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By use of the Cerami-Palais-Smale condition, we generalize the classical Weierstrass minimizing theorem to the singular case by
allowing functions which attain infinity at some values. As an application, we study certain singular second-order Hamiltonian
systems with strong force potential at the origin and show the existence of new periodic solutions with fixed periods.

1. Introduction

Wearemainly interested in the existence of periodic solutions
𝑡 󳨃→ 𝑥(𝑡) ∈ Ω, with a prescribed period, of the second-order
differential equation

𝑥̈ = −𝑉
󸀠

(𝑡, 𝑥) , (1)

with Ω = R𝑁 − {0} (𝑁 ∈ N, 𝑁 ≥ 2) and 𝑉 ∈ 𝐶
1
(R × Ω,R)

where 𝑉
󸀠
(𝑡, ⋅) denotes the gradient of the function 𝑉(𝑡, ⋅)

defined on Ω. The study of the periodic solutions of such
equations has a substantial literature with the works [1–21] of
particular importance for our purpose.

In the 1975 paper of Gordon [10], variational methods
were used to study periodic solutions of planar 2-body type
problems under assumptions which have come to be known
as Gordon’s Strong Force condition (𝑉

1
):

(𝑉
1
) there exists a neighborhoodN of 0 and a function𝑈 ∈

𝐶
1
(Ω,R) such that

(i) lim
𝑥→0

𝑈(𝑥) = −∞;
(ii) −𝑉(𝑡, 𝑥) ≥ |𝑈

󸀠
(𝑥)|
2 for every 𝑥 ∈ N − {0} and

𝑡 ∈ [0, 𝑇];
(iii) lim

𝑥→0
𝑉(𝑡, 𝑥) = −∞.

For 2-body type problems in 𝑅
𝑁

(𝑁 ≥ 2), one can see the
works of Ambrosetti-Coti Zelati, Bahri-Rabinowitz, Greco,
and other mathematicians from [1–5, 18–21]. In this paper
we wish to highlight two main results among them, that is,
Theorems 1 and 2. Firstly, we must specify three separate

conditions 𝑉(𝑡, 𝑥) may satisfy about its behavior at infinity.
Suppose that 𝑉(𝑡, 𝑥) is 𝑇-periodic in 𝑡; then

(𝑉
2
) lim

|𝑥|→∞
𝑉(𝑡, 𝑥) = 0, lim

|𝑥|→∞
𝑉
󸀠
(𝑡, 𝑥) = 0

(uniformly for 𝑡) and 𝑉(𝑡, 𝑥) < 0 for every 𝑡 ∈ [0, 𝑇],
𝑥 ∈ Ω;

(𝑉
3
) there exist 𝑐

1
,𝑀
1
, 𝑅
1
, ] > 0 such that, for every 𝑡 ∈

[0, 𝑇] and 𝑥 ∈ R𝑁 with |𝑥| ≥ 𝑅
1
,

(i) |𝑉󸀠(𝑡, 𝑥)| ≤ 𝑀
1
;

(ii) 𝑉(𝑡, 𝑥) ≥ 𝑐
1
|𝑥|

];

(𝑉
4
) there exist 𝑐

1
, 𝑅
1
> 0, 𝜃 > 1/2, ] > 1 such that, for

every 𝑡 ∈ [0, 𝑇], |𝑥| ≥ 𝑅
1
,

(i) 𝜃𝑉󸀠(𝑡, 𝑥)𝑥 ≤ 𝑉(𝑡, 𝑥);
(ii) 𝑉(𝑡, 𝑥) ≥ 𝑐

1
|𝑥|

].

Set 𝐾 = {𝑥 ∈ Ω | 𝑉
󸀠
(𝑡, 𝑥) = 0 for every 𝑡 ∈ [0, 𝑇]}; there

hold the following results.

Theorem 1 (Greco [11]). If 𝐾 = 0 and (𝑉
1
) and one of

(𝑉
2
)–(𝑉
4
) hold, then in (1) there is at least one nonconstant 𝑇-

periodic 𝐶2 solution.

Theorem 2 (Bahri-Rabinowitz [3] and Greco [11]). Suppose
𝜕𝑉/𝜕𝑡 ≡ 0, so that𝑉(𝑡, 𝑥) ≡ 𝑉(𝑥), and the following condition
holds:

(𝑉
5
)𝐾 is compact (or empty).

If (𝑉
1
) and one of (𝑉

2
)–(𝑉
4
) hold, then in (1) there exist

infinitely many nonconstant 𝑇-periodic 𝐶2 solutions.

In this paper, we prove the following new theorem.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 703539, 4 pages
http://dx.doi.org/10.1155/2014/703539

http://dx.doi.org/10.1155/2014/703539


2 Abstract and Applied Analysis

Theorem3. Suppose𝑉 ∈ 𝐶
1
(R×Ω,R) satisfies condition (𝑉

1
)

and conditions

(𝐶2) for the given 𝑇 > 0, 𝑉(𝑡 + 𝑇, 𝑥) = 𝑉(𝑡, 𝑥);
(𝐶3) there exists 𝐴 > 0 such that, ∀(𝑡, 𝑥) ∈ R × Ω,

3𝑉 (𝑡, 𝑥) − 𝑉
󸀠

(𝑡, 𝑥) 𝑥 ≤ 𝐴; (2)

(𝐶4) 𝑉(𝑡, 𝑥) → +∞ as |𝑥| → +∞ uniformly for 0 ≤ 𝑡 ≤

𝑇.

Then the system (1) has a 𝑇-periodic solution.

Corollary 4. Suppose 𝛼 ≥ 2, 𝛽 ≥ 3, 𝑐
1

> 0, 𝑐
2

> 0, 𝑉 ∈

𝐶
1
(Ω,R), and

𝑉 (𝑥) = −𝑐
1
|𝑥|
−𝛼

, 𝑓𝑜𝑟 0 < |𝑥| ≤ 𝑟
1
;

𝑉 (𝑥) = 𝑐
2
|𝑥|
𝛽
, 𝑓𝑜𝑟 |𝑥| ≥ 𝑟

2
> 𝑟
1
;

(3)

then,∀𝑇 > 0, the system (1) has a𝑇-periodic solution. From the
above example, we see that our potential does not satisfy any of
conditions (𝑉

2
), (𝑉
3
), and (𝑉

4
).

2. A Few Lemmas

In order to prove Theorem 3, we will need to recall the
following useful lemmas.

Lemma 5 (Sobolev-Rellich-Kondrachov [15]). It is well
known that

𝐻
1
= 𝑊
1,2

(
𝑅

𝑇𝑍
, 𝑅
𝑁
) ⊂ 𝐶(

𝑅

𝑇𝑍
, 𝑅
𝑁
) (4)

and the imbedding is compact.

Lemma 6 (Eberlein-Shmulyan [15]). A Banach space 𝑋 is
reflexive if and only if every bounded sequence in 𝑋 has a
weakly convergent subsequence.

Lemma7 (Ekeland [8]). Let𝑋 be aBanach space, and suppose
Φ defined on 𝑋 is Gateaux-differentiable, lower semicontinu-
ous, and bounded from below. Then there is a sequence {𝑥

𝑛
}

such that

Φ(𝑥
𝑛
) 󳨀→ inf Φ, (1 +

󵄩󵄩󵄩󵄩
𝑥
𝑛

󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
Φ
󸀠
(𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0. (5)

Definition 8 (see [8]). Let 𝑋 be a Banach space and 𝑓 ∈

𝐶
1
(𝑋, 𝑅). We say 𝑓 satisfies the (𝑃𝑆)

𝑐
condition if whenever

{𝑥
𝑛
} ⊂ 𝑋 such that

𝑓 (𝑥
𝑛
) 󳨀→ 𝑐 with 𝑓

󸀠
(𝑥
𝑛
) 󳨀→ 0, (6)

then {𝑥
𝑛
} has a strongly convergent subsequence.

Interestingly, Cerami [22] considers a weaker compact
condition on a Banach space than the classical (𝑃𝑆)

𝑐
condi-

tion. Here we introduce a similar condition in an open subset
of a Banach space.

Definition 9 (see [8]). Let 𝑋 be a Banach space; Λ is an open
subset; and supposeΦ defined onΛ is Gateaux-differentiable.
We say that 𝜙 satisfies the (𝐶𝑃𝑆)

𝑐
condition if whenever {𝑥

𝑛
}

is a sequence such that

Φ(𝑥
𝑛
) 󳨀→ 𝑐 with (1 +

󵄩󵄩󵄩󵄩
𝑥
𝑛

󵄩󵄩󵄩󵄩
)
󵄩󵄩󵄩󵄩󵄩
Φ
󸀠
(𝑥
𝑛
)
󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, (7)

then {𝑥
𝑛
} has a strongly convergent subsequence in Λ.

With this definition, we can deduce a minimizing result
in an open subset of a Banach space, the proof of which is
similar to the standard one.

Lemma 10 (see Mawhin-Willem [15]). Let 𝑋 be a Banach
space,Λ ⊂ 𝑋 an open subset, and 𝑓 ∈ 𝐶

1
(Λ, 𝑅). Assume 𝑓 has

a lower bound on the closureΛ ofΛ, and let𝐶 = inf
𝑥∈Λ

𝑓(𝑥). If
𝑓 satisfies (𝐶𝑃𝑆)

𝐶
on Λ ⊂ 𝑋 and 𝑓(𝑥

𝑛
) → +∞ as 𝑥

𝑛
→ 𝜕Λ,

then 𝐶 is a critical value for 𝑓.

Lemma 11 (see [10]). Let Ω = R𝑁 − {0}(𝑁 ∈ N, 𝑁 ≥ 2), and
𝑉 ∈ 𝐶

1
(R×Ω,R) satisfies the Gordon’s Strong Force condition

(𝑉
1
); let

𝐻
1
= {𝑞 : 𝑅 󳨀→ 𝑅

𝑁
| 𝑞 ∈ 𝐿

2
, ̇𝑞 ∈ 𝐿

2
, 𝑞 (𝑡 + 𝑇) = 𝑞 (𝑡)} ,

Λ = {𝑞 ∈ 𝐻
1
, 𝑞 (𝑡) ̸= 0, ∀𝑡} .

(8)

Define

𝑓 (𝑞) =
1

2
∫

𝑇

0

󵄨󵄨󵄨󵄨
̇𝑞
󵄨󵄨󵄨󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝑉 (𝑡, 𝑞) 𝑑𝑡, 𝑞 ∈ Λ. (9)

Then 𝑓(𝑥
𝑛
) → −∞ as 𝑥

𝑛
→ 𝜕Λ.

3. The Proof of Theorem 3

Let 𝐻1 = {𝑞 : 𝑅 → 𝑅
𝑁

| 𝑞 ∈ 𝐿
2
, ̇𝑞 ∈ 𝐿

2
, 𝑞(𝑡 + 𝑇) = 𝑞(𝑡)} and

Λ = {𝑞 ∈ 𝐻
1
, 𝑞(𝑡) ̸= 0, ∀𝑡}.

Lemma 12 (see [2]). Suppose 𝑉 ∈ 𝐶
1
(R × Ω,R) satisfies

condition (𝐶2) and define

𝑓 (𝑞) =
1

2
∫

𝑇

0

󵄨󵄨󵄨󵄨
̇𝑞
󵄨󵄨󵄨󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝑉 (𝑡, 𝑞) 𝑑𝑡, 𝑞 ∈ Λ. (10)

Then the critical point of 𝑓(𝑞) is a 𝑇-periodic solution of (1).

Lemma 13. If 𝑉 satisfies (𝑉
1
) and (𝐶2)–(𝐶4) in Theorem 1,

then 𝑓 satisfies the Cerami-Palais-Smale condition for any 𝑐 ≥

0; that is, for any {𝑥
𝑛
} ⊂ Λ, if

𝑓 (𝑥
𝑛
) 󳨀→ 𝑐, (1 +

󵄩󵄩󵄩󵄩
𝑥
𝑛

󵄩󵄩󵄩󵄩
) 𝑓
󸀠
(𝑥
𝑛
) 󳨀→ 0, (11)

then {𝑥
𝑛
} has a strongly convergent subsequence and the limit

is in Λ.

Proof. By condition (𝑉
1
) and Lemma 11, we must have

𝑓(𝑥
𝑛
) → +∞ as 𝑥

𝑛
→ 𝜕Λ. Since 𝑓(𝑥

𝑛
) → 𝑐, we know

that, for any given 𝜖 > 0, there exists𝑁 such that when 𝑛 > 𝑁,
there holds the inequality

1

2
∫

𝑇

0

󵄨󵄨󵄨󵄨
𝑥̇
𝑛

󵄨󵄨󵄨󵄨

2

𝑑𝑡 − ∫

𝑇

0

𝑉 (𝑡, 𝑥
𝑛
) 𝑑𝑡 ≤ 𝑐 + 𝜖. (12)
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The limit (1 +
󵄩󵄩󵄩󵄩
𝑥
𝑛

󵄩󵄩󵄩󵄩
)𝑓
󸀠
(𝑥
𝑛
) → 0 implies

𝑓
󸀠
(𝑥
𝑛
) 𝑥
𝑛
󳨀→ 0 (13)

and so

2𝑓 (𝑥
𝑛
) + ∫

𝑇

0

[2𝑉 (𝑡, 𝑥
𝑛
) − 𝑉
󸀠
(𝑡, 𝑥
𝑛
) 𝑥
𝑛
] 𝑑𝑡

= 𝑓
󸀠
(𝑥
𝑛
) 𝑥
𝑛
󳨀→ 0.

(14)

Using condition (𝐶3) together with the limits and inequalities
(11), (12), and (14), we can choose 𝑑 > 0 such that when 𝑛 is
large enough, there holds

∫

𝑇

0

󵄨󵄨󵄨󵄨
𝑥̇
𝑛

󵄨󵄨󵄨󵄨

2

𝑑𝑡 ≤ 𝑑, (15)

which implies ∫𝑇
0
|𝑥̇
𝑛
|
2
𝑑𝑡 is bounded.

In the following we prove that |𝑥
𝑛
(0)| is bounded; oth-

erwise, there is a subsequence, still denoted by {𝑥
𝑛
(0)}, such

that
󵄨󵄨󵄨󵄨
𝑥
𝑛
(0)

󵄨󵄨󵄨󵄨
󳨀→ +∞. (16)

Then by Newton-Leibniz’s formula, we have

min
0≤𝑡≤1

󵄨󵄨󵄨󵄨
𝑥
𝑛
(𝑡)

󵄨󵄨󵄨󵄨
≥

󵄨󵄨󵄨󵄨
𝑥
𝑛
(0)

󵄨󵄨󵄨󵄨
−
󵄩󵄩󵄩󵄩
𝑥̇
𝑛

󵄩󵄩󵄩󵄩𝐿2
󳨀→ +∞. (17)

Now, by (𝐶3) and (𝐶4), we have

2𝑉 (𝑡, 𝑥
𝑛
(𝑡)) − 𝑉

󸀠
(𝑡, 𝑥
𝑛
(𝑡)) ⋅ 𝑥

𝑛
(𝑡) 󳨀→ −∞, (18)

which contradicts the limit (14).
Hence, 󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩𝐻1
=

󵄩󵄩󵄩󵄩
𝑥̇
𝑛

󵄩󵄩󵄩󵄩𝐿2
+
󵄨󵄨󵄨󵄨
𝑥
𝑛
(0)

󵄨󵄨󵄨󵄨
is bounded; {𝑥

𝑛
} has a

weakly convergent subsequence; we still denote it by 𝑥
𝑛
, and

let the limit be 𝑥. We can show in a standard fashion that this
subsequence is strongly convergent in 𝐻

1. To complete the
proof, we write it out.

Since the sequence 𝑥
𝑛
is bounded in 𝐻

1, so, by Sobolev’s
embedding inequality, we know it is also bounded in maxi-
mum norm, and, by condition (𝑉

1
) and Lemma 11, we know

that when 𝑛 is large,

max
0

≤ 𝑡 ≤ 𝑇
󵄨󵄨󵄨󵄨
𝑥
𝑛
(𝑡)

󵄨󵄨󵄨󵄨
> 0. (19)

By 𝑉 ∈ 𝐶
1
(R × Ω,R), when 𝑛 is large, 𝑉󸀠(𝑥

𝑛
(𝑡)) is also

uniformly bounded in maximum norm; we have

𝑓
󸀠
(𝑥
𝑛
) 𝑦 = ∫

𝑇

0

[𝑥̇
𝑛

̇𝑦 − 𝑉
󸀠
(𝑡, 𝑥
𝑛
) 𝑦] 𝑑𝑡. (20)

Taking 𝑦 = 𝑥 and 𝑦 = 𝑥
𝑛
in the above equation, we get

𝑓
󸀠
(𝑥
𝑛
) 𝑥 = ∫

𝑇

0

[𝑥̇
𝑛
𝑥̇ − 𝑉

󸀠
(𝑡, 𝑥
𝑛
) 𝑥] 𝑑𝑡,

𝑓
󸀠
(𝑥
𝑛
) 𝑥
𝑛
= ∫

𝑇

0

[𝑥̇
𝑛
𝑥̇
𝑛
− 𝑉
󸀠
(𝑡, 𝑥
𝑛
) 𝑥
𝑛
] 𝑑𝑡.

(21)

Since 𝑓
󸀠
(𝑥
𝑛
) → 0, hence 𝑓

󸀠
(𝑥
𝑛
)𝑥 → 0; furthermore, since

𝑥
𝑛
is bounded, so 𝑓

󸀠
(𝑥
𝑛
)𝑥
𝑛

→ 0. Hence, by (21) and the
uniformly bounded property for 𝑉󸀠(𝑥

𝑛
(𝑡)), we have

lim
𝑛→∞

∫

𝑇

0

𝑥̇
𝑛
𝑥̇𝑑𝑡 = lim

𝑛→∞

∫

𝑇

0

󵄨󵄨󵄨󵄨
𝑥̇
𝑛

󵄨󵄨󵄨󵄨

2

𝑑𝑡. (22)

By 𝑥
𝑛
⇀ 𝑥 weakly, we have

∫

1

0

𝑥̇
𝑛
𝑥̇𝑑𝑡 +

󵄨󵄨󵄨󵄨
𝑥
𝑛
(0) ⋅ 𝑥 (0)

󵄨󵄨󵄨󵄨
= ∫

1

0

|𝑥̇|
2
𝑑𝑡 + |𝑥 (0)|

2
. (23)

By Sobolev EmbeddingTheorem, {𝑥
𝑛
}has a subsequence, still

denoted by {𝑥
𝑛
} subject to 𝑥

𝑛
(0) → 𝑥(0).

We notice
󵄩󵄩󵄩󵄩
𝑥
𝑛
− 𝑥

󵄩󵄩󵄩󵄩

= (∫

1

0

󵄨󵄨󵄨󵄨
𝑥̇
𝑛
− 𝑥̇

󵄨󵄨󵄨󵄨

2

𝑑𝑡)

1/2

−
󵄨󵄨󵄨󵄨
𝑥
𝑛
(0) − 𝑥 (0)

󵄨󵄨󵄨󵄨

= (∫

1

0

󵄨󵄨󵄨󵄨
𝑥̇
𝑛

󵄨󵄨󵄨󵄨

2

𝑑𝑡 − 2∫

1

0

𝑥̇
𝑛
𝑥̇𝑑𝑡 + ∫

1

0

|𝑥̇|
2
𝑑𝑡)

1/2

−
󵄨󵄨󵄨󵄨
𝑥
𝑛
(0) − 𝑥 (0)

󵄨󵄨󵄨󵄨

󳨀→ (‖𝑥̇‖
2

𝐿
2 − 2 ‖𝑥̇‖

2

𝐿
2 + ‖𝑥̇‖

2

𝐿
2)
1/2

+ 0 = 0.

(24)

That is, 𝑥
𝑛

→ 𝑥 strongly in Λ. Then by Lemma 10 the proof
of Theorem 3 is complete.
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