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We introduce the concept of L-fuzzy neighborhood systems using complete MV-algebras and present important links with the
theory of L-fuzzy topological spaces.We investigate the relationships among the degrees of L-fuzzy r-adherent points (r-convergent,
r-cluster, and r-limit, resp.) in an L-fuzzy topological spaces. Also, we investigate the concept of LF-continuous functions and their
properties.

1. Introduction

Šostak [1–3] introduced a new definition of 𝐿-fuzzy topology
as the concept of the degree of the openness of fuzzy set.
It is an extension of 𝐼 = [0, 1]-fuzzy topology defined by
Chang [4]. It has been developed in many directions [5–11].
The study of neighborhood systems and convergence of nets
inChang fuzzy topologywas initiated by Pao-Ming andYing-
Ming [11] and Liu and Luo [12]. In [13] Ying introduced the
degree to which a fuzzy point 𝑥

𝑡
belongs to a fuzzy subset

𝜆 by 𝑚(𝑥
𝑡
, 𝜆) = min(1, 1 − 𝑡 + 𝜆(𝑥)) and gave the idea of

graded neighborhood on fuzzy topological spaces. This plays
an important role in the theory of convergence in Chang
fuzzy topology see also [14–18]. Following Ying [13], Demirci
[5] introduced the idea of graded neighborhood systems in
smooth toplogical spaces [19] (a smooth topology is similar
to fuzzy topology as defined by Šostak [1], Hazra and Samanta
[6]) in a different approach but restricted himself to the 𝐼-
valued fuzzy sets.

In this paper, we study the concept of 𝐿-fuzzy neigh-
borhood systems and present important links with the
theory of 𝐿-fuzzy topological spaces and investigate some
of their properties. We investigate the relationships among
the degrees of 𝐿-fuzzy r-adherent points (r-convergent, r-
cluster, and r-limit, resp.) nets in an 𝐿-fuzzy topological
spaces. Also, we give some related examples to illustrate some

of the introduced notions. In the end, we characterize 𝐿𝐹-
continuous functions in terms of some of the various notions
introduced in this paper.

2. Preliminaries

Throughout the text we consider (𝐿, ≤, ∧, ∨, 0, 1) as a com-
pletely distributive lattice with 0 and 1, respectively, being the
universal upper and lower bound and 𝐿

0
= 𝐿−{0}. A lattice 𝐿

is called order dense if for each 𝑎, 𝑏 ∈ 𝐿 such that 𝑎 < 𝑏, there
exist 𝑐 ∈ 𝐿 such that 𝑎 < 𝑐 < 𝑏. If 𝐿 is a completely distributive
lattice and 𝑥 ⊲ ⋁

𝑖∈Γ
𝑦
𝑖
, then there must be 𝑖

0
∈ Γ such that

𝑥 ⊲ 𝑦
𝑖0
, where 𝑥 ⊲ 𝑎means 𝐾 ⊂ 𝐿, 𝑎 ≤ ⋁𝐾 ⇒ ∃𝑦 ∈ 𝐾 such

that 𝑥 ≤ 𝑦. If 𝑎 ⊲ 𝑏 and 𝑐 ⊲ 𝑑, we always assume 𝑎 ∧ 𝑐 ⊲ 𝑏 ∧ 𝑑
[20] and some properties of ⊲ can be found in [12].

A completely distributive lattice 𝐿 = (𝐿, ≤, ∧, ∨, ⊙, → ,

0, 1) (or 𝐿, in short) is called a residuated lattice [9, 21–23]
if it satisfies the following conditions: for each 𝑥, 𝑦, 𝑧 ∈ 𝐿,

(R1) (𝐿, ⊙, 1) is a commutative monoid,
(R2) if 𝑥 ≤ 𝑦, then 𝑥 ⊙ 𝑧 ≤ 𝑦 ⊙ 𝑧 (⊙ is isotone operation),
(R3) (Galois correspondence) 𝑥 ≤ 𝑦 → 𝑧 ⇔ 𝑥 ⊙ 𝑦 ≤ 𝑧.

In a residuated lattice 𝐿, 𝑥󸀠 = 𝑥 → 0 is called comple-
ment of 𝑥 ∈ 𝐿.
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A residuated lattice 𝐿 is called a 𝐵𝐿-algebra [9, 21, 23] if it
satisfies the following conditions: for each 𝑥, 𝑦, 𝑧 ∈ 𝐿,

(B1) 𝑥 ∧ 𝑦 = 𝑥 ⊙ (𝑥 → 𝑦),
(B2) 𝑥 ∨ 𝑦 = [(𝑥 → 𝑦) → 𝑦] ∧ [(𝑦 → 𝑥) → 𝑥],
(B3) (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1.

A 𝐵𝐿-algebra is called an𝑀𝑉-algebra if 𝑥 = 𝑥󸀠󸀠, for each
𝑥 ∈ 𝐿.

Lemma 1 (see [9, 21, 23]). Let 𝐿 be a complete MV-algebra.
For each 𝑥, 𝑦, 𝑧 ∈ 𝐿, {𝑦

𝑖
, 𝑥
𝑖
| 𝑖 ∈ Γ} ⊂ 𝐿, one has the following

properties:
(1) 𝑥 ⊙ 𝑦 ≤ 𝑥 ∧ 𝑦 ≤ 𝑥 ∨ 𝑦,
(2) 𝑥 ⊙ 𝑦 ≤ 𝑥, 𝑦,
(3) If 𝑦 ≤ 𝑧, (𝑥 ⊙ 𝑦) ≤ (𝑥 ⊙ 𝑧), 𝑥 → 𝑦 ≤ 𝑥 → 𝑧 and

𝑧 → 𝑥 ≤ 𝑦 → 𝑥,
(4) 𝑥 ⊙ 𝑦 = (𝑥 → 𝑦

󸀠
)
󸀠,

(5) 𝑥 ≤ 𝑦 iff 𝑥󸀠 ≥ 𝑦󸀠,
(6) 𝑥 → 𝑦 = 𝑦

󸀠
→ 𝑥
󸀠,

(7) ⋀
𝑖∈Γ
(𝑥 ⊙ 𝑦

𝑖
) = 𝑥 ⊙ (⋀

𝑖∈Γ
𝑦
𝑖
),

(8) ⋁
𝑖∈Γ
(𝑥 ⊙ 𝑦

𝑖
) = 𝑥 ⊙ (⋁

𝑖∈Γ
𝑦
𝑖
),

(9) 𝑥 → 1 = 1, 0 → 𝑥 = 1, 𝑥 → 𝑥 = 1,
(10) 𝑥 ≤ 𝑦 ⇔ 𝑥 → 𝑦 = 1 and 1 → 𝑥 = 𝑥,
(11) 𝑥 → ⋀

𝑖∈Γ
𝑦
𝑖
= ⋀
𝑖∈Γ
(𝑥 → 𝑦

𝑖
),

(12) (⋁
𝑖∈Γ
𝑦
𝑖
) → 𝑥 = ⋀

𝑖∈Γ
(𝑦
𝑖
→ 𝑥),

(13) 𝑥 → ⋁
𝑖∈Γ
𝑦
𝑖
= ⋁
𝑖∈Γ
(𝑥 → 𝑦

𝑖
),

(14) ⋀
𝑖∈Γ
𝑦
𝑖
→ 𝑥 = ⋁

𝑖∈Γ
(𝑦
𝑖
→ 𝑥),

(15) ⋀
𝑖∈Γ
𝑦
󸀠

𝑖
= (⋁
𝑖∈Γ
𝑦
𝑖
)
󸀠 and⋁

𝑖∈Γ
𝑦
󸀠

𝑖
= (⋀
𝑖∈Γ
𝑦
𝑖
)
󸀠.

In this paper, we always assume that 𝐿 is a completeMV-
algebra. Let 𝑋 be a nonempty set, and the family 𝐿𝑋 denotes
the set of all 𝐿-fuzzy subsets of a given set 𝑋. For 𝛼 ∈ 𝐿, 𝜆 ∈
𝐿
𝑋, we denote (𝛼 → 𝜆), (𝛼 ⊙ 𝜆), and 𝛼

𝑋
∈ 𝐿
𝑋 as (𝛼 →

𝜆)(𝑥) = 𝛼 → 𝜆(𝑥), (𝛼 ⊙ 𝜆)(𝑥) = 𝛼 ⊙ 𝜆(𝑥), and 𝛼
𝑋
(𝑥) = 𝛼.

A fuzzy point 𝑥
𝑡
for 𝑡 ∈ 𝐿

0
is an element of 𝐿𝑋 such that

𝑥
𝑡
(𝑦) = {

𝑡, if 𝑦 = 𝑥,
0, if 𝑦 ̸= 𝑥.

(1)

The set of all fuzzy points in𝑋 is denoted byPt(𝑋). For𝜆 ∈ 𝐿𝑋
and 𝑥

𝑡
∈ Pt(𝑋), 𝑥

𝑡
∈ 𝜆 if and only if 𝑡 ≤ 𝜆(𝑥).

Given a mapping 𝜙 : 𝑋 → 𝑌, we write 𝜙← for the
mapping 𝐿𝑌 → 𝐿

𝑋 defined by 𝜙←(𝜇) = 𝜇 ∘ 𝜙; we write 𝜙→

for the mapping 𝐿𝑋 → 𝐿
𝑌 defined by 𝜙→ (𝜇)(𝑦) = ⋁{𝜇(𝑥) |

𝜙(𝑥) = 𝑦} for all 𝜇 ∈ 𝐿𝑋, 𝑦 ∈ 𝑌.
For a given set 𝑋, define a binary mapping 𝑆(, ) : 𝐿𝑋 ×

𝐿
𝑋
→ 𝐿 as

𝑆 (𝜆, 𝜇) = ⋀

𝑥∈𝑋

(𝜆 (𝑥) 󳨀→ 𝜇 (𝑥)) , ∀ (𝜆, 𝜇) ∈ 𝐿
𝑋
× 𝐿
𝑋
. (2)

For each 𝜆, 𝜇 ∈ 𝐿𝑋, 𝑆(𝜆, 𝜇) can be interpreted as the degree
to which 𝜆 is fuzzy included in 𝜇. It is called the 𝐿-fuzzy
inclusion order [24].

Lemma2 (see [24]). For each𝜆, 𝜇, 𝜌, 𝜇
𝑖
∈ 𝐿
𝑋, 𝑖 ∈ Γ and 𝑒, 𝑥

𝑡
∈

𝑃𝑡(𝑋), the following properties hold:

(1) 𝜆 ≤ 𝜇 ⇔ 𝑆(𝜆, 𝜇) = 1,
(2) 𝜆 ≤ 𝜇 ⇒ 𝑆(𝜌, 𝜆) ≤ 𝑆(𝜌, 𝜇) and 𝑆(𝜆, 𝜌) ≥ 𝑆(𝜇, 𝜌), for

any 𝜌 ∈ 𝐿𝑋,
(3) 𝑆(𝑥, 𝜆) = 𝜆(𝑥), for any 𝜆 ∈ 𝐿𝑋,
(4) 𝑆(𝑥

𝑡
, 𝜆) = 0 if and only if 𝑡 = 1 and 𝜆(𝑥) = 0,

(5) 𝑆(𝑒, 𝜆) ∧ 𝑆(𝑒, 𝜇) = 𝑆(𝑒, 𝜆 ∧ 𝜇),
(6) 𝑆(𝑥

𝑡
, ⋀
𝑖∈Γ
𝜇
𝑖
) = ⋀

𝑖∈Γ
𝑆(𝑥
𝑡
, 𝜇
𝑖
), for any {𝜇

𝑖
}
𝑖∈Γ
⊂ 𝐿
𝑋,

(7) 𝑆(𝑥
𝑡
, ⋁
𝑖∈Γ
𝜇
𝑖
) = ⋁

𝑖∈Γ
𝑆(𝑥
𝑡
, 𝜇
𝑖
), for any {𝜇

𝑖
}
𝑖∈Γ
⊂ 𝐿
𝑋.

Lemma 3 (see [16]). Let 𝑓 : 𝑋 → 𝑌 be a mapping. Then the
following statement hold:

(1) 𝑆(𝜆, 𝜇) ≤ 𝑆(𝑓→ (𝜆), 𝑓→ (𝜇)), for each 𝜆, 𝜇 ∈ 𝐿𝑋

(2) 𝑆(𝜌, ]) ≤ 𝑆(𝑓←(𝜌), 𝑓←(])), for each 𝜌, ] ∈ 𝐿𝑌.

In particular, if the mapping 𝑓 : 𝑋 → 𝑌 is bijective, and
then the equalities hold.

Definition 4 (see [1, 9]). A map T : 𝐿
𝑋
→ 𝐿 is called an

𝐿-fuzzy topology on𝑋 if it satisfies the following conditions:

(LO1) T(1
𝑋
) = T(0

𝑋
) = 1,

(LO2) T(𝜇
1
∧ 𝜇
2
) ≥ T(𝜇

1
) ∧T(𝜇

2
), for all 𝜇

1
, 𝜇
2
∈ 𝐿
𝑋,

(LO3) T(⋁
𝑖∈Λ
𝜇
𝑖
) ≥ ⋀

𝑖∈Λ
T(𝜇
𝑖
), for any {𝜇

𝑖
}
𝑖∈Λ

⊂ 𝐿
𝑋.

The pair (𝑋,T) is called an 𝐿-fuzzy topological space.

Let T
1
and T

2
be 𝐿-fuzzy topologies on 𝑋. We say that

T
1
isfiner thanT

2
(T
2
is coarser thanT

1
), denoted byT

2
≤

T
1
, ifT
2
(𝜆) ≤ T

1
(𝜆) for all 𝜆 ∈ 𝐿𝑋. Let (𝑋,T

1
) and (𝑌,T

2
)

be 𝐿-fuzzy topological space spaces. A map 𝑓 : (𝑋,T
1
) →

(𝑌,T
2
) is 𝐿-fuzzy continuous (𝐿𝐹-continuous, for short) if

T
2
(𝜆) ≤ T

1
(𝑓
←
(𝜆)), ∀𝜆 ∈ 𝐿

𝑌.

Theorem 5 (see [7, 9]). Let (𝑋,T) be an 𝐿-fuzzy topological
space. For each 𝑟 ∈ 𝐿

0
and 𝜆 ∈ 𝐿

𝑋, one defines operators
𝐼T, 𝐶T : 𝐿

𝑋
× 𝐿
0
→ 𝐿
𝑋 as follows:

𝐼T (𝜆, 𝑟) = ⋁{𝜌 ∈ 𝐿
𝑋
| 𝜌 ≤ 𝜆, T (𝜌) ≥ 𝑟} ,

𝐶T (𝜆, 𝑟) = ⋀{] ∈ 𝐿𝑋 | 𝜆 ≤ ], T (]󸀠) ≥ 𝑟} .
(3)

For each 𝜆, 𝜇 ∈ 𝐿𝑋 and 𝑟, 𝑠 ∈ 𝐿
0
, one has the following

properties:

(I1) IT(1𝑋, 𝑟) = 1𝑋,
(I2) IT(𝜆, 𝑟) ≤ 𝜆,
(I3) if 𝜆 ≤ 𝜇 and 𝑟 ≤ 𝑠, thenIT(𝜆, 𝑠) ≤ IT(𝜇, 𝑟),
(I4) IT(𝜆 ∧ 𝜇, 𝑟 ∧ 𝑠) ≥ IT(𝜆, 𝑟) ∧IT(𝜇, 𝑠),
(I5) IT(IT(𝜆, 𝑟), 𝑟) = IT(𝜆, 𝑟),
(I6) IT(𝜆

󸀠
, 𝑟) = (𝐶T(𝜆, 𝑟))

󸀠.
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Definition 6 (see [12]). Let 𝐷 be a directed set. A function
𝑇 : 𝐷 → Pt(𝑋) is called a fuzzy net in 𝑋. Let 𝜆 ∈ 𝐿𝑋, and
one says that 𝑇 is a fuzzy net in 𝜆 if 𝑇(𝑛) ∈ 𝜆 for every 𝑛 ∈ 𝐷.

Definition 7 (see [12, 25]). Let 𝑇 be a fuzzy net and 𝜆 ∈ 𝐿𝑋.

(1) 𝑇 is often in 𝜆 if for each 𝑛 ∈ 𝐷, there exists 𝑛
0
∈ 𝐷

such that 𝑛
0
≥ 𝑛 and 𝑇(𝑛

0
) ∈ 𝜆.

(2) 𝑇 is finally in 𝜆 if there exists 𝑛
0
∈ 𝐷 such that for each

𝑛 ∈ 𝐷 with 𝑛 ≥ 𝑛
0
, one has 𝑇(𝑛) ∈ 𝜆.

Definition 8 (see [12, 25]). Let 𝑇 : 𝐷 → Pt(𝑋) and 𝑈 : 𝐸 →

Pt(𝑋) be two fuzzy nets. A fuzzy net 𝑈 is called a subnet of
𝑇 if there exists a function 𝑁 : 𝐸 → 𝐷, called by a cofinal
selection on 𝑇, such that

(1) 𝑈 = 𝑇 ∘ 𝑁;

(2) for every 𝑛
0
∈ 𝐷, there exists 𝑚

0
∈ 𝐸 such that

𝑁(𝑚) ≥ 𝑛
0
, for𝑚 ≥ 𝑚

0
.

3. 𝐿-Fuzzy Neighborhood Systems

Definition 9. Let 𝜆 ∈ 𝐿𝑋 and 𝑥
𝑡
∈ Pt(𝑋). Then the degree to

which 𝑥
𝑡
belongs to 𝜆 is

𝑆 (𝑥
𝑡
, 𝜆) = ⋀

𝑥∈𝑋

(𝑡 󳨀→ 𝜆 (𝑥)) . (4)

Definition 10. Let (𝑋,T) be an 𝐿-fuzzy topological space, 𝜆 ∈
𝐿
𝑋, 𝑒 ∈ Pt(𝑋), and 𝑟 ∈ 𝐿

0
. The degree to which 𝜆 is a r-

neighborhood of 𝑒 is defined by

(N
T
)
𝑒
(𝜆, 𝑟) = ⋁{𝑆 (𝑒, 𝜇) | 𝜇 ≤ 𝜆, 𝑟 ⊲ T (𝜇)} . (5)

A mapping (NT
)
𝑒
: 𝐿
𝑋
× 𝐿
0
→ 𝐿 is called the 𝐿-fuzzy

neighborhood system of 𝑒.

Theorem 11. Let (𝑋,T) be an 𝐿-fuzzy topological space and
let (NT

)
𝑒
be the fuzzy neighborhood system of 𝑒. For all 𝜆, 𝜇 ∈

𝐿
𝑋 and 𝑟, 𝑠 ∈ 𝐿

0
, the following properties hold:

(1) (NT
)
𝑒
(0
𝑋
, 𝑟) = 𝑆(𝑒, 0

𝑋
) and (NT

)
𝑒
(1
𝑋
, 𝑟) = 1,

(2) (NT
)
𝑒
(𝜆, 𝑟) ≤ 𝑆(𝑒, 𝜆),

(3) (NT
)
𝑒
(𝜆, 𝑟) ≥ (NT

)
𝑒
(𝜆, 𝑠), if 𝑟 ≤ 𝑠,

(4) (NT
)
𝑒
(𝜆, 𝑟) ≤ (NT

)
𝑒
(𝜇, 𝑟), if 𝜆 ≤ 𝜇,

(5) (NT
)
𝑒
(𝜆
1
, 𝑟) ∧ (NT

)
𝑒
(𝜆
2
, 𝑠) ≤ (NT

)
𝑒
(𝜆
1
∧ 𝜆
2
, 𝑟 ∧ 𝑠),

(6) (NT
)
𝑒
(𝜆, 𝑟) ≤ ⋁{(NT

)
𝑒
(𝜇, 𝑟) | 𝜇 ≤ 𝜆, 𝑆(𝑑, 𝜇) ≤

(NT
)
𝑑
(𝜇, 𝑟) ∀𝑑 ∈ 𝑃𝑡(𝑋)},

(7) (NT
)
𝑥𝑡
(𝜆, 𝑟) = ⋀

𝑥∈𝑋
(𝑡 → (NT

)
𝑥1
(𝜆, 𝑟)).

Proof. (1), (3), and (4) are easily proved.

(2) is proved from the following:

(N
T
)
𝑒
(𝜆, 𝑟) = ⋁{𝑆 (𝑒, 𝜇

𝑖
) | 𝜇
𝑖
≤ 𝜆, 𝑟 ⊲ 𝜏 (𝜇)}

≤ ⋁{𝑆(𝑒,⋁𝜇
𝑖
) | 𝜇
𝑖
≤ 𝜆, 𝑟 ⊲ 𝜏 (𝜇)}

(by Lemma 2 (2))

≤ {𝑆(𝑒,⋁𝜇
𝑖
) | ⋁𝜇

𝑖
≤ 𝜆, 𝑟 ≤ 𝜏 (⋁𝜇

𝑖
)}

≤ 𝑆 (𝑒, 𝜆) .

(6)

In (5) if 𝑎 ⊲ (NT
)
𝑒
(𝜆
1
, 𝑟) ∧ (NT

)
𝑒
(𝜆
2
, 𝑠), then 𝑎 ⊲

(NT
)
𝑒
(𝜆
1
, 𝑟) and 𝑎 ⊲ (NT

)
𝑒
(𝜆
2
, 𝑠), and there exists 𝜌

1
∈ 𝐿
𝑋

with 𝜌
1
≤ 𝜆
1
and 𝑟 ⊲ T(𝜌

1
) such that 𝑎 ⊲ 𝑆(𝑒, 𝜌

1
). Again,

there exists 𝜌
1
∈ 𝐿
𝑋 with 𝜌

2
≤ 𝜆
2
and 𝑟 ⊲ T(𝜌

2
) such that

𝑎 ⊲ 𝑆(𝑒, 𝜌
2
). So, 𝜌

1
∧𝜌
2
≤ 𝜆
1
∧𝜆
2
, 𝑟 ∧ 𝑠 ⊲ T(𝜌

1
) ∧T(𝜌

2
), and

𝑎 ≤ 𝑆(𝑒, 𝜌
1
) ∧ 𝑆(𝑒, 𝜌

2
) = 𝑆(𝑒, 𝜌

1
∧ 𝜌
2
) ≤ (NT

)
𝑒
(𝜆
1
∧ 𝜆
2
, 𝑟 ∧ 𝑠).

Hence,

(N
T
)
𝑒
(𝜆
1
∧ 𝜆
2
, 𝑟 ∧ 𝑠) ≥ (N

T
)
𝑒
(𝜆
1
, 𝑟) ∧ (N

T
)
𝑒
(𝜆
2
, 𝑠) .

(7)

In (6) if 𝑟 ⊲ T(𝜇), then 𝑆(𝑑, 𝜇) = (NT
)
𝑑
(𝜇, 𝑟), for each

𝑑 ∈ Pt(𝑋). It implies

(N
T
) (𝜆, 𝑟) = ⋁{𝑆 (𝑒, 𝜇) | 𝜇 ≤ 𝜆, 𝑟 ⊲ T (𝜇)}

= ⋁{(N
T
)
𝑒
(𝜇, 𝑟) | 𝜇 ≤ 𝜆,

𝑆 (𝑑, 𝜇) = (N
T
)
𝑑
(𝜇, 𝑟) ,

∀𝑑 ∈ Pt (𝑋)}

≤ ⋁{(N
T
)
𝑒
(𝜇, 𝑟) | 𝜇 ≤ 𝜆,

𝑆 (𝑑, 𝜇) ≤ (N
T
)
𝑑
(𝜇, 𝑟) ,

∀𝑑 ∈ Pt (𝑋)} .
(8)

(7) is proved from

(N
T
)
𝑥𝑡

(𝜆, 𝑟) = ⋁{𝑆 (𝑥
𝑡
, 𝜇) | 𝜇 ≤ 𝜆, T (𝜇) ≥ 𝑟}

= ⋁{⋀

𝑥∈𝑋

(𝑡 󳨀→ 𝜇 (𝑥)) | 𝜇 ≤ 𝜆, T (𝜇) ≥ 𝑟}
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= ⋀

𝑥∈𝑋

{𝑡 󳨀→ ⋁{𝜇 (𝑥) | 𝜇 ≤ 𝜆, T (𝜇) ≥ 𝑟}}

(by Lemma 2 (7))

= ⋀

𝑥∈𝑋

(𝑡 󳨀→ (N
T
)
𝑥1

(𝜆, 𝑟)) .

(9)

Theorem 12. Let𝑋 be a nonempty set. Let for each 𝑒 ∈ Pt(𝑋),
andN

𝑒
: 𝐿
𝑋
×𝐿
0
→ 𝐿 satisfying the above conditions (1)–(5).

DefineTN : 𝐿
𝑋
→ 𝐿 by

TN (𝜆) = ⋁{𝑟 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆) =N

𝑒
(𝜆, 𝑟) , ∀𝑒 ∈ 𝑃𝑡 (𝑋)} .

(10)

Then one has the following:
(a) TN is an 𝐿-fuzzy topology on 𝑋;
(b) if (NT

)
𝑒
is the 𝐿-fuzzy neighborhood system of 𝑒

induced by (𝑋,T), thenTNT = T;
(c) ifN

𝑒
’s satisfy the conditions (6) and (7), then

TN (𝜆) = ⋁{𝑟 ∈ 𝐿
0
𝑆 (𝑥, 𝜆) =N

𝑥
(𝜆, 𝑟) , ∀𝑥 ∈ 𝑋} ; (11)

(d) NTN
=N.

Proof. (a) (LO1) It is easily proved fromTheorem 11(1).
(LO2) It is proved from the following:

TN (𝜆1) ∧TN (𝜆2)

= (⋁{𝑟 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

1
) =N

𝑒
(𝜆
1
, 𝑟)})

∧ (⋁{𝑠 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

2
) =N

𝑒
(𝜆
2
, 𝑠)})

= ⋁{𝑟 ∧ 𝑠 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

1
) ∧ 𝑆 (𝑒, 𝜆

2
)

=N
𝑒
(𝜆
1
, 𝑟) ∧N

𝑒
(𝜆
2
, 𝑠)}

≤ ⋁{𝑟 ∧ 𝑠 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

1
) ∧ 𝑆 (𝑒, 𝜆

2
)

≤N
𝑒
(𝜆
1
∧ 𝜆
2
, 𝑟 ∧ 𝑠)}

≤ ⋁{𝑟 ∧ 𝑠 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

1
∧ 𝜆
2
) ≤N

𝑒
(𝜆
1
∧ 𝜆
2
, 𝑟 ∧ 𝑠)}

(by Lemma 2 (5))

≤ TN (𝜆1 ∧ 𝜆2) .

(12)

(LO3) If 𝑎 ⊲ ⋀
𝑖∈Γ

TN(𝜆𝑖), then 𝑎 ⊲ TN(𝜆𝑖) for each
𝑖 ∈ Γ, and note that

TN (𝜆𝑖) = ⋁{𝑟
𝑖
∈ 𝐿
0
| 𝑆 (𝑒, 𝜆

𝑖
) =N

𝑒
(𝜆
𝑖
, 𝑟
𝑖
) ,

∀𝑒 ∈ Pt (𝑋)} ,
(13)

so there exists 𝑟
𝑖
∈ 𝐿
0
, with 𝑆(𝑒, 𝜆

𝑖
) = N

𝑒
(𝜆
𝑖
, 𝑟
𝑖
) such that

𝑎 ⊲ 𝑟
𝑖
. Put 𝑟 = ⋀

𝑖∈Γ
𝑟
𝑖
, and then 𝑎 ≤ 𝑟. By Theorem 11, we

have

𝑆 (𝑒, 𝜆
𝑖
) ≤N

𝑒
(𝜆
𝑖
, 𝑟
𝑖
) ≤N

𝑒
(𝜆
𝑖
, 𝑟) ≤ 𝑆 (𝑒, 𝜆

𝑖
) . (14)

It implies 𝑆(𝑒, 𝜆
𝑖
) = N

𝑒
(𝜆
𝑖
, 𝑟). Furthermore, by Lemma 2(7),

we have

𝑆(𝑒,⋁

𝑖∈Γ

𝜆
𝑖
)

= ⋁

𝑖∈Γ

𝑆 (𝑒, 𝜆
𝑖
) = ⋁

𝑖∈Γ

N
𝑒
(𝜆
𝑖
, 𝑟
𝑖
)

≤ ⋁

𝑖∈Γ

N
𝑒
(𝜆
𝑖
, 𝑟) ≤N

𝑒
(⋁

𝑖∈Γ

𝜆
𝑖
, 𝑟) ≤ 𝑆(𝑒,⋁

𝑖∈Γ

𝜆
𝑖
) .

(15)

So N
𝑒
(⋁
𝑖∈Γ
𝜆
𝑖
, 𝑟) = 𝑆(𝑒, ⋁

𝑖∈Γ
𝜆
𝑖
). Hence, TN(⋁𝑖∈Γ𝜆𝑖) ≥ 𝑟 ≥

𝑎. Therefore,TN(⋁𝑖∈Γ𝜆𝑖) ≥ ⋀𝑖∈Γ𝜆𝑖(𝜆𝑖).
(b) If 𝑎 ⊲ TN(𝜆), then there exists 𝑟

0
∈ 𝐿
0
with 𝑆(𝑒, 𝜆) =

N
𝑒
(𝜆, 𝑟
0
) such that 𝑟

0
⊲ T(𝜆). Since

𝑆 (𝑒, 𝜆) =N
𝑒
(𝜆, 𝑟
0
) = ⋁{𝑆 (𝑒, 𝜇

𝑖
) | 𝜇
𝑖
≤ 𝜆, 𝑟

0
⊲ T (𝜇

𝑖
)} ,

(16)

then, for each 𝑥
1
∈ Pt(𝑋),

𝜆 (𝑥) = 𝑆 (𝑥
1
, 𝜆)

= ⋁{𝑆 (𝑥
1
, 𝜇
𝑖
) | 𝜇
𝑖
≤ 𝜆, 𝑟

0
⊲ T (𝜇

𝑖
)}

= 𝑆(𝑥
1
,⋁

𝑖∈Γ

𝜇
𝑖
) = ⋁

𝑖∈Γ

𝜇
𝑖
(𝑥) .

(17)

Thus, 𝜆 = ⋁𝜇
𝑖
. So T(𝜆) ≥ 𝑟

0
≥ 𝑎. Hence, TN(𝜆) ≤

T(𝜆). We can easily obtainTN(𝜆) ≥ T(𝜆).
(c) We only show that 𝑆(𝑥

𝑡
, 𝜆) =N

𝑥𝑡
(𝜆, 𝑟), ∀𝑥

𝑡
∈ Pt(𝑋)

if and only if 𝑆(𝑥, 𝜆) = 𝜆(𝑥) =N
𝑥
(𝜆, 𝑟), ∀𝑥 ∈ 𝑋.

(⇒) It is trivial.
(⇐) From condition (7),

N
𝑥𝑡
(𝜆, 𝑟) = ⋀

𝑥∈𝑋

(𝑡 󳨀→N
𝑥1
(𝜆, 𝑟))

= ⋀

𝑥∈𝑋

(𝑡 󳨀→ 𝑆 (𝑥
1
, 𝜆))

= ⋀

𝑥∈𝑋

(𝑡 󳨀→ 𝜆 (𝑥))

= 𝑆 (𝑥
𝑡
, 𝜆) .

(18)

(d) From the proof of Theorem 11(6), we easily obtain
NTN

≥N.
If 𝑎 ⊲ (NTN

)
𝑒
(𝜆, 𝑟) = ⋁{𝑆(𝑒, 𝜇) | 𝜇 ≤ 𝜆, 𝑟 ⊲ TN(𝜇)},

there exists 𝜇
0
with 𝜇

0
≤ 𝜆, 𝑟 ⊲ TN(𝜇0) such that 𝑎 ⊲

𝑆(𝑒, 𝜇
0
). Note that

TN (𝜇0) = ⋁{𝑡 ∈ 𝐿
0
| 𝑆 (𝑒, 𝜇

0
) =N

𝑒
(𝜇
0
, 𝑡) , ∀𝑒 ∈ Pt (𝑋)} ,

(19)
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and there exists 𝑡
0
∈ 𝐿
0
with 𝑆(𝑒, 𝜇

0
) = N

𝑒
(𝜇
0
, 𝑡
0
) such that

𝑟 ⊲ 𝑡
0
(thus 𝑟 ≤ 𝑡

0
). So 𝑎 ⊲ N

𝑒
(𝜇
0
, 𝑡
0
) ≤ N

𝑒
(𝜇
0
, 𝑟) ≤

N
𝑒
(𝜆, 𝑟). Therefore,NTN

≤N.

By Theorem 12, we have the following corollary.

Corollary 13. The set of all 𝐿-fuzzy topologies on 𝑋 and the
set of all 𝐿-fuzzy neighborhood systems on 𝑋 are in one to one
correspondence.

Example 14. Let 𝐿 = [0, 1], 𝑋 = {𝑎, 𝑏} be a set, 𝑥 → 𝑦 =

min(1 − 𝑥 + 𝑦, 1), and let 𝜇 ∈ 𝐿𝑋 be defined as follows:

𝜇 (𝑎) = 0.3, 𝜇 (𝑏) = 0.4. (20)

We define an 𝐿-fuzzy topology on𝑋 as

T (𝜆) =

{{{

{{{

{

1, if 𝜆 = 0
𝑋
or 1
𝑋
,

1

2
, if 𝜆 = 𝜇,

0, otherwise.

(21)

From Definition 10,N
𝑎1
,N
𝑏2
: 𝐿
𝑋
× 𝐿
0
→ 𝐿 as follows:

N
𝑎1
(𝜆, 𝑟) =

{{{

{{{

{

1, if 𝜆 = 1
𝑋
, 𝑟 ∈ 𝐿

0
,

0.3, if 1
𝑋

̸= 𝜆 ≥ 𝜇, 0 < 𝑟 ≤
1

2
,

0, otherwise,

N
𝑏1
(𝜆, 𝑟) =

{{{

{{{

{

1, if 𝜆 = 1
𝑋
, 𝑟 ∈ 𝐿

0
,

0.4, if 1
𝑋

̸= 𝜆 ≥ 𝜇, 0 < 𝑟 ≤
1

2
,

0, otherwise.

(22)

FromTheorem 12(c), we have

TN (𝜆) =

{{{

{{{

{

1, if 𝜆 = 0
𝑋
or 1
𝑋
,

1

2
, if 𝜆 = 𝜇,

0, otherwise.

(23)

4. R-Convergence

Definition 15. Let (𝑋,T) be an 𝐿-fuzzy topological space, 𝜆 ∈
𝐿
𝑋
, 𝑒 ∈ Pt(𝑋), and 𝑟 ∈ 𝐿

0
. The degree to which a fuzzy net

𝑇 in𝑋 is r-convergent to 𝑒 and 𝑇 is r-cluster to 𝑒 are defined,
respectively, as follows:

Con
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is often in 𝜆󸀠} ,

Cl
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠} .

(24)

Definition 16. Let (𝑋,T) be be an 𝐿-fuzzy topological space,
𝜆 ∈ 𝐿

𝑋
, 𝑒 ∈ Pt(𝑋), and 𝑟 ∈ 𝐿

0
. The degree to which 𝑒 is

r-adherent point of 𝑒 is defined by

Ad
𝑒
(𝜆, 𝑟) =N

󸀠

𝑒
(𝜆
󸀠
, 𝑟) . (25)

Proposition 17. Let (𝑋,T) be an 𝐿-fuzzy topological space.
For each 𝜆 ∈ 𝐿𝑋, 𝑒, 𝑥

𝑡
∈ 𝑃𝑡(𝑋) and 𝑟 ∈ 𝐿

0
, one has

(1) 𝑆(𝑒, 𝐼T(𝜆, 𝑟)) =N
𝑒
(𝜆, 𝑟),

(2) 𝑆(𝑒, 𝐶󸀠T(𝜆, 𝑟)) = Ad󸀠
𝑒
(𝜆, 𝑟),

(3) Ad
𝑥𝑡
(𝜆, 𝑟) = ⋁

𝑥∈𝑋
(𝑡 ⊙ Ad

𝑥
(𝜆, 𝑟)).

Proof. (1) From Lemma 2(7), we have

𝑆 (𝑒, 𝐼T (𝜆, 𝑟)) = 𝑆 (𝑒,⋁ {𝜇
𝑖
| 𝜇
𝑖
≤ 𝜆, T (𝜇

𝑖
) ≥ 𝑟})

= ⋁{𝑆 (𝑒, 𝜇
𝑖
) | 𝜇
𝑖
≤ 𝜆, T (𝜇

𝑖
) ≥ 𝑟}

=N
𝑒
(𝜆, 𝑟) .

(26)

(2) FromTheorem 5, we have

𝑆 (𝑒, 𝐶
󸀠

T (𝜆, 𝑟)) = 𝑆 (𝑒, 𝐼T (𝜆
󸀠
, 𝑟))

=N
𝑒
(𝜆
󸀠
, 𝑟) (by (1))

= Ad󸀠
𝑒
(𝜆, 𝑟) .

(27)

(3) FromTheorem 11(7), we have

Ad
𝑥𝑡
(𝜆, 𝑟) =N

󸀠

𝑥𝑡
(𝜆
󸀠
, 𝑟)

= (⋀

𝑥∈𝑋

(𝑡 󳨀→N
𝑥𝑡
(𝜆
󸀠
, 𝑟)))

󸀠

= ⋁

𝑥∈𝑋

(𝑡 󳨀→N
𝑥𝑡
(𝜆
󸀠
, 𝑟))
󸀠

= ⋁

𝑥∈𝑋

(𝑡 ⊙N
󸀠

𝑥1
(𝜆
󸀠
, 𝑟))

(by Lemma 2 (4))

= ⋁

𝑥∈𝑋

(𝑡 ⊙ Ad
𝑥
(𝜆, 𝑟)) .

(28)

Theorem 18. Let (𝑋,T) be an 𝐿-fuzzy topological space. Let
𝑇 : 𝐷 → 𝑃𝑡(𝑋) be fuzzy net and let 𝑈 : 𝐸 → 𝑃𝑡(𝑋) be a
subnet of 𝑆. For 𝑟, 𝑠 ∈ 𝐿

0
, the following properties hold:

(1) if 𝑟
1
≤ 𝑟
2
, Con
𝑒
(𝑇, 𝑟
1
) ≤ Con

𝑒
(𝑇, 𝑟
2
), and Cl

𝑒
(𝑇, 𝑟
1
) ≤

Cl
𝑒
(𝑇, 𝑟
2
),

(2) Con
𝑒
(𝑇, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟),

(3) Cl
𝑒
(𝑈, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟),

(4) Con
𝑒
(𝑇, 𝑟) ≤ Con

𝑒
(𝑈, 𝑟),

(5) Con
𝑥𝑡
(𝑇, 𝑟) = ⋁

𝑥∈𝑋
(𝑡 ⊙ Con

𝑥
(𝑇, 𝑟)), and Cl

𝑥𝑡
(𝑇, 𝑟) =

⋁
𝑥∈𝑋
(𝑡 ⊙ Cl

𝑥
(𝑇, 𝑟)).

Proof. (1) is easily proved.
In (2) if 𝑇 is finally in 𝜆󸀠, 𝑇 is often in 𝜆󸀠. Hence

Con
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is often in 𝜆󸀠}

≤ ⋀{N
󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠}

= Cl
𝑒
(𝑇, 𝑟) .

(29)
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In (3) if 𝑇 is finally in 𝜆󸀠, 𝑈 is finally in 𝜆󸀠. Hence

Cl
𝑒
(𝑈, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑈 is finally in 𝜆󸀠}

≤ ⋀{N
󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠}

= Cl
𝑒
(𝑇, 𝑟) .

(30)

In (4) let 𝑈 be often in 𝜆󸀠. We will show that 𝑇 is often
in 𝜆󸀠. Let 𝑛 ∈ 𝐷. Since 𝑈 : 𝐸 → Pt(𝑋) is a subnet of 𝑇,
there exists a cofinal selection𝑁 : 𝐸 → 𝐷. For each 𝑛 ∈ 𝐷,
there exists 𝑚 ∈ 𝐸 such that 𝑁(𝑘) ≥ 𝑛 for 𝑘 ≥ 𝑚. Since
𝑈 is often in 𝜆󸀠, for 𝑚 ∈ 𝐸, there exists 𝑚

0
∈ 𝐸 such that

𝑚
0
≥ 𝑚 for 𝑈(𝑚

0
) ∈ 𝜆
󸀠. Put 𝑛

0
= 𝑁(𝑚

0
). Then 𝑛

0
≥ 𝑛 and

𝑇(𝑛
0
) = 𝑇(𝑁(𝑚

0
)) = 𝑇(𝑛

0
) ∈ 𝜆
󸀠.Thus,𝑈 is often in𝜆󸀠. Hence

Con
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is often in 𝜆󸀠}

≤ ⋀{N
󸀠

𝑒
(𝜆, 𝑟) | 𝑈 is often in 𝜆󸀠}

= Con
𝑒
(𝑈, 𝑟) .

(31)

In (5) one has

Con
𝑥𝑡
(𝑇, 𝑟) = ⋀{N

󸀠

𝑥𝑡
(𝜆, 𝑟) | 𝑇 is often in 𝜆󸀠}

= ⋀

{

{

{

(⋀

𝑥∈𝑋

(𝑡 󳨀→N
𝑥1
(𝜆, 𝑟)))

󸀠

|

𝑇 is finally in 𝜆󸀠
}

}

}

(by Theorem 11 (7))

= ⋁

𝑥∈𝑋

⋀{(𝑡 󳨀→N
𝑥1
(𝜆, 𝑟))

󸀠

|

𝑇 is finally in 𝜆󸀠}

= ⋁

𝑥∈𝑋

⋀{𝑡 ⊙N
󸀠

𝑥1
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠}

(by Lemma 1 (4))

= ⋁

𝑥∈𝑋

(𝑡 ⊙⋀{N
󸀠

𝑥1
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠})

= ⋁

𝑥∈𝑋

(𝑡 ⊙ Con
𝑥
(𝑇, 𝑟)) .

(32)

The other case is the same.

Proposition 19. Let (𝑋,T) be an 𝐿-fuzzy topological space,
let 𝑇 be a fuzzy net, 𝑒 ∈ 𝑃𝑡(𝑋), and 𝑟 ∈ 𝐿

0
. Then one has

Ad
𝑒
(𝜆, 𝑟) = ⋁{Con

𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆}

= ⋁{Cl
𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆} .

(33)

Proof. Since 𝑇 is finally in 𝜆, 𝑇 is often in 𝜆. We easily show
that

Ad
𝑒
(𝜆, 𝑟) =N

󸀠

𝑒
(𝜆
󸀠
, 𝑟)

≥ ⋁{Cl
𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆}

≥ ⋁{Con
𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆} .

(34)

We only show that

Ad
𝑒
(𝜆, 𝑟) ≤ ⋁{Con

𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆} . (35)

Let Ad
𝑒
(𝜆, 𝑟) = 𝑡. If 𝑡 > 0, then N󸀠

𝑒
(𝜆
󸀠
, 𝑟) = 𝑡. Put 𝐷 = {𝜇 ∈

𝐿
𝑋
|N
𝑒
(𝜇, 𝑟) > 𝑡

󸀠
}. Define a relation on𝐷 by

𝜇
1
⪯ 𝜇
2

iff 𝜇
1
≥ 𝜇
2
, ∀𝜇
1
, 𝜇
2
∈ 𝐷. (36)

For each 𝜇
1
, 𝜇
2
∈ 𝐷, since byTheorem 11(5),

N
𝑒
(𝜇
1
∧ 𝜇
2
, 𝑟) ≥N

𝑒
(𝜇
1
, 𝑟) ∧N

𝑒
(𝜇
2
, 𝑟) > 𝑡

󸀠
. (37)

Hence, 𝜇
1
∧ 𝜇
2
∈ 𝐷 and 𝜇

1
, 𝜇
2
⪯ 𝜇
1
∧ 𝜇
2
. Thus, (𝐷, ⪯) is a

directed set. For each 𝜇 ∈ 𝐷, that is, N
𝑒
(𝜇, 𝑟) > 𝑡

󸀠, we have
𝜇 ≰ 𝜆

󸀠; that is, there exists𝑥 ∈ 𝑋 such that𝜆(𝑥) > 𝜇󸀠(𝑥).Thus,
we can define a fuzzy net 𝑇

0
: 𝐷 → Pt(𝑋) by 𝑇

0
(𝜇) = 𝑥

𝜆(𝑥)

where 𝑇
0
(𝜇) ∈ 𝜆 and 𝜆(𝑥) = 𝑇

0
(𝜇)(𝑥) > 𝜇

󸀠
(𝑥).

We will show that if 𝜇 ∈ 𝐷, then 𝑇
0
is not often in 𝜇󸀠.

Suppose that 𝑇
0
is often in 𝜇󸀠. For 𝜇 ∈ 𝐷, there exists 𝜌 ∈ 𝐷

such that 𝜇 ⪯ 𝜌 such that

𝑇
0
(𝜌) = 𝑦

𝜆(𝑦)
∈ 𝜇
󸀠
, (38)

and 𝜆(𝑦) = 𝑇
0
(𝜌)(𝑦) > 𝜌

󸀠
(𝑦). Since 𝜇 ⪯ 𝜌 implies 𝜇 ≥ 𝜌, it

implies

𝜆 (𝑦) ≤ 𝜇
󸀠
(𝑦) ≤ 𝜌

󸀠
(𝑦) , (39)

It is contradiction for the definition of 𝑇
0
. Thus, if 𝑇

0
is often

in 𝜇󸀠, then 𝜇 ∉ 𝐷; that is,N
𝑒
(𝜇, 𝑟) ≤ 𝑡

󸀠. Therefore,

⋁{Con
𝑒
(𝑇, 𝑟) | 𝑇 is a fuzzy net in 𝜆}

≥ Con
𝑒
(𝑇, 𝑟)

= ⋀{N
󸀠

𝑒
(𝜇, 𝑟) | 𝑇

0
is often in 𝜇󸀠}

≥ 𝑡 = Ad
𝑒
(𝜆, 𝑟) .

(40)

Theorem 20. Let (𝑋,T) be 𝐿-fuzzy topological space and let
𝑇,𝑈 : 𝐷 → 𝑃𝑡(𝑋) be fuzzy nets such that 𝑇(𝑛)∨𝑈(𝑛), 𝑇(𝑛)∧
𝑈(𝑛) ∈ 𝑃𝑡(𝑋) for each 𝑛 ∈ 𝐷. Define fuzzy nets 𝑇 ∨𝑈, 𝑇 ∧𝑈 :
𝐷 → 𝑃𝑡(𝑋) by, for each 𝑛 ∈ 𝐷,

(𝑇 ∨ 𝑈) (𝑛) = 𝑇 (𝑛) ∨ 𝑈 (𝑛) ,

(𝑇 ∧ 𝑈) (𝑛) = 𝑇 (𝑛) ∧ 𝑈 (𝑛) .

(41)
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For each 𝑟 ∈ 𝐿
0
, the following properties hold:

(1) if 𝑇(𝑛) ≤ 𝑈(𝑛) for all 𝑛 ∈ 𝐷, then

Cl
𝑒
(𝑇, 𝑟) ≤ Cl

𝑒
(𝑈, 𝑟) , Con

𝑒
(𝑇, 𝑟) ≤ Con

𝑒
(𝑈, 𝑟) , (42)

(2) Cl
𝑒
(𝑇 ∧ 𝑈, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟) ∧ Cl

𝑒
(𝑈, 𝑟),

(3) Con
𝑒
(𝑇 ∨ 𝑈, 𝑟) ≥ Con

𝑒
(𝑇, 𝑟) ∨ Con

𝑒
(𝑈, 𝑟),

(4) Con
𝑒
(𝑇 ∧ 𝑈, 𝑟) ≤ Con

𝑒
(𝑇, 𝑟) ∧ Con

𝑒
(𝑈, 𝑟),

(5) if 𝐿 is order dense, then Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) = Cl

𝑒
(𝑇, 𝑟) ∨

Cl
𝑒
(𝑈, 𝑟).

Proof. In (1) let𝑈 be finally (often) in 𝜆. Then let 𝑇 be finally
(often) in 𝜆, respectively. Thus it is trivial. (2), (3), and (4) are
easily proved.

In (5) since 𝑇 ≤ 𝑇 ∨ 𝑈 and 𝑈 ≤ 𝑇 ∨ 𝑈, by (1), we have

Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) ≥ Cl

𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟) . (43)

Suppose that Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) ̸≥ Cl

𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟). Since

𝐿 is order dense, then there exist 𝑡 ∈ 𝐿
0
and a fuzzy point

𝑒 ∈ Pt(𝑋) such that

Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) > 𝑡 > Cl

𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟) . (44)

Since Cl
𝑒
(𝑇, 𝑟) < 𝑡 and Cl

𝑒
(𝑈, 𝑟) < 𝑡, by the definition Cl

𝑒
,

there exist 𝜆, 𝜇 ∈ 𝐿𝑋 such that 𝑇 and 𝑈 are finally in 𝜆󸀠 and
𝜇
󸀠, respectively, with

Cl
𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟) ≤N

󸀠

𝑒
(𝜆, 𝑟) ∨N

󸀠

𝑒
(𝜇, 𝑟) < 𝑡. (45)

Since 𝑇 is finally in 𝜆󸀠, there exists 𝑛
1
∈ 𝐷 such that 𝑇(𝑛) ∈ 𝜆󸀠

for every 𝑛 ∈ 𝐷 with 𝑛 ≥ 𝑛
1
. Since 𝑈 is finally in 𝜇󸀠, there

exists 𝑛
2
∈ 𝐷 such that 𝑇(𝑛) ∈ 𝜇󸀠 for every 𝑛 ∈ 𝐷with 𝑛 ≥ 𝑛

2
.

Let 𝑛
3
∈ 𝐷 such that 𝑛

3
≥ 𝑛
1
and 𝑛
3
≥ 𝑛
2
. For 𝑛 ≥ 𝑛

3
, we have

(𝑇 ∨ 𝑈) (𝑛) ≤ 𝜆
󸀠
∨ 𝜇
󸀠
= (𝜆 ∧ 𝜇)

󸀠

. (46)

Thus, (𝑇 ∨ 𝑈) is finally in (𝜆 ∧ 𝜇)󸀠. It implies

Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) ≤N

󸀠

𝑒
(𝜆 ∧ 𝜇, 𝑟)

≤N
󸀠

𝑒
(𝜆, 𝑟) ∨N

󸀠

𝑒
(𝜇, 𝑟) < 𝑡.

(47)

It is a contradiction. Hence, we have

Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟) . (48)

Example 21. Let (𝐿 = [0, 1], → ) be defined as Example 14.
Let𝑋 = {𝑎, 𝑏} be a set and 𝜇 ∈ 𝐼𝑋 as follows:

𝜇 (𝑥) = 0.3, 𝜇 (𝑦) = 0.4. (49)

We define 𝐿-fuzzy topologyT : 𝐼
𝑋
→ 𝐼 as follows:

T (𝜆) =

{{{

{{{

{

1, if 𝜆 = 0
𝑋
or 1
𝑋
,

1

2
, if 𝜆 = 𝜇,

0, otherwise.

(50)

(1) In general, Cl
𝑒
(𝑇 ∧ 𝑈, 𝑟) ̸= Cl

𝑒
(𝑇, 𝑟) ∧ Cl

𝑒
(𝑈, 𝑟).

Let 𝑁 be a natural numbers. Define fuzzy nets 𝑇,𝑈 :

𝑁 → Pt(𝑋) by

𝑇 (𝑛) = 𝑥
𝑎𝑛
, 𝑎
𝑛
= 0.8 + (−1)

𝑛
0.2.

𝑈 (𝑛) = 𝑥
𝑏𝑛
, 𝑏
𝑛
= 0.8 + (−1)

𝑛+1
0.2.

(51)

From Theorem 20, (𝑇 ∧ 𝑈)(𝑛) = 𝑥
0.6

is a fuzzy net. Let 𝑒 =
𝑥
0.3
. From Definition 15, we have for 0 < 𝑟 ≤ 1/2,

Cl
𝑒
(𝑥
0.6
, 𝑟) = 1 −N

𝑒
(𝜇, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 𝜇) = 0. (52)

Since 𝑇 or 𝑈 is finally in 1
𝑋
,

Cl
𝑒
(𝑇, 𝑟) = 1 −N

𝑒
(0
𝑋
, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 0
𝑋
) = 0.3. (53)

Similarly, Cl
𝑒
(𝑈, 𝑟) = 0.3. For 0 < 𝑟 ≤ 1/2,

0 = Cl
𝑒
(𝑇 ∧ 𝑈, 𝑟) ̸= Cl

𝑒
(𝑇, 𝑟) ∧ Cl

𝑒
(𝑈, 𝑟) = 0.3. (54)

(2) In general, Con
𝑒
(𝑇 ∨ 𝑈, 𝑟) ̸= Con

𝑒
(𝑇, 𝑟) ∨ Con

𝑒
(𝑈, 𝑟).

Define fuzzy nets 𝑇,𝑈 : 𝑁 → Pt(𝑋) by

𝑇 (𝑛) = 𝑥
𝑎𝑛
, 𝑎
𝑛
= 0.6 + (−1)

𝑛
0.2.

𝑈 (𝑛) = 𝑥
𝑏𝑛
, 𝑏
𝑛
= 0.6 + (−1)

𝑛+1
0.2.

(55)

From Theorem 20, (𝑇 ∨ 𝑈)(𝑛) = 𝑥
0.8

is a fuzzy net. Let 𝑒 =
𝑥
0.3
. For all 𝑟 ∈ 𝐼

0
,

Ad
𝑒
(𝑥
0.8
, 𝑟) = 1 −N

𝑒
(0
𝑋
, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 0
𝑋
) = 0.3.

(56)

Since 𝑇 or 𝑈 is often in 𝜇󸀠, for 0 < 𝑟 ≤ 1/2,

Cl
𝑒
(𝑇, 𝑟) = 1 −N

𝑒
(𝜇, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 𝜇) = 0. (57)

Similarly, Cl
𝑒
(𝑈, 𝑟) = 0. For 0 < 𝑟 ≤ 1/2

0.3 = Con
𝑒
(𝑇 ∨ 𝑈, 𝑟) > (Con

𝑒
(𝑇, 𝑟) ∨ Con

𝑒
(𝑈, 𝑟)) = 0.

(58)

5. Fuzzy 𝑟-Limit Nets and 𝐿𝐹-Continuous
Mappings

Definition 22. Let (𝑋,T) be an 𝐿-fuzzy toplogical space. Let
𝑇 : 𝐷 → Pt(𝑋) be fuzzy net in 𝑋, 𝑒 ∈ Pt(𝑋), and 𝑟 ∈ 𝐿

0
.

Then the degree to which 𝑇 is r-limit to 𝑒 is defined, denoted
by lim

𝑒
(𝑇, 𝑟) = 𝑡, if Cl

𝑒
(𝑇, 𝑟) = Con

𝑒
(𝑇, 𝑟) = 𝑡.

Theorem 23. Let (𝑋,T) be 𝐿-fuzzy topological space and let
𝑇,𝑈 : 𝐷 → 𝑃𝑡(𝑋) be fuzzy nets such that 𝑇(𝑛) ∨ 𝑈(𝑛) ∈
𝑃𝑡(𝑋) for each 𝑛 ∈ 𝐷. If 𝐿 is order dense, Cl

𝑒
(𝑇, 𝑟) =

Con
𝑒
(𝑇, 𝑟), and Cl

𝑒
(𝑈, 𝑟) = Con

𝑒
(𝑈, 𝑟), then

lim
𝑒
(𝑇 ∨ 𝑈, 𝑟) = lim

𝑒
(𝑇, 𝑟) ∨ lim

𝑒
(𝑈, 𝑟) . (59)
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Proof. From Theorem 20, 𝑇 ∨ 𝑈 is a fuzzy net. We easily
proved it from the following:

Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟)

= Cl
𝑒
(𝑇, 𝑟) ∨ Cl

𝑒
(𝑈, 𝑟) (by Theorem 20 (2))

(since Cl
𝑒
(𝑇, 𝑟) = Con

𝑒
(𝑇, 𝑟) , Cl

𝑒
(𝑈, 𝑟) = Con

𝑒
(𝑈, 𝑟))

= Con
𝑒
(𝑇, 𝑟) ∨ Con

𝑒
(𝑈, 𝑟)

≤ Con
𝑒
(𝑇 ∨ 𝑈, 𝑟) (by Theorem 20 (4))

≤ Cl
𝑒
(𝑇 ∨ 𝑈, 𝑟) (by Theorem 20 (2)) .

(60)

Theorem 24. Let (𝑋,T) be 𝐿-fuzzy topological space. Let 𝑇
be a fuzzy net andH = {𝑈 | 𝑈 is a subnet of 𝑇}. Then, if 𝐿 is
an order dense, the following statements hold:

(1) Con
𝑒
(𝑇, 𝑟) = ⋀

𝑇∈HCl
𝑒
(𝑈, 𝑟);

(2) Cl
𝑒
(𝑇, 𝑟) = ⋁

𝑇∈HCon
𝑒
(𝑈, 𝑟).

Proof. (1) For each 𝑈 ∈H, by Theorem 18, we have

Con
𝑒
(𝑇, 𝑟) ≤ Con

𝑒
(𝑈, 𝑟) ≤ Cl

𝑒
(𝑈, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟) . (61)

Hence

Con
𝑒
(𝑇, 𝑟) ≤ ⋀

𝑈∈H

Cl
𝑒
(𝑈, 𝑟) . (62)

Suppose

Con
𝑒
(𝑇, 𝑟) ̸≥ ⋀

𝑈∈H

Cl
𝑒
(𝑈, 𝑟) . (63)

Then there exist 𝑥
𝑝
∈ Pt(𝑋) and 𝑡 ∈ 𝐿

0
such that

Con
𝑥𝑝
(𝑇, 𝑟) < 𝑡 < ⋀

𝑈∈H

Cl
𝑥𝑝
(𝑈, 𝑟) . (64)

Since Con
𝑥𝑝
(𝑇, 𝑟) < 𝑡, there exists 𝜇 ∈ 𝐿𝑋 with 𝑇 is often in

𝜇
󸀠 such that

Con
𝑥𝑝
(𝑇, 𝑟) ≤N

󸀠

𝑥𝑝
(𝜇, 𝑟) < ⋀

𝑈∈H

Cl
𝑥𝑝
(𝑈, 𝑟) . (65)

Since 𝑇 is often in 𝜇󸀠, for each 𝑛 ∈ 𝐷 there exists 𝑁(𝑛) ∈ 𝐷
with𝑁(𝑛) ≥ 𝑛 and 𝑇(𝑁(𝑛)) ∈ 𝜇󸀠. Hence there exists a cofinal
selection𝑁 : 𝐸 → 𝐷 such that𝑈 = 𝑇∘𝑁.Thus𝑈 is a subnet
of 𝑇 and 𝑈 is finally in 𝜇󸀠. It is a contradiction.

(2) From (1), we have

⋁

𝑈∈H

Con
𝑒
(𝑈, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟) . (66)

Conversely, let Cl
𝑒
(𝑇, 𝑟) = 𝑡 > 0. ThenN

𝑒
(𝜆, 𝑟) ≤ 𝑡

󸀠, for 𝑇 is
finally in 𝜆󸀠. Let 𝐹 = {𝜇 | N

𝑒
(𝜇, 𝑟) > 𝑡

󸀠
}. Define a relation on

𝐸 = 𝐷 × 𝐹 by

(𝑚, 𝜇
1
) ≤ (𝑛, 𝜇

2
) iff 𝑚 ≤ 𝑛, 𝜇

1
≥ 𝜇
2
. (67)

Then (𝐸, ≤) is a directed set. If𝜇 ∈ 𝐹, then𝑇 is not finally in𝜇󸀠.
For each (𝑛, 𝜇) ∈ 𝐸, there exists𝑁(𝑛, 𝜇) ∈ 𝐷with𝑁(𝑛, 𝜇) ≥ 𝑛
such that 𝑇(𝑁(𝑛, 𝜇)) ≰ 𝜆󸀠. So, we can define 𝑁 : 𝐸 → 𝐷.
For each 𝑛

0
∈ 𝐷 and 𝜇

0
∈ 𝐹, there exists𝑁(𝑛

0
, 𝜇
0
) ∈ 𝐷 with

𝑁(𝑛
0
, 𝜇
0
) ≥ 𝑛
0
such that 𝑇(𝑁(𝑛

0
, 𝜇
0
)) ≰ 𝜇

󸀠

0
. Hence for every

(𝑛, 𝜇) ≥ (𝑛
0
, 𝜇
0
), since 𝑛 ≥ 𝑛

0
, we have 𝑁(𝑛, 𝜇) ≥ 𝑛 ≥ 𝑛

0
.

Therefore 𝑁 is a cofinal selection on 𝑇. So 𝑈 = 𝑇 ∘ 𝑁 is a
fuzzy subnet of 𝑇 and 𝑈 is finally to every member of 𝐹. If 𝑈
is often in 𝜆󸀠, then 𝑈 is not finally of 𝜆; that is, 𝜆 ∉ 𝐹. Thus

⋁

𝑈∈H

Con
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑈 is often in 𝜆󸀠} ≥ 𝑡.

(68)

Since 𝑡 is arbitrary, we complete the proof.

Theorem 25. Let 𝐿 be an order dense, let (𝑋,T) be 𝐿-fuzzy
topological space, and let𝑇 be a fuzzy net. If every subnet𝑈 of𝑇
has a subnet𝐾 of 𝑈 such that lim

𝑒
(𝐾, 𝑟) = 𝑡, then lim

𝑒
(𝑇, 𝑟) =

𝑡.

Proof. Let H = {𝑈 | 𝑈 is a subnet of 𝑇}. For each 𝑈 ∈ H,
since𝑈has a subnet𝐾with limT(𝐾, 𝑟) = 𝑡, byTheorem 18(4),
we have

Con
𝑒
(𝑈, 𝑟) ≤ Con

𝑒
(𝐾, 𝑟) = Cl

𝑒
(𝐾, 𝑟) = 𝑡. (69)

Hence, by Theorem 24(2),

Cl
𝑒
(𝑇, 𝑟) = ⋁

𝑈∈H

Con
𝑒
(𝑈, 𝑟) ≤ 𝑡. (70)

Conversely, by Theorem 18(2),

𝑡 = Con
𝑒
(𝐾, 𝑟) = Cl

𝑒
(𝐾, 𝑟) ≤ Cl

𝑒
(𝑈, 𝑟) . (71)

Hence, by Theorem 24(1),

𝑡 ≤ ⋀

𝑈∈H

Cl
𝑒
(𝑈, 𝑟) = Con

𝑒
(𝑇, 𝑟) . (72)

Hence, Cl
𝑒
(𝑇, 𝑟) ≤ Con

𝑒
(𝑇, 𝑟). Since Con

𝑒
(𝑇, 𝑟) ≤ Cl

𝑒
(𝑇, 𝑟)

from Theorem 18(2), Cl
𝑒
(𝑇, 𝑟) = Con

𝑒
(𝑇, 𝑟); that is,

lim
𝑒
(𝑇, 𝑟) = 𝑡.

Example 26. Let (𝐿 = [0, 1], → ) be defined as in Example 21.
Let 𝑁 be a natural number set. Define a fuzzy net 𝑇 : 𝑁 →

Pt(𝑋) by

𝑇 (𝑛) = 𝑥
𝑎𝑛
, 𝑎
𝑛
= 0.6 + (−1)

𝑛
0.2. (73)

Let 𝑒 = 𝑥
0.3
. Since 𝑇 is often in 𝜇󸀠, for 0 < 𝑟 ≤ 1/2,

Con
𝑒
(𝑇, 𝑟) = 1 −N

𝑒
(𝜇, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 𝜇) = 0. (74)

Since 𝑇 is finally in 1
𝑋
, for each 𝑟 ∈ 𝐼

0
,

Cl
𝑒
(𝑇, 𝑟) = 1 −N

𝑒
(0
𝑋
, 𝑟) = 1 − 𝑚 (𝑥

0.3
, 0
𝑋
) = 0.3. (75)

Thus, since Con
𝑒
(𝑇, 𝑟) ̸= Cl

𝑒
(𝑇, 𝑟) for 0 < 𝑟 ≤ 1/2, lim

𝑒
(𝑇, 𝑟)

does not exists.
Since Con

𝑒
(𝑇, 𝑟) = Cl

𝑒
(𝑇, 𝑟) = 0.3 for 1/2 < 𝑟 ≤ 1,

lim
𝑒
(𝑇, 𝑟) = 0.3.
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Theorem 27. Let (𝑋,T
1
) and (𝑌,T

2
) be 𝐿-fuzzy topological

spaces. For every fuzzy net 𝑇 in 𝑋, 𝑥
𝑡
∈ 𝑃𝑡(𝑋), 𝑟 ∈ 𝐿

0
, and

𝜆 ∈ 𝐿
𝑋, the following statements are equivalent:

(1) 𝑓 : (𝑋,T
1
) → (𝑌,T

2
) is 𝐿𝐹-continuous;

(2) N
𝑓
→
(𝑒)
(𝜇, 𝑟) ≤ ⋁{N

𝑒
(𝜆, 𝑟) | 𝑓

→
(𝜆) ≤ 𝜇};

(3) Cl
𝑒
(𝑇, 𝑟) ≤ Cl

𝑓
→
(𝑒)
(𝑓 ∘ 𝑇, 𝑟);

(4) Con
𝑒
(𝑇, 𝑟) ≤ Con

𝑓
→
(𝑒)
(𝑓 ∘ 𝑇, 𝑟);

(5) 𝑓→ (𝐶T1
(𝜆, 𝑟)) ≤ 𝐶T2

(𝑓
→
(𝜆), 𝑟);

(6) 𝐶T1
(𝑓
←
(𝜇), 𝑟)) ≤ 𝑓

←
(𝐶T2

(𝜇), 𝑟);

(7) 𝑓←(𝐼T2(𝜇, 𝑟)) ≤ 𝐼T1(𝑓
←
(𝜇), 𝑟).

Proof. (1) ⇒ (2) For any 𝜌 ∈ 𝐿𝑌 such thatT
2
(𝜌) ≥ 𝑟 and 𝜌 ≤

𝜇. Since 𝑓 is 𝐿𝐹-continuous, then T
1
(𝑓
←
(𝜌)) ≥ T

2
(𝜌) ≥ 𝑟,

and we have by Lemma 3(2)

𝑆 (𝑓
→
(𝑒) , 𝜌)

≤ 𝑆 (𝑒, 𝑓
←
(𝜌)) (𝑒 = 𝑥

𝑡
, 𝑓
→
(𝑒) = 𝑓 (𝑥)

𝑡
)

=N
𝑒
(𝑓
←
(𝜌) , 𝑟) (T

1
(𝑓
→
(𝑓
←
) (𝜌)) ≥ 𝑟)

≤ ⋁{N
𝑒
(𝜆, 𝑟) | 𝑓

→
(𝜆) ≤ 𝜇}

(𝑓
→
(𝑓
←
(𝜌)) ≤ 𝜌 ≤ 𝜇) .

(76)

Thus,N
𝑓
→
(𝑒)
(𝜇, 𝑟) ≤ ⋁{N

𝑒
(𝜆, 𝑟) | 𝑓

→
(𝜆) ≤ 𝜇}.

(2) ⇒ (3) If 𝑓→ (𝜆) ≤ 𝜇 and 𝑓 ∘ 𝑇 is finally in 𝜇󸀠, there
exists 𝑛

0
∈ 𝐷 such that, for all 𝑛 ≥ 𝑛

0
, 𝑓(𝑇(𝑛)) ∈ 𝜇󸀠. Let

𝑇(𝑛) = 𝑥
𝑡
. Then

𝑡 ≤ 𝜇
󸀠
(𝑓 (𝑥)) ≤ (𝑓 (𝜆))

󸀠

(𝑓 (𝑥)) ≤ 𝜆
󸀠
(𝑥) . (77)

It implies 𝑇(𝑛) ∈ 𝜆󸀠. Therefore, 𝑇 is finally in 𝜆󸀠. One has

Cl
𝑒
(𝑇, 𝑟) = ⋀{N

󸀠

𝑒
(𝜆, 𝑟) | 𝑇 is finally in 𝜆󸀠}

≤ ⋀{N
󸀠

𝑒
(𝜆, 𝑟) | ∃𝜇, 𝑓

→
(𝜆) ≤ 𝜇,

𝑓 ∘ 𝑇 is finally in 𝜇󸀠}

= ⋀{⋁{N
𝑒
(𝜆, 𝑟) | 𝑓

→
(𝜆) ≤ 𝜇}

󸀠

,

𝑓 ∘ 𝑇 is finally in 𝜇󸀠}

≤ ⋀{N
󸀠

𝑓
→
(𝑒)
(𝜇, 𝑟) , 𝑓 ∘ 𝑇 is finally in 𝜇󸀠}

= Cl
𝑒
(𝑓 ∘ 𝑇, 𝑟) (by (2)) .

(78)

(3) ⇒ (4) Every subnet 𝑈 : 𝐸 → Pt(𝑌) of 𝑓(𝑇), and
there exists a cofinal selection 𝑁 : 𝐸 → 𝐷 such that 𝑈 =

𝑓(𝑇) ∘ 𝑁 = 𝑓 ∘ (𝑇 ∘ 𝑁). Put𝐾 = 𝑇 ∘𝑁. Then𝐾 is a subnet of
𝑇. We can prove it from the following:

Con
𝑒
(𝑇, 𝑟) ≤ Con

𝑒
(𝐾, 𝑟) (by Theorem 18 (5))

≤ Cl
𝑒
(𝐾, 𝑟) (by Theorem 18 (2))

≤ Cl
𝑓
→
(𝑒)
(𝑓 ∘ 𝐾, 𝑟) (by (3))

= Cl
𝑓
→
(𝑒)
(𝑓 ∘ (𝑇 ∘ 𝑁) , 𝑟)

= Cl
𝑓
→
(𝑒)
(𝑈, 𝑟) .

(79)

From Theorem 18(2), we have Con
𝑒
(𝑇, 𝑟) ≤ Con

𝑓
→
(𝑒)
(𝑓 ∘

𝑇, 𝑟).
(4) ⇒ (5) FromTheorem 5 and Proposition 17(2),

𝑆 (𝑥
1
, 𝐶
󸀠

T1
(𝜆, 𝑟)) = 𝐶

󸀠

T1
(𝜆, 𝑟) (𝑥) = Ad󸀠

𝑥
(𝜆, 𝑟) . (80)

It implies

𝐶T1
(𝜆, 𝑟) (𝑥) = Ad

𝑥
(𝜆, 𝑟) . (81)

Thus, we have

𝑓
→
(𝐶T1

(𝜆, 𝑟)) (𝑦)

= ⋁{𝐶T1
(𝜆, 𝑟) (𝑥) | 𝑓 (𝑥) = 𝑦}

= ⋁{Ad
𝑥
(𝜆, 𝑟) | 𝑓 (𝑥) = 𝑦} (by (81))

= ⋁

𝑓(𝑥)=𝑦

⋁{Con
𝑥
(𝑇, 𝑟) | 𝑇 is fuzzy net in 𝜆}

(by Proposition 19)

≤ ⋁

𝑓(𝑥)=𝑦

⋁{Con
𝑦
(𝑓 ∘ 𝑇, 𝑟) | 𝑇 is fuzzy net in 𝜆}

(by (4))

= ⋁{Con
𝑦
(𝑓 ∘ 𝑇, 𝑟) | 𝑇 is fuzzy net in 𝜆}

≤ ⋁{Con
𝑦
(𝑇, 𝑟) | 𝑇 is fuzzy net in 𝑓→ (𝜆)}

= Ad
𝑦
(𝑓
→
(𝜆) , 𝑟) (by Proposition 19)

= 𝐶T2
(𝑓
→
(𝜆) , 𝑟) (𝑦) (by (81)) .

(82)

(5) ⇒ (6) and (6) ⇒ (7) are easily proved.
(7) ⇒ (1)We will show thatT

1
(𝑓
←
(𝜇)) ≥ T

2
(𝜇), for all

𝜇 ∈ 𝐿
𝑌.

LetT
2
(𝜇) = 0. It is trivial.

LetT
2
(𝜇) = 𝑟 > 0. SinceT

𝑁
= T
2
fromTheorem 12(b),

we have for all 𝑦 ∈ 𝑌,

𝑆 (𝑦, 𝜇) =N
𝑦
(𝜇, 𝑟) . (83)

It implies, for all 𝑥 ∈ 𝑋,

𝑆 (𝑓 (𝑥) , 𝜇) = 𝑆 (𝑥, 𝑓
←
(𝜇)) =N

𝑓(𝑥)
(𝜇, 𝑟) . (84)
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Since 𝑓←(𝐼T2(𝜇, 𝑟)) = 𝑓
←
(𝜇),

𝑆 (𝑥, 𝑓
−1
(𝜇))

= 𝑆 (𝑥, 𝑓
←
(𝐼T2

(𝜇, 𝑟)))

(since 𝑓← (𝐼T2 (𝜇, 𝑟)) ≤ 𝐼T1 (𝑓
←
(𝜇) , 𝑟))

≤ 𝑆 (𝑥, 𝐼T1
(𝑓
←
(𝜇) , 𝑟))

=N
𝑥
(𝑓
←
(𝜇) , 𝑟) (by Proposition 17 (1)) .

(85)

Thus, byTheorem 11(2), we have

𝑆 (𝑥, 𝑓
←
(𝜇)) =N

𝑥
(𝑓
←
(𝜇) , 𝑟) . (86)

Hence,T
1
(𝑓
←
(𝜇)) ≥ 𝑟.
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