and 𝜖
0
> 0 such that

(i) there exists the center manifold 𝑊
𝑐

(𝑝, 𝑔
2
) of 𝑝 such

that 𝑊𝑐

(𝑝, 𝑔
2
) ∩ 𝐵

𝜖
0

(𝑝) = 𝑊
𝑐

(𝑝, 𝑔
1
) ∩ 𝐵

𝜖
0

(𝑝),
(ii) 𝑔

2
|
𝑊
𝑐
(𝑝,𝑔
2
)
(𝑡) = −𝑡 for 𝑡 ∈ 𝑊

𝑐

(𝑝, 𝑔
2
) if |𝑡| is small

enough.

Clearly, 𝑔2

2
|
𝑊
𝑐
(𝑝,𝑔
2
)∩𝐵
𝜖
0

(𝑝)
is the identity map.

On the other hand, since 𝑔
2
has the limit shadowing

property, 𝑔
2

2
has to have the limit shadowing property.

However, we can see that the identity map does not satisfy
the limit shadowing property (see [3, Example 3]). This is a
contradiction.

In case (c), by the proof of [6, page 23, Theorem 5.2 and
Remark 5.3], we will derive a contradiction.

First, we may suppose that there exists a smooth arc
{𝜑

𝑡
}
𝑡∈R of diffeomorphisms on 𝑀 (the corresponding map

𝜙 : 𝑀 × R → 𝑀 × R defined by 𝜙(𝑥, 𝑡) = (𝜑
𝑡
(𝑥), 𝑡) for

(𝑥, 𝑡) ∈ 𝑀 ×R is 𝐶∞) such that 𝜑
0
= 𝑔 and (𝑝, 0) ∈ 𝑀 ×R is

a Hopf point unfolding generically (see [6, page 22]). Then,
we approximate the arc by an arc {𝜑

󸀠

𝑡
}
𝑡∈R (with respect to

the 𝐶
∞-topology) such that the eigenvalues of𝐷

𝑝
𝜑
󸀠

0
have the

form 𝑒
2𝜋𝛼 with 𝛼 irrational and such that the center manifold

𝑊
𝑐

(𝑝, 𝜑
󸀠

0
) is 𝐶∞ (see [6, page 15]).

Finally, apply the arguments in [6, page 23, Theorem 5.2
and Remark 5.3]. Then slightly perturbing the arc {𝜑

󸀠

𝑡
}
𝑡∈R if

necessary (with respect to the 𝐶
∞-topology), we may have

the following assertions:

(i) there is a 𝜑
󸀠

𝑡
-invariant attracting (or repelling) circle

C (in the manifold) near 𝑝 for 𝑡 > 0 small enough,
(ii) the restriction 𝜑

󸀠

𝑡
|C is conjugated to a rotation map.

Recall that 𝜑󸀠

𝑡
has the limit shadowing property and 𝐵

𝑡
is

hyperbolic, where 𝐵
𝑡
is the matrix (for 𝜑

𝑡
) corresponding to

𝐵.Thuswe can see that𝜑󸀠

𝑡
|C satisfies limit shadowing, but this

is a contradiction because any rotationmap does not have the
limit shadowing property (cf. Example 1) and so complete the
proof.

The notion of 𝐶
0 transversality between the stable and

unstable manifolds of basic setsΛ
𝑖
andΛ

𝑗
was introduced in

[7] as follows. If there exists 𝑥 ∈ 𝑊
𝑠

(Λ
𝑖
) ∩𝑊

𝑢

(Λ
𝑗
) \Λ

𝑖
∪Λ

𝑗
,

then for 𝜖 > 0 we denote by 𝐶
𝜎

𝜖
(𝑥) the connected component

of 𝑥 in 𝑊
𝜎

(𝑥) ∩ 𝐵
𝜖
(𝑥) (𝜎 = 𝑠, 𝑢). Let 𝐵

+

𝜖
(𝑥) and 𝐵

−

𝜖
(𝑥) be

the connected components of 𝐵
𝜖
(𝑥) \ 𝐶

𝑠

𝜖
(𝑥). Here 𝐵

𝜖
(𝑥) =

{𝑦 ∈ 𝑀 : 𝑑(𝑥, 𝑦) ≤ 𝜖}. We say that 𝑊
𝑠

(𝑥) and 𝑊
𝑢

(𝑥)

meet 𝐶
0 transversely at 𝑥 if dim𝑊

𝜎

(𝑥) = 1 (𝜎 = 𝑠, 𝑢),
𝐵
+

𝜖
(𝑥) ∩ 𝐶

𝑢

𝜖
(𝑥) ̸= 0, and 𝐵

−

𝜖
(𝑥) ∩ 𝐶

𝑢

𝜖
(𝑥) ̸= 0, for every 𝜖 > 0.

Let Λ ⊂ 𝑀 be an invariant submanifold of 𝑓. We say that Λ
is normally hyperbolic if there is a splitting 𝑇

Λ
𝑀 = 𝑇Λ ⊕ 𝑁

𝜎,
𝜎 = 𝑠, 𝑢, such that

(a) the splitting depends continuously on 𝑥 ∈ Λ,
(b) 𝐷

𝑥
𝑓(𝑁

𝜎

𝑥
) = 𝑁

𝜎

𝑓(𝑥)
(𝜎 = 𝑠, 𝑢) for all 𝑥 ∈ Λ,

(c) there are constants 𝐶 > 0, and 𝜆 ∈ (0, 1) such that,
for every triple of unit vectors V ∈ 𝑇

𝑥
Λ, V𝑠 ∈ 𝑁

𝑠

𝑥
, and

V𝑢 ∈ 𝑁
𝑢

𝑥
(𝑥 ∈ Λ), we have

󵄩󵄩󵄩󵄩𝐷𝑥
𝑓
𝑛

(V𝑠)󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐷𝑥

𝑓
𝑛
(V)󵄩󵄩󵄩󵄩

≤ 𝐶𝜆
𝑛

,

󵄩󵄩󵄩󵄩𝐷𝑥
𝑓
𝑛

(V𝑢)󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐷𝑥

𝑓
𝑛
(V)󵄩󵄩󵄩󵄩

≥ 𝐶
−1

𝜆
−𝑛

, (12)

for all 𝑛 ≥ 0.

Let Λ be a closed 𝑓-invariant set. We say that 𝑓 has the
limit shadowing property in Λ if there is 𝛿 > 0 such that, for
any 𝛿-limit pseudo orbit, there is a point 𝑦 ∈ Λ such that
𝑑(𝑓

𝑖

(𝑦), 𝑥
𝑖
) → 0 as 𝑖 → ±∞. Note that the definition is

different from that we defined before. In fact, if𝑓 has the limit
shadowing property on Λ, the limit shadowing point needs
not be in Λ.

Lemma 5. Let Λ ⊂ 𝑀 be a normally hyperbolic set for 𝑓.
If 𝑓 has the limit shadowing property on Λ, then the limit
shadowing point is in Λ.

Proof. Since Λ is compact and normally hyperbolic, for any
𝜖 > 0 and for every 𝑦 ∈ 𝑀 \ Λ, there is 𝑛 ∈ Z such that
𝑑(𝑓

𝑛

(𝑦), Λ) > 𝜖. Let 0 < 𝛿 < 𝜖 be as in the limit shadowing
property of 𝑓. Since 𝑓 has the limit shadowing property on
Λ, for any 𝛿-limit pseudo orbit {𝑥

𝑖
}
𝑖∈Z ⊂ Λ of 𝑓, there exists

𝑦 ∈ 𝑀 such that 𝑑(𝑓𝑛

(𝑦), 𝑥
𝑛
) → 0 as 𝑛 → ±∞. Hence if

𝑦 ∉ Λ, then 𝑑(𝑓
𝑛

(𝑦), 𝑥
𝑛
) 󴀀󴀂󴀠 0 as 𝑛 → ±∞. Thus the limit

shadowing point is in Λ.



4 Abstract and Applied Analysis

Proposition 6. Let Λ
1
and Λ

2
be two basic sets of 𝑓 ∈

Diff(𝑀) and let 𝑥 ∈ 𝑊
𝑠

(Λ
1
) ∩ 𝑊

𝑢

(Λ
2
) \ Λ

1
∪ Λ

2
. If 𝑓 has

the𝐶2-stably limit shadowing property, then𝑊
𝑠

(𝑥) and𝑊
𝑢

(𝑥)

meet transversely at 𝑥.

To prove Proposition 6, we need the following two lem-
mas.

Lemma 7 (see [8, Lemma 3.2]). Let Λ
𝑖
(𝑖 = 1, 2) be basic sets

of 𝑓 ∈ Diff2
(𝑀) and suppose that 𝑥 ∈ 𝑊

𝑠

(𝑝) ∩𝑊
𝑢

(𝑞) \ {Λ
1
∪

Λ
2
}(𝑝 ∈ Λ

1
, 𝑞 ∈ Λ

2
). If 𝑓 has the limit shadowing property,

then 𝑊
𝑠

(𝑝) and 𝑊
𝑢

(𝑞) meet 𝐶0 transversely at 𝑥.

Lemma 8 (see [9, Lemma 2]). Let Λ
𝑖
(𝑖 = 1, 2) be basic

sets of 𝑓 ∈ Diff 𝑟

(𝑀) (𝑟 ≥ 1) and suppose that 𝑥 ∈

𝑊
𝑠

(Λ
1
) ∩ 𝑊

𝑢

(Λ
2
) \ Λ

1
∪ Λ

2
. Then there are 𝜖 > 0 and a

𝐶
𝑟-diffeomorphism 𝜓

𝑥
: 𝐵

𝜖
(𝑥) → R2

= {(𝑦, 𝑧) | 𝑦, 𝑧 ∈ R}

such that 𝜓
𝑥
(𝑥) = (0, 0) and 𝜓(𝐶

𝑠

𝜖
(𝑥)) ⊂ 𝑦-axis. Here 𝐶

𝑠

𝜖
(𝑥) is

defined as before.

Proof of Proposition 6. Let Λ
𝑖
(𝑖 = 1, 2) be basic sets of 𝑓 ∈

Diff2(𝑀) and suppose 𝑥 ∈ 𝑊
𝑠

(Λ
1
)∩𝑊

𝑢

(Λ
2
)\{Λ

1
∪Λ

2
}. We

will prove that if there is a 𝐶
2-neighborhoodU(𝑓) of 𝑓 such

that every 𝑔 ∈ U(𝑓) has the limit shadowing property, then
𝑇
𝑥
𝑀 = 𝑇

𝑥
𝑊

𝑠

(𝑥) + 𝑇
𝑥
𝑊

𝑢

(𝑥). By Lemma 8, there are 𝛿 > 0

and a 𝐶
2-diffeomorphism 𝜓

𝑥
: 𝐵

𝛿
(𝑥) → R2 such that

𝜓
𝑥
(𝐶

𝑠

𝛿
(𝑥)) ⊂ 𝑦-axis, 𝜓

𝑥
(𝑥) = (0, 0) . (13)

If 𝑇
(0,0)

𝜓
𝑥
(𝐶

𝑢

𝛿
(𝑥)) ̸= 𝑦-axis, then we have 𝑇

𝑥
𝑀 = 𝑇

𝑥
𝑊

𝑠

(𝑥) +

𝑇
𝑥
𝑊

𝑢

(𝑥); that is, 𝑊𝑠

(𝑥) and 𝑊
𝑢

(𝑥) meet transversely at 𝑥.
Thus we assume that 𝑇

(0,0)
𝜓
𝑥
(𝐶

𝑢

𝛿
(𝑥)) = 𝑦-axis. It is easy to

see that there are 𝜖 > 0 and a 𝐶
2-function 𝛼 : [−𝜖, 𝜖] → R

such that

graph (𝛼) ⊂ 𝜓
𝑥
(𝐶

𝑢

𝛿
(𝑥)) , (0, 𝛼 (0)) = 𝜓

𝑥
(𝑥) = (0, 0) .

(14)

If 𝛼󸀠󸀠

(0) ̸= 0, then, since 𝛼
󸀠

(0) = 0, 𝑊
𝑠

(𝑥) and 𝑊
𝑢

(𝑥) do not
meet 𝐶0 transversely at 𝑥. This is inconsistent with Lemma 7
and so 𝛼

󸀠󸀠

(0) = 0. If we denote a 𝐶
2-metric by 𝑑

2
, then for

every 𝛿
󸀠, there exists 0 < 𝜖

󸀠

< 𝜖 such that

𝑑
2
(𝜓

−1

𝑥
(graph (𝛼 (−𝜖

󸀠

, 𝜖
󸀠

))) , 𝐶
𝑠

𝜖
󸀠 (𝑥)) < 𝛿

󸀠 (15)

since 𝛼
󸀠

(0) = 0 and 𝛼
󸀠󸀠

(0) = 0. Thus, by using a standard
procedure, for every 𝜂 > 0 and every𝐶

2-neighborhoodU(𝑓)

of 𝑓 such that every 𝑔 ∈ U(𝑓) has the limit shadowing
property, we can construct a 𝐶

2-diffeomorphism 𝑔 : 𝑀 →

𝑀 such that (1) 𝑔(𝑥) = 𝑥, (2) 𝑔|
𝑀\𝐵
𝜂
(𝑥)

= 𝑖𝑑, (3) 𝑔(𝑊
𝑠

(𝑥) ∩

𝐵
𝜂
󸀠(𝑥)) ⊂ 𝑊

𝑢

(𝑥), and (4) ℎ = 𝑔
−1

∘ 𝑓 ∈ U(𝑓), where
0 < 𝜂

󸀠

< 𝜂 is sufficiently small.
From this we have

𝑊
𝑠

(𝑥, ℎ) ∩ 𝐵
𝜂
󸀠 (𝑥) = 𝑊

𝑢

(𝑥, ℎ) ∩ 𝐵
𝜂
󸀠 (𝑥) . (16)

Here 𝑊
𝜎

(𝑥, ℎ) (𝜎 = 𝑠, 𝑢) are the stable and unstable
manifolds of ℎ at 𝑥. By Lemma 7, this is a contradiction
since ℎ has the limit shadowing property and so the proof is
completed.

Let 𝑓 : 𝑀
𝑛

→ 𝑀
𝑛

(𝑛 ≥ 2) be a diffeomorphism. For
given 𝑥, 𝑦 ∈ 𝑀, we write 𝑥 󴁄󴀼 𝑦 if, for any 𝛿 > 0, there is
a finite 𝛿-pseudo orbit {𝑥

𝑖
}
𝑛

𝑖=0
(𝑛 ≥ 1) of 𝑓 such that 𝑥

0
= 𝑥

and 𝑥
𝑛
= 𝑦. For a closed 𝑓-invariant set Λ ⊂ 𝑀, we say that

𝑓 is chain transitive in Λ (or 𝑓|
Λ
is chain transitive) if for any

𝑥, 𝑦 ∈ Λ, 𝑥 󴁄󴀼 𝑦 ⊂ Λ.
To proveTheorem 3, we need some results as follows from

[10–12]. Since [10] is preprint, we give the proof here.

Lemma9 (see [10, Lemma 2.1]). If𝑓|
Λ
is chain transitive, then

𝑓 has neither sinks nor sources.

Proof. Let 𝑝 be a sink. Then there exist 𝜖 > 0 and 𝜆 < 1 such
that if 𝑑(𝑥, 𝑝) < 𝜖 then 𝑑(𝑓

𝑖

(𝑥), 𝑝) < 𝜆𝑑(𝑥, 𝑝) for all 𝑖 ≥ 1.
Take 𝑦 ∈ Λ such that 𝑑(𝑦, 𝑝) ≥ 2𝜖. For any 𝛿 > 0, let 𝜉 = {𝑝 =

𝑥
0
, 𝑥

1
, . . . , 𝑥

𝑚
= 𝑦} (𝑚 ≥ 1) be a 𝛿-pseudo orbit of𝑓 such that

𝑥
𝑖
∈ Λ. For simplicity, wemay assume that𝑓(𝑝) = 𝑝.Thenwe

have 𝑑(𝑝, 𝑥
1
) < 𝛿 and 𝑑(𝑝, 𝑥

2
) ≤ 𝑑(𝑝, 𝑓(𝑥

1
))+𝑑(𝑓(𝑥

1
), 𝑥

2
) <

𝜆𝑑(𝑝, 𝑥
1
) + 𝛿 < 𝛿(𝜆 + 1). Thus we obtain

𝑑 (𝑝, 𝑥
𝑖
) ≤ 𝑑 (𝑝, 𝑓 (𝑥

𝑖−1
)) + 𝑑 (𝑓 (𝑥

𝑖−1
) , 𝑥

𝑖
)

< 𝑑 (𝑝, 𝑓 (𝑥
𝑖−1

)) + 𝛿

< 𝜆𝑑 (𝑝, 𝑥
𝑖−1

) + 𝛿 < ⋅ ⋅ ⋅ < 𝛿 (1 + 𝜆 + ⋅ ⋅ ⋅ + 𝜆
𝑖

)

≤
𝛿

1 − 𝜆
.

(17)

Put 𝜂 = 𝛿/(1 − 𝜆). Then if 𝛿 is sufficiently small, we can make
𝜂 < 𝜖. This is a contradiction since 𝑑(𝑦, 𝑝) ≥ 2𝜖.

Theorem 10 (see [11, Lemma 2.3]). LetΛ be a locally maximal
set. If𝑓 has the limit shadowing property onΛ then𝑓|

Λ
is chain

transitive.

Proposition 11 (see [12]). Let 𝑓 be a 𝐶
2-diffeomorphism on a

𝐶
∞ closed surface 𝑀 and let Λ be a compact 𝑓-invariant set

having a dominated splitting 𝑇
Λ
𝑀 = 𝐸 ⊕ 𝐹. Assume that all

the periodic points in Λ are hyperbolic of saddle type. Then,
Λ = Λ

1
∪ Λ

2
, where Λ

1
is hyperbolic and Λ

2
consist of

a finite union of normally hyperbolic periodic simple closed
curves C

1
∪ ⋅ ⋅ ⋅ ∪ C

𝑛
such that 𝑓𝑚

𝑖 : C
𝑖
→ C

𝑖
is conjugated

to an irrational rotation. Here𝑚
𝑖
denotes the minimal number

such that 𝑓𝑚
𝑖(C

𝑖
) = C

𝑖
.

Proof ofTheorem 3. Let𝑀 be a𝐶
∞ closed manifold and let 𝑓

have the𝐶
2-stably limit shadowing property.Then (i) follows

from Propositions 4 and 6 directly.
To prove (ii), we suppose 𝑃(𝑓) = Ω(𝑓) and there is a

dominated splitting on 𝑃
𝑠
(𝑓). By Proposition 4, every 𝑝 ∈

𝑃(𝑓) is hyperbolic. Hence by Proposition 11, we have 𝑃
𝑠
(𝑓) =

Λ
1
∪ Λ

2
, where Λ

1
is hyperbolic and Λ

2
consists of a finite

union of normally hyperbolic periodic simple closed curves
C

1
, . . . ,C

𝑛
such that 𝑓

𝑚
𝑖 : C

𝑖
→ C

𝑖
is conjugated to

an irrational rotation. Here 𝑚
𝑖
denotes the smallest number

such that 𝑓𝑚
𝑖(C

𝑖
) = C

𝑖
. Since C

𝑖
is normally hyperbolic, by

Lemma 5, the limit shadowing point 𝑦 is in C
𝑖
. That is, 𝑓𝑚

𝑖

satisfies the limit shadowing property on C
𝑖
such that the

limit shadowing point is inC
𝑖
.
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On the other hand, by Example 1, the irrational rotation
map does not have the limit shadowing property. Since the
limit shadowing property is invariant under a topological
conjugacy, Λ

2
= 0 is concluded. Thus 𝑃

𝑠
(𝑓) = Λ

1
∪ Λ

2

is hyperbolic. Since 𝑓 has the limit shadowing property, by
Theorem 10, it is chain transitive and, by Lemma 9, it has
neither sinks nor sources.Therefore 𝑓 satisfies Axiom𝐴. The
strong transversality condition follows from Proposition 6,
and so the proof is completed.
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