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We prove that the double inequality 𝑀𝑝(𝑎, 𝑏) < 𝑋(𝑎, 𝑏) < 𝑀𝑞(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 1/3 and
𝑞 ≥ log 2/(1 + log 2) = 0.4093 . . ., where𝑋(𝑎, 𝑏) and𝑀𝑟(𝑎, 𝑏) are the Sándor and 𝑟th power means of 𝑎 and 𝑏, respectively.

1. Introduction

Let 𝑝 ∈ R and 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Then the 𝑝th power mean
𝑀𝑝(𝑎, 𝑏) of 𝑎 and 𝑏 is given by

𝑀𝑝 (𝑎, 𝑏) = (
𝑎
𝑝
+ 𝑏
𝑝

2
)

1/𝑝

(𝑝 ̸= 0) , 𝑀0 (𝑎, 𝑏) =
√𝑎𝑏.

(1)

The main properties for the power mean are given in
[1]. It is well known that 𝑀𝑝(𝑎, 𝑏) is strictly increasing with
respect to 𝑝 ∈ R for fixed 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Many
classical means are the special cases of the power mean; for
example,𝑀−1(𝑎, 𝑏) = 2𝑎𝑏/(𝑎 + 𝑏) = 𝐻(𝑎, 𝑏) is the harmonic
mean, 𝑀0(𝑎, 𝑏) = √𝑎𝑏 = 𝐺(𝑎, 𝑏) is the geometric mean,
𝑀1(𝑎, 𝑏) = (𝑎 + 𝑏)/2 = 𝐴(𝑎, 𝑏) is the arithmetic mean, and
𝑀2(𝑎, 𝑏) =

√(𝑎2 + 𝑏2)/2 = 𝑄(𝑎, 𝑏) is the quadratic mean.
Let 𝐿(𝑎, 𝑏) = (𝑎 − 𝑏)/(log 𝑎 − log 𝑏), 𝑃(𝑎, 𝑏) = (𝑎 −

𝑏)/[2 arcsin((𝑎 − 𝑏)/(𝑎 + 𝑏))], 𝐼(𝑎, 𝑏) = (𝑎
𝑎
/𝑏
𝑏
)
1/(𝑎−𝑏)

/𝑒,
𝑀(𝑎, 𝑏) = (𝑎 − 𝑏)/[2 sinh−1((𝑎 − 𝑏)/(𝑎 + 𝑏))], and 𝑇(𝑎, 𝑏) =

(𝑎 − 𝑏)/[2 arctan((𝑎 − 𝑏)/(𝑎 + 𝑏))] be the logarithmic, first
Seiffert, identric, Neuman-Sándor, and second Seiffert means
of two distinct positive real numbers 𝑎 and 𝑏, respectively.
Then it is well known that the inequalities

𝐻(𝑎, 𝑏) < 𝐺 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏)

< 𝐼 (𝑎, 𝑏) < 𝐴 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝑄 (𝑎, 𝑏)

(2)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.

Recently, the bounds for certain bivariate means in terms
of the powermean have been the subject of intensive research.
Seiffert [2] proved that the inequalities

2

𝜋
𝑀1 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝑀1 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏) < 𝑀2 (𝑎, 𝑏)

(3)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Jagers [3] proved that the double inequality

𝑀1/2 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) < 𝑀2/3 (𝑎, 𝑏) (4)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In [4, 5], Hästö established that

𝑃 (𝑎, 𝑏) > 𝑀log 2/ log𝜋 (𝑎, 𝑏) ,

𝑃 (𝑎, 𝑏) >
2√2

𝜋
𝑀2/3 (𝑎, 𝑏)

(5)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Witkowski [6] proved that the double inequality

2√2

𝜋
𝑀2 (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) <

4

𝜋
𝑀1 (𝑎, 𝑏)

(6)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In [7], Costin and Toader presented that

𝑀log 2/(log𝜋−log 2) (𝑎, 𝑏) < 𝑇 (𝑎, 𝑏)

< 𝑀5/3 (𝑎, 𝑏)
(7)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
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Chu and Long [8] proved that the double inequality

𝑀𝑝 (𝑎, 𝑏) < 𝑀 (𝑎, 𝑏) < 𝑀𝑞 (𝑎, 𝑏) (8)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ log 2/
log[2 log(1 + √2)] = 1.224 . . . and 𝑞 ≥ 4/3.

The following sharp bounds for the logarithmic and
identric means in terms of the power means can be found in
the literature [9–16]:

𝑀0 (𝑎, 𝑏) < 𝐿 (𝑎, 𝑏) < 𝑀1/3 (𝑎, 𝑏) ,

𝑀2/3 (𝑎, 𝑏) < 𝐼 (𝑎, 𝑏) < 𝑀log 2 (𝑎, 𝑏) ,

𝑀0 (𝑎, 𝑏) < 𝐿
1/2

(𝑎, 𝑏) 𝐼
1/2

(𝑎, 𝑏) < 𝑀1/2 (𝑎, 𝑏) ,

𝑀log 2/(1+log 2) (𝑎, 𝑏) <
𝐿 (𝑎, 𝑏) + 𝐼 (𝑎, 𝑏)

2
< 𝑀1/2 (𝑎, 𝑏)

(9)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Recently, Sándor [17] introduced the Sándormean𝑋(𝑎, 𝑏)

of two positive real numbers 𝑎 and 𝑏, which is given by

𝑋 (𝑎, 𝑏) = 𝐴 (𝑎, 𝑏) 𝑒
(𝐺(𝑎,𝑏)/𝑃(𝑎,𝑏))−1

. (10)

In [18], Sándor proved that

𝑋 (𝑎, 𝑏) <
𝑃
2
(𝑎, 𝑏)

𝐴 (𝑎, 𝑏)
,

𝐴 (𝑎, 𝑏) 𝐺 (𝑎, 𝑏)

𝑃 (𝑎, 𝑏)
< 𝑋 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏) 𝑃 (𝑎, 𝑏)

2𝑃 (𝑎, 𝑏) − 𝐺 (𝑎, 𝑏)
,

𝑋 (𝑎, 𝑏) >
𝐴 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏)

𝑃 (𝑎, 𝑏)
𝑒
(𝐺(𝑎,𝑏)/𝐿(𝑎,𝑏))−1

,

𝑋 (𝑎, 𝑏) >
𝐴 (𝑎, 𝑏) [𝑃 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)]

3𝑃 (𝑎, 𝑏) − 𝐺 (𝑎, 𝑏)
,

𝐴
2
(𝑎, 𝑏) 𝐺 (𝑎, 𝑏)

𝑃 (𝑎, 𝑏) 𝐿 (𝑎, 𝑏)
𝑒
(𝐿(𝑎,𝑏)/𝐴(𝑎,𝑏))−1

< 𝑋 (𝑎, 𝑏)

< 𝐴 (𝑎, 𝑏) [
1

𝑒
+ (1 −

1

𝑒
)
𝐺 (𝑎, 𝑏)

𝑃 (𝑎, 𝑏)
] ,

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏) − 𝑃 (𝑎, 𝑏) < 𝑋 (𝑎, 𝑏)

< 𝐴
−1/3

(𝑎, 𝑏) [
𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2
]

4/3

,

𝑃
1/(log𝜋−log 2)

(𝑎, 𝑏) 𝐴
1−1/(log𝜋−log 2)

(𝑎, 𝑏)

< 𝑋 (𝑎, 𝑏) < 𝑃
−1
(𝑎, 𝑏) [

𝐴 (𝑎, 𝑏) + 𝐺 (𝑎, 𝑏)

2
]

2

(11)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
In the Introduction we cite only a minor part of the

existing literature on the considered means. For example, an
important paper on the first Seiffert mean 𝑃(𝑎, 𝑏) is again due
to Sándor [19].

The main purpose of this paper is to present the best
possible parameters 𝑝 and 𝑞 such that the double inequality
𝑀𝑝(𝑎, 𝑏) < 𝑋(𝑎, 𝑏) < 𝑀𝑞(𝑎, 𝑏) holds for all 𝑎, 𝑏 > 0 with
𝑎 ̸= 𝑏.

2. Lemmas

In order to prove our main results we need several lemmas,
which we present in this section.

Lemma 1. Let 𝑔1 : (0, 1) ×R → R be defined by

𝑔1 (𝑥, 𝑝) =

√𝑥 (𝑥 − 1) (𝑥
𝑝−1

+ 1)

(𝑥 + 1) (𝑥
𝑝 + 1)

− arcsin 𝑥 − 1

𝑥 + 1
. (12)

Then

(1) 𝑔1(𝑥, 𝑝) is strictly decreasing with respect to 𝑥 on (0, 1)
if and only if 𝑝 ≥ 1/2;

(2) 𝑔1(𝑥, 𝑝) is strictly increasing with respect to 𝑥 on (0, 1)
if and only if 𝑝 ≤ 1/3.

Proof. It follows from (12) that

𝜕𝑔1 (𝑥, 𝑝)

𝜕𝑥
=

(1 − 𝑥) 𝑥
𝑝−3/2

2 (𝑥 + 1)
2
(𝑥
𝑝 + 1)

2
𝑔2 (𝑥, 𝑝) , (13)

where

𝑔2 (𝑥, 𝑝) = − 3𝑥
1−𝑝

− 𝑥
2−𝑝

+ 𝑥
𝑝
+ 3𝑥
𝑝+1

+ (2𝑝 − 1) 𝑥
2
− 2𝑝 + 1.

(14)

(1) If 𝑔1(𝑥, 𝑝) is strictly decreasing with respect to 𝑥 on
(0, 1), then (13) leads to the conclusion that𝑔2(𝑥, 𝑝) < 0 for all
𝑥 ∈ (0, 1). In particular, we have 𝑔2(0

+
, 𝑝) ≤ 0. We assert that

𝑝 ≥ 1/2. Indeed, from (14) we clearly see that 𝑔2(0
+
, 0) = 2,

𝑔2(0
+
, 𝑝) = +∞ if 𝑝 < 0, and 𝑔2(0

+
, 𝑝) = 1 − 2𝑝 > 0 if

0 < 𝑝 < 1/2.
If 𝑝 ≥ 1/2, then it follows from (14) that

𝜕𝑔2 (𝑥, 𝑝)

𝜕𝑝
= (3𝑥

𝑝+1
+ 3𝑥
1−𝑝

+ 𝑥
2−𝑝

+ 𝑥
𝑝
) log𝑥

− 2 (1 − 𝑥
2
) < 0

(15)

for all 𝑥 ∈ (0, 1).
Equation (14) and inequality (15) lead to the conclusion

that

𝑔2 (𝑥, 𝑝) ≤ 𝑔2 (𝑥,
1

2
) = −2√𝑥 (1 − 𝑥) < 0 (16)

for all 𝑥 ∈ (0, 1).
Therefore, 𝑔1(𝑥, 𝑝) is strictly decreasing with respect to 𝑥

on (0, 1) which follows from (13) and (16).
(2) If 𝑔1(𝑥, 𝑝) is strictly increasing with respect to 𝑥 on

(0, 1), then (13) leads to the conclusion that 𝑔2(𝑥, 𝑝) > 0 for
all 𝑥 ∈ (0, 1). In particular, we have

lim
𝑥→1−

𝑔2 (𝑥, 𝑝)

1 − 𝑥
= 4 − 12𝑝 ≥ 0 (17)

and 𝑝 ≤ 1/3.
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If 𝑝 ≤ 1/3, then (14) and (15) lead to the conclusion that

𝑔2 (𝑥, 𝑝) ≥ 𝑔2 (𝑥,
1

3
) =

1

3
(1 + 𝑥

1/3
) (1 + 5𝑥

1/3
+ 𝑥
2/3
)

× (1 − 𝑥
1/3
)
3

> 0

(18)

for all 𝑥 ∈ (0, 1).
Therefore, 𝑔1(𝑥, 𝑝) is strictly increasing with respect to 𝑥

on (0, 1) which follows from (13) and (18).

Lemma 2. Let 𝑔1 : (0, 1) × R → R be defined by (12). Then
there exists 𝑥0 ∈ (0, 1) such that 𝑔1(𝑥, 𝑝) is strictly increasing
with respect to 𝑥 on (0, 𝑥0] and strictly decreasing with respect
to 𝑥 on [𝑥0, 1) if 1/3 < 𝑝 < 1/2.

Proof. Let𝑝 ∈ (1/3, 1/2) and𝑔2(𝑥, 𝑝) be defined by (14).Then
(14) leads to

𝑔2 (0, 𝑝) = 1 − 2𝑝 > 0, 𝑔2 (1, 𝑝) = 0, (19)

𝑥
1−𝑝 𝜕𝑔2 (𝑥, 𝑝)

𝜕𝑥

= 3 (𝑝 − 1) 𝑥
1−2𝑝

+ (𝑝 − 2) 𝑥
2−2𝑝

+ 2 (2𝑝 − 1) 𝑥
2−𝑝

+ 3 (𝑝 + 1) 𝑥 + 𝑝 := 𝑔3 (𝑥, 𝑝) ,

(20)

𝑔3 (0, 𝑝) = 𝑝 > 0, 𝑔3 (1, 𝑝) = 12𝑝 − 4 > 0, (21)

𝑥
2𝑝 𝜕𝑔3 (𝑥, 𝑝)

𝜕𝑥

= 3 (𝑝 + 1) 𝑥
2𝑝
− 2 (2𝑝 − 1) (𝑝 − 2) 𝑥

1+𝑝

− 2 (𝑝 − 1) (𝑝 − 2) 𝑥 − 3 (2𝑝 − 1) (𝑝 − 1)

:= 𝑔4 (𝑥, 𝑝) ,

(22)

𝑔4 (0, 𝑝) = −3 (1 − 𝑝) (1 − 2𝑝) < 0,

𝑔4 (1, 𝑝) = 4 (3𝑝 − 1) (2 − 𝑝) > 0,

(23)

𝜕
2
𝑔4 (𝑥, 𝑝)

𝜕𝑥2
= − 2𝑝 (1 − 2𝑝) (𝑝 + 1)

× [3 + (2 − 𝑝) 𝑥
1−𝑝

] 𝑥
2𝑝−2

< 0

(24)

for 𝑥 ∈ (0, 1).
Inequality (24) implies that𝑔4(𝑥, 𝑝) is strictly convexwith

respect to 𝑥 on (0, 1). From (22) and (23) together with the
strict convexity of 𝑔4(𝑥, 𝑝) with respect to 𝑥 on (0, 1) we
clearly see that there exists 𝑥1 ∈ (0, 1) such that 𝑔3(𝑥, 𝑝) is
strictly decreasing with respect to 𝑥 on (0, 𝑥1] and strictly
increasing with respect to 𝑥 on [𝑥1, 1). We assert that

𝑔3 (𝑥1, 𝑝) < 0. (25)

Indeed, if 𝑔3(𝑥1, 𝑝) ≥ 0, then it follows from (20) and the
piecewise monotonicity of 𝑔3(𝑥, 𝑝)with respect to 𝑥 on (0, 1)
that 𝑔2(𝑥, 𝑝) is strictly increasing with respect to 𝑥 on (0, 1).

Hence, we get 𝑔2(𝑥, 𝑝) < 𝑔2(1, 𝑝) = 0 for all 𝑥 ∈ (0, 1). This
conjunction with Lemma 1 and (13) leads to the conclusion
that 𝑝 ≥ 1/2, which contradicts with 1/3 < 𝑝 < 1/2.

From (20) and (21) together with (25) and the piecewise
monotonicity of 𝑔3(𝑥, 𝑝)with respect to 𝑥 on (0, 1)we clearly
see that there exist 𝑥11 ∈ (0, 𝑥1) and 𝑥12 ∈ (𝑥1, 1) such that
𝑔2(𝑥, 𝑝) is strictly increasing with respect to 𝑥 on (0, 𝑥11] ∪

[𝑥12, 1) and strictly decreasing with respect to 𝑥 on [𝑥11, 𝑥12].
Therefore, Lemma 2 follows easily from (13) and (19)

together with the piecewise monotonicity of 𝑔2(𝑥, 𝑝) with
respect to 𝑥 on (0, 1).

Lemma 3. Let 𝑔1 : (0, 1) × R → R be defined by (12). Then
the following statements are true:

(1) 𝑔1(𝑥, 𝑝) > 0 for all 𝑥 ∈ (0, 1) if and only if 𝑝 ≥ 1/2;
(2) 𝑔1(𝑥, 𝑝) < 0 for all 𝑥 ∈ (0, 1) if and only if 𝑝 ≤ 1/3;
(3) if 1/3 < 𝑝 < 1/2, then there exists 𝜇0 ∈ (0, 1) such

that 𝑔1(𝜇0, 𝑝) = 0, 𝑔1(𝑥, 𝑝) < 0 for 𝑥 ∈ (0, 𝜇0), and
𝑔1(𝑥, 𝑝) > 0 for 𝑥 ∈ (𝜇0, 1).

Proof. (1) If 𝑔1(𝑥, 𝑝) > 0 for all 𝑥 ∈ (0, 1), then 𝑔1(0
+
, 𝑝) ≥ 0.

Therefore, 𝑝 ≥ 1/2 follows from 𝑔1(0
+
, 𝑝) = −∞ for 𝑝 < 1/2.

If 𝑝 ≥ 1/2, then Lemma 1 (1) leads to the conclusion that
𝑔1(𝑥, 𝑝) > 𝑔1(1, 𝑝) = 0 for all 𝑥 ∈ (0, 1).

(2) If 𝑔1(𝑥, 𝑝) < 0 for all 𝑥 ∈ (0, 1), then by making use of
L’Höspital’s rules and (12) we get

lim
𝑥→1−

𝑔1 (𝑥, 𝑝)

(1 − 𝑥)
3
=
1

8
(𝑝 −

1

3
) ≤ 0 (26)

and 𝑝 ≤ 1/3.
If 𝑝 ≤ 1/3, then Lemma 1 (2) leads to the conclusion that

𝑔1(𝑥, 𝑝) < 𝑔1(1, 𝑝) = 0 for all 𝑥 ∈ (0, 1).
(3) If 1/3 < 𝑝 < 1/2, then it follows from (12) that

𝑔1 (0
+
, 𝑝) = −∞, 𝑔1 (1, 𝑝) = 0. (27)

Therefore, Lemma 3 (3) follows from Lemma 2 and (27).

Lemma 4. Let 𝑔 : (0, 1) × (0,∞) → R be defined by

𝑔 (𝑥, 𝑝) = log 𝑋 (1, 𝑥)

𝑀𝑝 (1, 𝑥)

= log 𝑥 + 1

2
+

2√𝑥

1 − 𝑥
arcsin 1 − 𝑥

1 + 𝑥

−
1

𝑝
log 𝑥
𝑝
+ 1

2
− 1.

(28)

Then

(1) 𝑔(𝑥, 𝑝) is strictly increasing with respect to 𝑥 on (0, 1)

if and only if 𝑝 ≥ 1/2;
(2) 𝑔(𝑥, 𝑝) is strictly decreasing with respect to 𝑥 on (0, 1)

if and only if 𝑝 ≤ 1/3;
(3) if 1/3 < 𝑝 < 1/2, there exists 𝜇0 ∈ (0, 1) such that

𝑔(𝑥, 𝑝) is strictly decreasing with respect to 𝑥 on (0, 𝜇0]
and strictly increasing with respect to 𝑥 on [𝜇0, 1).
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Proof. It follows from (28) that

𝜕𝑔 (𝑥, 𝑝)

𝜕𝑥
=

1 + 𝑥

(1 − 𝑥)
2
√𝑥

𝑔1 (𝑥, 𝑝) , (29)

where 𝑔1(𝑥, 𝑝) is defined by (12).
Therefore, Lemma 4 follows fromLemma 3 and (29).

3. Main Results

Theorem 5. The double inequality

𝑀𝑝 (𝑎, 𝑏) < 𝑋 (𝑎, 𝑏) < 𝑀𝑞 (𝑎, 𝑏) (30)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 1/3 and
𝑞 ≥ log 2/(1 + log 2) = 0.4093 . . ..

Proof. Since both the Sándor mean 𝑋(𝑎, 𝑏) and 𝑟th power
mean𝑀𝑟(𝑎, 𝑏) are symmetric and homogeneous of degree 1,
without loss of generality, we assume that 𝑎 = 1 and 𝑏 = 𝑥 ∈

(0, 1).
We first prove that the inequality 𝑋(1, 𝑥) > 𝑀𝑝(1, 𝑥)

holds for all 𝑥 ∈ (0, 1) if and only if 𝑝 ≤ 1/3.
If 𝑝 = 1/3, then from (28) and Lemma 4 (2) we get

log 𝑋(1, 𝑥)

𝑀1/3 (1, 𝑥)
= 𝑔 (𝑥,

1

3
) > 𝑔(1

−
,
1

3
) = 0 (31)

for all 𝑥 ∈ (0, 1).
Therefore, 𝑋(1, 𝑥) > 𝑀𝑝(1, 𝑥) for all 𝑥 ∈ (0, 1) and 𝑝 ≤

1/3 follows from (31) and the monotonicity of the function
𝑝 → 𝑀𝑝(1, 𝑥).

If 𝑋(1, 𝑥) > 𝑀𝑝(1, 𝑥), then (28) leads to 𝑔(𝑥, 𝑝) > 0 for
all 𝑥 ∈ (0, 1). In particular, we have

lim
𝑥→1−

𝑔 (𝑥, 𝑝)

(1 − 𝑥)
2
=
1

8
(
1

3
− 𝑝) ≥ 0 (32)

and 𝑝 ≤ 1/3.
Next, we prove that the inequality 𝑋(1, 𝑥) < 𝑀𝑞(1, 𝑥)

holds for all 𝑥 ∈ (0, 1) if and only if 𝑞 ≥ log 2/(1 + log 2).
If 𝑋(1, 𝑥) < 𝑀𝑞(1, 𝑥) holds for all 𝑥 ∈ (0, 1), then (28)

leads to 𝑔(𝑥, 𝑞) < 0 for all 𝑥 ∈ (0, 1). In particular, we have

𝑔 (0, 𝑞) = (
1

𝑞
− 1) log 2 − 1 ≤ 0 (33)

and 𝑞 ≥ log 2/(1 + log 2).
If 𝑞 = log 2/(1 + log 2) ∈ (1/3, 1/2), then (28) leads to

𝑔(0,
log 2

1 + log 2
) = 𝑔(1,

log 2
1 + log 2

) = 0. (34)

It follows from (28) and (34) together with Lemma 4 (3)
that

log 𝑋 (1, 𝑥)

𝑀log 2/(1+log 2) (1, 𝑥)
= 𝑔(𝑥,

log 2
1 + log 2

) < 0 (35)

for all 𝑥 ∈ (0, 1).
Therefore, 𝑋(1, 𝑥) < 𝑀𝑞(1, 𝑥) for all 𝑥 ∈ (0, 1) and 𝑞 ≥

log 2/(1+log 2) follows from (35) and themonotonicity of the
function 𝑞 → 𝑀𝑞(1, 𝑥).

Theorem 6. Let 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. Then the double
inequality

2

𝑒
𝑀1/2 (𝑎, 𝑏) < 𝑋 (𝑎, 𝑏) <

4

𝑒
𝑀1/3 (𝑎, 𝑏) (36)

holds with the best possible constants 2/𝑒 and 4/𝑒.

Proof. Since both the Sándor mean 𝑋(𝑎, 𝑏) and 𝑟th power
mean𝑀𝑟(𝑎, 𝑏) are symmetric and homogeneous of degree 1,
without loss of generality, we assume that 𝑎 = 1 and 𝑏 = 𝑥 ∈

(0, 1). It follows from Lemma 4 (1) and (2) together with (28)
that

log 𝑋(1, 𝑥)

𝑀1/2 (1, 𝑥)
= 𝑔 (𝑥,

1

2
) > 𝑔(0,

1

2
) = log 2

𝑒
,

log 𝑋(1, 𝑥)

𝑀1/3 (1, 𝑥)
= 𝑔 (𝑥,

1

3
) < 𝑔(0,

1

3
) = log 4

𝑒

(37)

for all 𝑥 ∈ (0, 1).
Therefore, 2/𝑒𝑀1/2(1, 𝑥) < 𝑋(1, 𝑥) < 4/𝑒𝑀1/3(1, 𝑥) for

all 𝑥 ∈ (0, 1) follows from (37), and the optimality of the
parameters 2/𝑒 and 4/𝑒 follows from the monotonicity of the
functions 𝑔(𝑥, 1/2) and 𝑔(𝑥, 1/3).

Remark 7. For all 𝑎1, 𝑎2, 𝑏1, 𝑏2 > 0 with 𝑎1/𝑏1 < 𝑎2/𝑏2 < 1.
Then from Lemma 4 (1) and (2) together with (28) we clearly
see that the Ky Fan type inequalities

𝑀𝑝 (𝑎2, 𝑏2)

𝑀𝑝 (𝑎1, 𝑏1)
<
𝑋 (𝑎2, 𝑏2)

𝑋 (𝑎1, 𝑏1)
<

𝑀𝑞 (𝑎2, 𝑏2)

𝑀𝑞 (𝑎1, 𝑏1)
(38)

hold if and only if 𝑝 ≥ 1/2 and 𝑞 ≤ 1/3.

Let 𝑝 ∈ R and 𝐿𝑝(𝑎, 𝑏) = (𝑎
𝑝+1

+ 𝑏
𝑝+1

)/(𝑎
𝑝
+ 𝑏
𝑝
) be the

𝑝th Lehmer mean of two positive real numbers 𝑎 and 𝑏. Then
the function 𝑔1(𝑥, 𝑝) defined by (12) can be rewritten as

𝑔1 (𝑥, 𝑝) =
1

2
(1 − 𝑥) [

1

𝑃 (1, 𝑥)
−

𝐺 (1, 𝑥)

𝐴 (1, 𝑥) 𝐿𝑝−1 (1, 𝑥)
] .

(39)

From Lemma 3 and (39) we get Remark 8 as follows.

Remark 8. The double inequality

𝐴 (𝑎, 𝑏)

𝐺 (𝑎, 𝑏)
𝐿𝑝−1 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏) <

𝐴 (𝑎, 𝑏)

𝐺 (𝑎, 𝑏)
𝐿𝑞−1 (𝑎, 𝑏) (40)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝑝 ≤ 1/3 and
𝑞 ≥ 1/2.

From (5) and (9) together with Theorem 5 one has the
following.

Remark 9. The inequalities

𝐿 (𝑎, 𝑏) < 𝑀1/3 (𝑎, 𝑏) < 𝑋 (𝑎, 𝑏) < 𝑀log 2/(1+log 2) (𝑎, 𝑏)

< 𝑀log 2/ log𝜋 (𝑎, 𝑏) < 𝑃 (𝑎, 𝑏)

(41)

hold for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.



Abstract and Applied Analysis 5

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by the Natural Science Foun-
dation of China under Grants 11171307 and 61374086 and
the Natural Science Foundation of Zhejiang Province under
Grant LY13A010004.

References

[1] P. S. Bullen, D. S. Mitrinovic, and P. M. Vasić,Means and Their
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[4] P. A. Hästö, “A monotonicity property of ratios of symmet-
ric homogeneous means,” Journal of Inequalities in Pure and
Applied Mathematics, vol. 3, no. 5, article 71, 23 pages, 2002.
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