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We present new oscillation criteria for the second order nonlinear dynamic equation [𝑟(𝑡)𝜙
𝛾
(𝑥
Δ
(𝑡))]
Δ

+ 𝑞
0
(𝑡)𝜙
𝛾
(𝑥(𝑔
0
(𝑡))) +

∫
𝑏

𝑎
𝑞(𝑡, 𝑠)𝜙

𝛼(𝑠)
(𝑥(𝑔(𝑡, 𝑠)))Δ𝜁(𝑠) = 0 under mild assumptions. Our results generalize and improve some known results for oscillation

of second order nonlinear dynamic equations. Several examples are worked out to illustrate the main results.

1. Introduction

In this paper, we are concerned with the oscillatory behavior
of the second order nonlinear functional dynamic equation
with 𝛾-Laplacian and nonlinearities given by Riemann-
Stieltjes integral

[𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

+ 𝑞0 (𝑡) 𝜙𝛾 (𝑥 (𝑔0 (𝑡)))

+ ∫
𝑏

𝑎

𝑞 (𝑡, 𝑠) 𝜙𝛼(𝑠) (𝑥 (𝑔 (𝑡, 𝑠))) Δ𝜁 (𝑠) = 0,

(1)

where the time scale T is unbounded above; 𝜙𝛾(𝑢) := |𝑢|
𝛾−1

𝑢,
𝛾 > 0; 𝛼 ∈ 𝐶[𝑎, 𝑏)T̂ with −∞ < 𝑎 < 𝑏 ≤ ∞

is strictly increasing; T̂ is a time scale; 𝑟 is a positive rd-
continuous function on T ; 𝑞0 and 𝑞 are nonnegative rd-
continuous functions on T and T × T̂ with 𝑞0, 𝑞 ̸≡ 0; the
functions 𝑔0 : T → T and 𝑔 : T × T̂ → T are rd-continuous
functions such that lim𝑡→∞𝑔0(𝑡) = ∞ and lim𝑡→∞𝑔(𝑡, 𝑠) =
∞ for 𝑡 ∈ T and 𝑠 ∈ T̂ .

Both of the following two cases:

∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 = ∞, ∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 < ∞, (2)

are considered. We define the time scale interval [𝑡0,∞)T
by [𝑡0,∞)T := [𝑡0,∞) ∩ T . By a solution of (1) we mean
a nontrivial real-valued function 𝑥 ∈ 𝐶

1

rd[𝑇𝑥,∞)T , 𝑇𝑥 ≥

𝑡0, which has the property that 𝑟𝜙𝛾(𝑥
Δ
) ∈ 𝐶

1

rd[𝑇𝑥,∞) and
𝑥 satisfies (1) on [𝑇𝑥,∞)T , where 𝐶rd is the space of rd-
continuous functions. The solutions vanishing identically in
some neighborhood of infinity will be excluded from our
consideration. A solution𝑥 of (1) is said to be oscillatory if it is
neither eventually positive nor eventually negative; otherwise
it is nonoscillatory.

Not only does the theory of the so-called “dynamic equa-
tions” unify theories of differential equations and difference
equations, but also it extends these classical cases to cases “in
between,” for example, to the so-called 𝑞-difference equations
when T = 𝑞

N0 (which has important applications in quantum
theory (see [1])) and can be applied in different types of time
scales like T = ℎZ, T = N2

0
, and T = {𝐻𝑛} the set of harmonic

numbers. In this work knowledge and understanding of time
scales and time scale notation is assumed; for an excellent
introduction to the calculus on time scales, see Bohner and
Peterson [2–4].

In the last few years, there has been increasing
interest in obtaining sufficient conditions for the
oscillation/nonoscillation of solutions of different classes of
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dynamic equations; we refer the reader to [5–25] and the
references cited therein. Recently, Erbe et al. [26] considered

(𝑟 (𝑡) (𝑥
Δ
(𝑡))
𝛾

)
Δ

+

𝑛

∑
𝑖=0

𝑞𝑖 (𝑡) Φ𝛼𝑖 (𝑥 (𝑔𝑖 (𝑡))) = 0 (3)

on an arbitrary time scale T , where 𝛾 is a quotient of odd
positive integers and Φ𝛼𝑖(𝑢) = |𝑢|

𝛼𝑖 sgn 𝑢 with 𝛼𝑖 > 0 and
𝛼0 = 𝛾, 𝑟 is a positive rd-continuous function on T , 𝑞𝑖, 𝑖 =
0, 1, 2, . . . , 𝑛, are nonnegative rd-continuous functions on T ,
and 𝑔𝑖 : T → T , 𝑖 = 0, 1, 2, . . . , 𝑛, satisfy lim𝑡→∞𝑔𝑖(𝑡) = ∞.
In [26], some oscillation criteria have been established when
𝑔𝑖(𝑡) ≡ 𝜏(𝑡), 𝑖 = 1, 2, . . . , 𝑛, 𝜏(𝑡) ≤ 𝑡, and 𝜏 is nondecreasing
and delta differentiable with 𝜏𝑜𝜎 = 𝜎𝑜𝜏 on [𝑡0,∞)T . In
this paper, we will establish oscillation criteria for the more
general equation (1) under mild assumptions on the time
scale T and the time delay. Note that (1) not only contains a
𝑝-Laplacian term 𝛾 > 0 and the advanced/delayed function
𝑔, but also allows an infinite number of nonlinear terms and
even continuous nonlinearities determined by the function 𝜁.

2. Main Results

Throughout this paper, we denote

𝑑+ (𝑡) := max {0, 𝑑 (𝑡)} , 𝑑− (𝑡) := max {0, −𝑑 (𝑡)} ,

𝜆 (𝑢) := ∫
∞

𝑢

𝑟
−1/𝛾

(𝑢) Δ𝑢, 𝑅 (V, 𝑢) := ∫
V

𝑢

𝑟
−1/𝛾

(𝑠) Δ𝑠.

(4)

Lemma 1. Assume that

∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 = ∞, (5)

or

∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 < ∞,

∫
∞

𝑡0

𝑟
−1/𝛾

(V) [∫
V

𝑡0

𝑄1(𝑢)Δ𝑢]

1/𝛾

ΔV = ∞,

(6)

where
𝑄1 (𝑤) := 𝑞0 (𝑤) 𝜆

𝛾
(𝑔0 (𝑤))

+ ∫
𝑏

𝑎

𝑞 (𝑤, 𝑠) [𝜆
𝛼(𝑠)

(𝑔 (𝑤, 𝑠))] Δ𝜁 (𝑠) .

(7)

If (1) has a positive solution 𝑥 on [𝑡0,∞)T , then there exists a
𝑇 ∈ [𝑡0,∞)T , sufficiently large, so that

𝑥
Δ
(𝑡) > 0, [𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

≤ 0, 𝑡 ∈ [𝑇,∞)T . (8)

Proof. Pick 𝑇 ∈ [𝑡0,∞)T sufficiently large such that (𝑡) >

0, 𝑥(𝑔0(𝑡)) > 0, and 𝑥(𝑔(𝑡, 𝑠)) > 0 on [𝑇,∞)T × [𝑎, 𝑏]T̂ . From
(1), we have, for 𝑡 ∈ [𝑇,∞)T ,

[𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

= −𝑞0 (𝑡) [𝑥 (𝑔0 (𝑡))]
𝛾

− ∫
𝑏

𝑎

𝑞 (𝑡, 𝑠) [𝑥(𝑔 (𝑡, 𝑠))]
𝛼(𝑠)

Δ𝜁 (𝑠) ≤ 0.

(9)

Then 𝑟𝜙𝛾(𝑥
Δ
) is nonincreasing on [𝑇,∞)T , and 𝑥

Δ is of
definite sign eventually. We claim that 𝑥Δ is eventually
positive. If not, 𝑥Δ is eventually negative; that is, there exists
𝑇1 ≥ 𝑇 such that 𝑥Δ(𝑡) < 0 for 𝑡 ≥ 𝑇1.

First, we assume (5) holds. Using the fact that 𝑟𝜙𝛾(𝑥
Δ
) is

nonincreasing, we obtain, for 𝑡 ∈ [𝑇1,∞)T ,

𝑥 (𝑡) = 𝑥 (𝑇1) + ∫
𝑡

𝑇1

𝜙
−1

𝛾
[𝑟 (𝑢) 𝜙𝛾 (𝑥

Δ
(𝑢))] 𝑟

−1/𝛾
(𝑢) Δ𝑢

< 𝑥 (𝑇1) + 𝜙
−1

𝛾
[𝑟 (𝑇1) 𝜙𝛾 (𝑥

Δ
(𝑇1))] ∫

𝑡

𝑇1

𝑟
−1/𝛾

(𝑢) Δ𝑢.

(10)

Hence, by (5), we have lim𝑡→∞𝑥(𝑡) = −∞, which contradicts
the fact that 𝑥 is a positive solution of (1).

Second, we assume that (6) holds. Using the fact that
𝑟𝜙𝛾(𝑥

Δ
) is nonincreasing, we obtain, for 𝑡 ∈ [𝑇1,∞)T ,

−𝑥 (𝑡) < ∫
∞

𝑡

𝜙
−1

𝛾
[𝑟 (𝑢) 𝜙𝛾 (𝑥

Δ
(𝑢))] 𝑟

−1/𝛾
(𝑢) Δ𝑢

≤ 𝜙
−1

𝛾
[𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))] ∫

∞

𝑡

𝑟
−1/𝛾

(𝑢) Δ𝑢

≤ 𝜙
−1

𝛾
[𝑟 (𝑇1) 𝜙𝛾 (𝑥

Δ
(𝑇1))] ∫

∞

𝑡

𝑟
−1/𝛾

(𝑢) Δ𝑢

= 𝐿1𝜆 (𝑡) ,

(11)

where 𝐿1 := 𝜙
−1

𝛾1
[𝑟(𝑇1)𝜙𝛾(𝑥

Δ
(𝑇1))] < 0. By choosing

sufficiently large 𝑇2 ∈ [𝑇1,∞)T such that 𝑔0(𝑡) ≥ 𝑇1 and
𝑔(𝑡, 𝑠) ≥ 𝑇1, for 𝑡 ≥ 𝑇2 and 𝑠 ∈ [𝑎, 𝑏]T̂ , we get, for 𝑡 ≥ 𝑇2
and 𝑠 ∈ [𝑎, 𝑏]T̂ ,

[𝑥(𝑔0(𝑡))]
𝛾
> 𝐿𝜆
𝛾
(𝑔0 (𝑡)) ,

[𝑥(𝑔(𝑡, 𝑠))]
𝛼(𝑠)

> 𝐿𝜆
𝛼(𝑠)

(𝑔 (𝑡, 𝑠)) ,

(12)

where 𝐿 := inf 𝑠∈[𝑎,𝑏]T̂ {−𝐿
𝛾

1
, −𝐿
𝛼(𝑠)

1
} > 0. From (1) and (12) we

find that

[𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

< −𝐿𝑞0 (𝑡) 𝜆
𝛾
(𝑔0 (𝑡))

− 𝐿∫
𝑏

𝑎

𝑞 (𝑡, 𝑠) [𝜆
𝛼(𝑠)

(𝑔 (𝑡, 𝑠))] Δ𝜁 (𝑠)

= −𝐿𝑄1 (𝑡) .

(13)

Integrating this last inequality from 𝑇2 to 𝑡, we see that

𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))

≤ 𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡)) − 𝑟 (𝑇2) 𝜙𝛾 (𝑥

Δ
(𝑇2))

< −𝐿∫
𝑡

𝑇2

𝑄1 (𝑤) Δ𝑤,

(14)
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which implies

𝑥
Δ
(𝑡) < −𝑟

−1/𝛾
(𝑡) [𝐿∫

𝑡

𝑇2

𝑄1(𝑢)Δ𝑢]

1/𝛾

. (15)

Again, integrating this last inequality from 𝑇2 to 𝑡, we get

𝑥 (𝑡) − 𝑥 (𝑇2) < −∫
𝑡

𝑇2

𝑟
−1/𝛾

(V) [𝐿∫
V

𝑇2

𝑄1(𝑢)Δ𝑢]

1/𝛾

ΔV. (16)

From (6), we have lim𝑡→∞𝑥(𝑡) = −∞, which contradicts
the fact that 𝑥 is a positive solution of (1). This completes the
proof.

Lemma 2. Assume that there exists sufficiently large 𝑇 ≥ 𝑡0
such that

𝑥 (𝑡) > 0, 𝑥
Δ
(𝑡) > 0,

[𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

≤ 0,

𝑡 ∈ [𝑇,∞)T .

(17)

Then

𝑥 (𝑔0 (𝑡)) ≥ 𝜑1 (𝑡) 𝑥 (𝑡) ,

𝑥 (𝑔 (𝑡, 𝑠)) ≥ 𝜑2 (𝑡, 𝑠) 𝑥 (𝑡) ,

𝑡 ≥ 𝑇1 ≥ 𝑇,

(18)

where

𝜑1 (𝑡) :=
{

{

{

1, 𝑔0 (𝑡) ≥ 𝑡,

𝑅 (𝑔0 (𝑡) , 𝑇)

𝑅 (𝑡, 𝑇)
, 𝑔0 (𝑡) ≤ 𝑡,

(19)

𝜑2 (𝑡, 𝑠) :=
{

{

{

1, 𝑔 (𝑡, 𝑠) ≥ 𝑡,

𝑅 (𝑔 (𝑡, 𝑠) , 𝑇)

𝑅 (𝑡, 𝑇)
, 𝑔 (𝑡, 𝑠) ≤ 𝑡.

(20)

Proof. Since 𝑟𝜙𝛾(𝑥Δ) is strictly decreasing on [𝑇,∞)T . If 𝜏 ≥
𝑡, then𝑥(𝜏) > 𝑥(𝑡) by the fact that𝑥 is strictly increasing. Now
we consider the case when 𝑇 ≤ 𝜏 ≤ 𝑡. We first have

𝑥 (𝑡) − 𝑥 (𝜏) = ∫
𝑡

𝜏

𝑥
Δ
(𝑠) Δ𝑠

= ∫
𝑡

𝜏

[𝑟 (𝑠) 𝜙𝛾 (𝑥
Δ
(𝑠))]
1/𝛾

𝑟
−1/𝛾

(𝑠) Δ𝑠

≤ [𝑟 (𝜏) 𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

∫
𝑡

𝜏

𝑟
−1/𝛾

(𝑠) Δ𝑠

= [𝑟(𝜏)𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

𝑅 (𝑡, 𝑔 (𝑡, 𝑠)) ,

(21)

which implies

𝑥 (𝑡)

𝑥 (𝜏)
≤ 1 +

[𝑟(𝜏)𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

𝑥 (𝜏)
𝑅 (𝑡, 𝑔 (𝑡, 𝑠)) . (22)

On the other hand, we have

𝑥 (𝜏) > 𝑥 (𝜏) − 𝑥 (𝑇)

= ∫
𝜏

𝑇

[𝑟 (𝑠) 𝜙𝛾 (𝑥
Δ
(𝑠))]
1/𝛾

𝑟
−1/𝛾

(𝑠) Δ𝑠

≥ [𝑟 (𝜏) 𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

∫
𝜏

𝑇

𝑟
−1/𝛾

(𝑠) Δ𝑠

= [𝑟(𝜏)𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

𝑅 (𝜏, 𝑇) .

(23)

It implies that

[𝑟(𝜏)𝜙𝛾 (𝑥
Δ
(𝜏))]
1/𝛾

𝑥 (𝜏)
≤

1

𝑅 (𝜏, 𝑇)
. (24)

Therefore, (22) and (24) yield that

𝑥 (𝑡)

𝑥 (𝜏)
≤ 1 +

𝑅 (𝑡, 𝜏)

𝑅 (𝜏, 𝑇)
=
𝑅 (𝑡, 𝑇)

𝑅 (𝜏, 𝑇)
, (25)

and hence

𝑥 (𝜏) ≥
𝑅 (𝜏, 𝑇)

𝑅 (𝑡, 𝑇)
𝑥 (𝑡) , 𝑡 ≥ 𝑇. (26)

Let 𝑇1 ≥ 𝑇 so that 𝑔0(𝑡) > 𝑇 and 𝑔(𝑡, 𝑠) > 𝑇 for 𝑡 ≥ 𝑇1 and
𝑠 ∈ [𝑎, 𝑏]T̂ . Thus, we have that, for 𝑡 ≥ 𝑇1,

𝑥 (𝑔0 (𝑡)) ≥ 𝜑1 (𝑡) 𝑥 (𝑡) , 𝑥 (𝑔 (𝑡, 𝑠)) ≥ 𝜑2 (𝑡, 𝑠) 𝑥 (𝑡) .

(27)

This completes the proof.

We denote by 𝐿𝜁(𝑎, 𝑏)T̂ the set of Riemann-Stieltjes
integrable functions on [𝑎, 𝑏)T̂ with respect to 𝜁. Let 𝑏 ∈

[𝑎, 𝑏)T̂ such that 𝛼(𝑐) = 𝛾. We further assume that

𝛼, 𝛼
−1
∈ 𝐿𝜁(𝑎, 𝑏)T̂ (28)

such that

∫
𝑐

𝑎

Δ𝜁 (𝑠) > 0, ∫
𝑏

𝑐

Δ𝜁 (𝑠) > 0. (29)

We start with the following two lemmas cited from [25]
which will play an important role in the proofs of our results.

Lemma 3. Let

𝑚 := 𝛾∫
𝑏

𝜎(𝑐)

𝛼
−1
(𝑠) Δ𝜁 (𝑠) (∫

𝑏

𝜎(𝑐)

Δ𝜁 (𝑠))

−1

,

𝑛 := 𝛾∫
𝜎(𝑐)

𝑎

𝛼
−1
(𝑠) Δ𝜁 (𝑠) (∫

𝜎(𝑐)

𝑎

Δ𝜁 (𝑠))

−1

.

(30)

Then there exists 𝜂 ∈ 𝐿𝜁(𝑎, 𝑏)T̂ such that 𝜂(𝑠) > 0 on [𝑎, 𝑏)T̂ ,

∫
𝑏

𝑎

𝛼 (𝑠) 𝜂 (𝑠) Δ𝜁 (𝑠) = 𝛾, ∫
𝑏

𝑎

𝜂 (𝑠) Δ𝜁 (𝑠) = 1. (31)
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Lemma4. Let𝑢 ∈ 𝐶[𝑎, 𝑏)T̂ and 𝜂 ∈ 𝐿𝜁(𝑎, 𝑏)T̂ satisfying𝑢 > 0,
𝜂 > 0 on [𝑎, 𝑏)T̂ and ∫𝑏

𝑎
𝜂(𝑠)Δ𝜁(𝑠) = 1. Then

∫
𝑏

𝑎

𝜂 (𝑠) 𝑢 (𝑠) Δ𝜁 (𝑠) ≥ exp(∫
𝑏

𝑎

𝜂 (𝑠) ln [𝑢 (𝑠)] Δ𝜁 (𝑠)) , (32)

where we use the convention that ln 0 = −∞ and 𝑒−∞ = 0.

Theorem 5. Assume that one of conditions (5) and (6)
holds. Furthermore, suppose that there exists a positive Δ-
differentiable function 𝛿(𝑡) such that, for all sufficiently large
𝑇,

lim sup
𝑡→∞

∫
𝑡

𝑇

[

[

𝛿 (𝑢)𝑄2 (𝑢) −
𝑟 (𝑢) ((𝛿

Δ
(𝑢))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)

]

]

Δ𝑢 = ∞,

(33)

where

𝑄2 (𝑢) := 𝑞0 (𝑢) 𝜑
𝛾

1
(𝑢)

+ exp(∫
𝑏

𝑎

𝜂 (𝑠) ln[
𝑞 (𝑢, 𝑠) 𝜑

𝛼(𝑠)

2
(𝑢, 𝑠)

𝜂 (𝑠)
]Δ𝜁 (𝑠)) ,

(34)

with 𝜑1 and 𝜑2 being defined by (19) and (20), respectively.
Then every solution of (1) is oscillatory.

Proof. Assume (1) has a nonoscillatory solution on [𝑡0,∞)T .
Then, without loss of generality, there is 𝑇 ∈ [𝑡0,∞)T ,
sufficiently large, so that 𝑥(𝑡) > 0 and 𝑥(𝑔(𝑡, 𝑠)) > 0

on [𝑇,∞)T × [𝑎, 𝑏]T̂ . By Lemma 1, we have, for 𝑡 ∈ [𝑇,∞)T ,

𝑥
Δ
(𝑡) > 0, [𝑟(𝑡)𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

< 0, 𝑡 ≥ 𝑇. (35)

Define

𝑤 (𝑡) = 𝛿 (𝑡)
𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))

𝜙𝛾 (𝑥 (𝑡))
. (36)

By the product rule and the quotient rule, we have that

𝑤
Δ
(𝑡) = [

𝛿 (𝑡)

𝜙𝛾 (𝑥 (𝑡))
]

Δ

[𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
𝜎

+
𝛿 (𝑡)

𝜙𝛾 (𝑥 (𝑡))
[𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

= [
𝛿
Δ
(𝑡)

𝜙𝛾 (𝑥
𝜎 (𝑡))

−
𝛿 (𝑡) (𝑥

𝛾
(𝑡))
Δ

𝜙𝛾 (𝑥 (𝑡)) 𝜙𝛾 (𝑥
𝜎 (𝑡))

]

× [𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
𝜎

+
𝛿 (𝑡)

𝜙𝛾 (𝑥 (𝑡))
[𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

= 𝛿
Δ
(𝑡) [

𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))

𝜙𝛾 (𝑥 (𝑡))
]

𝜎

− 𝛿 (𝑡)
(𝑥
𝛾
(𝑡))
Δ

𝑥𝛾 (𝑡)
[
𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))

𝜙𝛾 (𝑥 (𝑡))
]

𝜎

+ 𝛿 (𝑡)
[𝑟 (𝑡) 𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

𝜙𝛾 (𝑥 (𝑡))
.

(37)

From (1) and the definition of 𝑤(𝑡), we have

𝑤
Δ
(𝑡) = −𝛿 (𝑡) ∫

𝑏

𝑎

𝑞 (𝑡, 𝑠)
[𝑥 (𝑔 (𝑡, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑡)
Δ𝜁 (𝑠)

+
𝛿
Δ
(𝑡)

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛿 (𝑡)

𝛿𝜎 (𝑡)

(𝑥
𝛾
(𝑡))
Δ

𝑥𝛾 (𝑡)
𝑤
𝜎
(𝑡) .

(38)

By the Pötzsche chain rule [3, Theorem 1.90], we obtain

(𝑥
𝛾
(𝑡))
Δ
= 𝛾∫
1

0

[𝑥 (𝑡) + ℎ𝜇 (𝑡) 𝑥
Δ
(𝑡)]
𝛾−1

𝑑ℎ 𝑥
Δ
(𝑡)

= 𝛾∫
1

0

[(1 − ℎ) 𝑥 (𝑡) + ℎ𝑥
𝜎
(𝑡)]
𝛾−1

𝑑ℎ 𝑥
Δ
(𝑡)

≥ {
𝛾(𝑥(𝑡))

𝛾−1
𝑥
Δ
(𝑡) , 𝛾 ≥ 1

𝛾(𝑥
𝜎
(𝑡))
𝛾−1

𝑥
Δ
(𝑡) , 0 < 𝛾 ≤ 1.

(39)

If 0 < 𝛾 ≤ 1, we have that

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) [

𝑥 (𝑔0 (𝑡))

𝑥 (𝑡)
]

𝛾

− 𝛿 (𝑡) ∫
𝑏

𝑎

𝑞 (𝑡, 𝑠)
[𝑥 (𝑔 (𝑡, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑡)
Δ𝜁 (𝑠)

+
𝛿
Δ
(𝑡)

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡)

𝛿𝜎 (𝑡)

𝑥
Δ
(𝑡)

𝑥𝜎 (𝑡)
(
𝑥
𝜎
(𝑡)

𝑥(𝑡)
)

𝛾

𝑤
𝜎
(𝑡) ,

(40)

whereas if 𝛾 ≥ 1, we have that

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) [

𝑥 (𝑔0 (𝑡))

𝑥 (𝑡)
]

𝛾

− 𝛿 (𝑡) ∫
𝑏

𝑎

𝑞 (𝑡, 𝑠)
[𝑥 (𝑔 (𝑡, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑡)
Δ𝜁 (𝑠)

+
𝛿
Δ
(𝑡)

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡)

𝛿𝜎 (𝑡)

𝑥
Δ
(𝑡)

𝑥𝜎 (𝑡)

𝑥
𝜎
(𝑡)

𝑥 (𝑡)
𝑤
𝜎
(𝑡) .

(41)

Using the fact that 𝑥(𝑡) is strictly increasing and 𝑟(𝑡)(𝑥Δ(𝑡))𝛾
is nonincreasing, we get that

𝑥
𝜎
(𝑡) ≥ 𝑥 (𝑡) , 𝑥

Δ
(𝑡) ≥ (

𝑟
𝜎
(𝑡)

𝑟(𝑡)
)

1/𝛾

(𝑥
Δ
(𝑡))
𝜎

. (42)
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From (40), (41), and (42), we obtain

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) [

𝑥 (𝑔0 (𝑡))

𝑥 (𝑡)
]

𝛾

− 𝛿 (𝑡) ∫
𝑏

𝑎

𝑞 (𝑡, 𝑠)
[𝑥 (𝑔 (𝑡, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑡)
Δ𝜁 (𝑠)

+
(𝛿
Δ
(𝑡))
+

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡) (𝑤
𝜎
(𝑡))
𝜆

(𝛿𝜎 (𝑡))
𝜆
𝑟1/𝛾 (𝑡)

,

(43)

where 𝜆 := (𝛾 + 1)/𝛾. By (18) and the definition of ̌𝑞(𝑡, 𝑠), we
have that, for 𝑡 ≥ 𝑇2 and 𝑠 ∈ [𝑎, 𝑏]T̂ ,

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) 𝑞1 (𝑡) − 𝛿 (𝑡) ∫

𝑏

𝑎

𝑞2 (𝑡, 𝑠) 𝑥
𝛼(𝑠)−𝛾

(𝑡) Δ𝜁 (𝑠)

+
(𝛿
Δ
(𝑡))
+

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡) (𝑤
𝜎
(𝑡))
𝜆

(𝛿𝜎 (𝑡))
𝜆
𝑟1/𝛾 (𝑡)

,

(44)

where 𝑞1(𝑡) := 𝑞0(𝑡)𝜑
𝛾

1
(𝑡) and 𝑞2(𝑡, 𝑠) := 𝑞(𝑡, 𝑠)𝜑

𝛼(𝑠)
(𝑡, 𝑠). We

let 𝜂 ∈ 𝐿𝜁(𝑎, 𝑏)T̂ be defined as in Lemma 3. Then 𝜂 satisfies
(31). This follows the fact that

∫
𝑏

𝑎

𝜂 (𝑠) [𝛼 (𝑠) − 𝛾] Δ𝜁 = 0. (45)

From Lemma 4 we get

∫
𝑏

𝑎

𝑞2 (𝑡, 𝑠) [𝑥 (𝑡)]
𝛼(𝑠)−𝛾

Δ𝜁 (𝑠)

= ∫
𝑏

𝑎

𝜂 (𝑠)
𝑞2 (𝑡, 𝑠)

𝜂 (𝑠)
[𝑥 (𝑡)]

𝛼(𝑠)−𝛾
Δ𝜁 (𝑠)

≥ exp(∫
𝑏

𝑎

𝜂 (𝑠) ln(
𝑞2 (𝑡, 𝑠)

𝜂 (𝑠)
[𝑥 (𝑡)]

𝛼(𝑠)−𝛾
)Δ𝜁 (𝑠))

= exp(∫
𝑏

𝑎

𝜂 (𝑠) ln [
𝑞2 (𝑡, 𝑠)

𝜂 (𝑠)
] Δ𝜁 (𝑠)

+ ln (𝑥 (𝑡)) ∫
𝑏

𝑎

𝜂 (𝑠) [𝛼 (𝑠) − 𝛾] Δ𝜁 (𝑠))

= exp(∫
𝑏

𝑎

𝜂 (𝑠) ln [
𝑞2 (𝑡, 𝑠)

𝜂 (𝑠)
] Δ𝜁 (𝑠)) .

(46)

This together with (44) shows that, for 𝑡 ≥ 𝑇2,

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) 𝑄2 (𝑡) +

(𝛿
Δ
(𝑡))
+

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡) (𝑤
𝜎
(𝑡))
𝜆

(𝛿𝜎 (𝑡))
𝜆
𝑟1/𝛾 (𝑡)

.

(47)

Define 𝐴 ≥ 0 and 𝐵 ≥ 0 by

𝐴
𝜆
:=

𝛾𝛿 (𝑡) (𝑤
𝜎
(𝑡))
𝜆

(𝛿𝜎 (𝑡))
𝜆
𝑟1/𝛾 (𝑡)

, 𝐵
𝜆−1

:=
(𝑟
1/𝜆

(𝑡))
1/𝜆

(𝛿
Δ
(𝑡))
+

𝜆𝛾1/𝜆(𝛿 (𝑡))
1/𝜆

.

(48)

Then, using the inequality [27]

𝜆𝐴𝐵
𝜆−1

− 𝐴
𝜆
≤ (𝜆 − 1) 𝐵

𝜆
, (49)

we get that

(𝛿
Δ
(𝑡))
+

𝛿𝜎 (𝑡)
𝑤
𝜎
(𝑡) −

𝛾𝛿 (𝑡) (𝑤
𝜎
(𝑡))
𝜆

(𝛿𝜎 (𝑡))
𝜆
𝑟1/𝛾 (𝑡)

≤
𝑟 (𝑡) ((𝛿

Δ
(𝑡))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑡)
.

(50)

From this last inequality and (47) we get, for 𝑡 ≥ 𝑇2,

𝑤
Δ
(𝑡) ≤ −𝛿 (𝑡) 𝑄2 (𝑡) +

𝑟 (𝑡) ((𝛿
Δ
(𝑡))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑡)
. (51)

Integrating both sides from 𝑇2 to 𝑡, we get

∫
𝑡

𝑇2

[

[

𝛿 (𝑢)𝑄2 (𝑢) −
𝑟 (𝑢) ((𝛿

Δ
(𝑢))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)

]

]

Δ𝑢

≤ 𝑤 (𝑇2) − 𝑤 (𝑡) ≤ 𝑤 (𝑇2) ,

(52)

which leads to a contradiction to (33).

In the following examples, for T̂ = R, 𝑛 ∈ N, and 𝑠 ∈

[0, 𝑛 + 1), we assume that

𝜁 (𝑠) =

𝑛

∑
𝑗=1

𝜒 (𝑠 − 𝑗) with 𝜒 (𝑠) = {
1, 𝑠 ≥ 0

0, 𝑠 < 0;
(53)

𝛼 ∈ 𝐶[0, 𝑛 + 1) such that 𝛼(𝑗) = 𝛼𝑗, 𝑗 = 1, . . . , 𝑛,

𝛼𝑗 > 𝛾, 𝑗 = 1, 2, . . . , 𝑙,

𝛼𝑗 < 𝛾, 𝑗 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑛;
(54)

𝑞(𝑡, 𝑗) = 𝑞𝑗(𝑡) and 𝑔(𝑡, 𝑗) = 𝑔𝑗(𝑡) for 𝑗 = 1, . . . , 𝑛.

Example 6. Consider the nonlinear dynamic equation

[𝑡
𝛾−1

𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

+
1

𝑡1/(𝛾+1)
𝑥
𝛾
(𝑔0 (𝑡))

+

𝑛

∑
𝑗=1

𝑞𝑗 (𝑡) 𝜙𝛼𝑗 (𝑥 (𝑔𝑗 (𝑡))) = 0, 𝑡 ∈ [𝑡0,∞)
T
,

(55)

where 𝑔𝑗, 𝑗 = 0, 1, 2, . . . , 𝑛, are rd-continuous functions
with 𝑔0(𝑡) ≥ 𝑡 on [𝑡0,∞)T , 𝛾 and 𝛼𝑗, 𝑗 = 1, 2, . . . , 𝑛, are
positive constants, and 𝑞𝑗, 𝑗 = 1, 2, . . . , 𝑛, are nonnegative rd-
continuous functions on T . Here,

𝑟 (𝑡) = 𝑡
𝛾−1

, 𝑞0 (𝑡) =
1

𝑡1/(𝛾+1)
. (56)

Choose an 𝑛-tuple (𝜂1, 𝜂2, . . . , 𝜂𝑛) with 0 < 𝜂𝑗 < 1 satisfying
(31). By Example 5.60 in [4], condition (5) holds since

∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 = ∫
∞

𝑡0

Δ𝑡

𝑡1−1/𝛾
= ∞. (57)
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Also, by choosing 𝛿(𝑡) ≡ 1, we have

lim sup
𝑡→∞

∫
𝑡

𝑇

[

[

𝛿 (𝑢)𝑄2 (𝑢) −
𝑟 (𝑢) ((𝛿

Δ
(𝑢))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)

]

]

Δ𝑢

≥ lim sup
𝑡→∞

∫
𝑡

𝑇

1

𝑢1/(𝛾+1)
Δ𝑢 = ∞.

(58)

Then, byTheorem 5, every solution of (55) is oscillatory.

Example 7. Consider the nonlinear dynamic equation

[(𝑡𝜎 (𝑡))
𝛾
𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

+

𝑛

∑
𝑗=0

𝑞𝑗 (𝑡) 𝜙𝛼𝑗 (𝑥 (𝑔𝑗 (𝑡))) = 0, 𝑡 ∈ [𝑡0,∞)
T
,

(59)

where 0 < 𝛾 = 𝛼0 ≤ 1 is a positive real number, 𝑞0(𝑡) := 𝑡
𝛾,

𝛼𝑗, 𝑗 = 1, 2, . . . , 𝑛, are positive constants, 𝑞𝑗, 𝑗 = 1, 2, . . . , 𝑛,
are nonnegative rd-continuous functions on T , and 𝑔𝑗, 𝑗 =

0, 1, 2, . . . , 𝑛, are rd-continuous functions with 𝑔0(𝑡) ≤ 𝑡 on
[𝑡0,∞)T . Assume

∫
∞

𝑡0

Δ𝑡

𝑡1−1/𝛼0𝜎 (𝑡)
= ∞, 0 < 𝛼0 ≤ 1. (60)

It is clear that 𝑟(𝑡) satisfies

∫
∞

𝑡0

𝑟
−1/𝛾

(𝑡) Δ𝑡 < ∞ ≤ ∫
∞

𝑡0

1

𝑡𝜎 (𝑡)
Δ𝑡 = ∫

∞

𝑡0

(
−1

𝑡
)
Δ

Δ𝑡 < ∞,

𝑡 ∈ [𝑡0,∞)
T
, 𝑡0 > 0.

(61)

This holds formany time scales, for example, when T = 𝑞
N0 =

{𝑡 : 𝑡 = 𝑞
𝑘
, 𝑘 ∈ N0, 𝑞 > 1}. To see that (6) holds note that

∫
∞

𝑡0

𝑟
−1/𝛾

(V) [∫
V

𝑡0

𝑄1 (𝑢) Δ𝑢]

1/𝛾

ΔV

= ∫
∞

𝑡0

𝑟
−1/𝛼0 (V) [

[

∫
V

𝑡0

𝑛

∑
𝑗=0

𝑞𝑗 (𝑢) 𝜆
𝛼𝑗 (𝑔𝑗 (𝑢)) Δ𝑢

]

]

1/𝛼0

ΔV

≥ ∫
∞

𝑡0

1

V𝜎 (V)
[∫

V

𝑡0

𝑢
𝛼0𝜆
𝛼0 (𝑔0 (𝑢)) Δ𝑢]

1/𝛼0

ΔV

≥ ∫
∞

𝑡0

(V − 𝑡0)
1/𝛼0

V𝜎 (V)
ΔV.

(62)

Since

𝜆 (𝑔0 (𝑢)) = ∫
∞

𝑔0(𝑢)

𝑟
−1/𝛾

(𝑤) Δ𝑤 = ∫
∞

𝑔0(𝑢)

1

𝑤𝜎 (𝑤)
Δ𝑤

= ∫
∞

𝑔0(𝑢)

(
−1

𝑤
)
Δ

Δ𝑤 =
1

𝑔0 (𝑢)
≥
1

𝑢
,

(63)

we can find 0 < 𝑘 < 1 such that V − 𝑡0 > 𝑘V for V ≥ 𝑡𝑘 > 𝑡0.

Therefore, we get

∫
∞

𝑡0

𝑟
−1/𝛾

(V) [∫
V

𝑡0

𝑄1 (𝑢) Δ𝑢]

1/𝛾

ΔV

> 𝑘
1/𝛼0 ∫
∞

𝑡𝐾

ΔV
V1−1/𝛼0𝜎 (V)

(60)

= ∞.

(64)

To apply Theorem 5, it remains to prove that condition (33)
holds. By putting 𝛿(𝑡) ≡ 1, we get

lim sup
𝑡→∞

∫
𝑡

𝑇

[

[

𝛿 (𝑢)𝑄2 (𝑢) −
𝑟 (𝑢) ((𝛿

Δ
(𝑢))
+
)
𝛾+1

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)

]

]

Δ𝑢

≥ lim sup
𝑡→∞

∫
𝑡

𝑇

𝑢
𝛾
Δ𝑢 = ∞.

(65)

We conclude that if [𝑡0,∞)T , 𝑡0 > 0, is a time scale, where
∫
∞

𝑡0
(Δ𝑡/𝑡
1−1/𝛾

𝜎(𝑡)) = ∞, then every solution of (59) is
oscillatory byTheorem 5.

We are now ready to state and prove Philos-type oscilla-
tion criteria for (1). Its proof can be similarly done as [28] and
hence is omitted.

Theorem 8. Assume that one of conditions (5) and (6)
holds. Furthermore, suppose that there exist functions 𝐻, ℎ ∈

𝐶𝑟𝑑(D,R), where D ≡ {(𝑡, 𝑢) : 𝑡 ≥ 𝑢 ≥ 𝑡0} such that

𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡0, 𝐻 (𝑡, 𝑢) > 0, 𝑡 > 𝑢 ≥ 𝑡0, (66)

and 𝐻 has a nonpositive continuous Δ-partial derivative
𝐻
Δ 𝑢(𝑡, 𝑢) with respect to the second variable and satisfies

𝐻
Δ 𝑢 (𝑡, 𝑢) + 𝐻 (𝑡, 𝑢)

𝛿
Δ
(𝑢)

𝛿𝜎 (𝑢)
= −

ℎ (𝑡, 𝑢)

𝛿𝜎 (𝑢)
(𝐻 (𝑡, 𝑢))

𝛾/(𝛾+1)
,

(67)

and, for all sufficiently large 𝑇,

lim sup
𝑡→∞

1

𝐻 (𝑡, 𝑇)
∫
𝑡

𝑇

[

[

𝛿 (𝑢)𝑄2 (𝑢)𝐻 (𝑡, 𝑢)

−
(ℎ− (𝑡, 𝑢))

𝛾+1

𝑟 (𝑢)

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)

]

]

Δ𝑢 = ∞,

(68)

where 𝛿(𝑡) is a positive Δ-differentiable function. Then every
solution of (1) is oscillatory on [𝑡0,∞)T .

Example 9. Consider the following dynamic equation:

[𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

+ 𝑞0 (𝑡) 𝜙𝛾 (𝑔0 (𝑡))

+

𝑛

∑
𝑗=1

𝑞𝑗 (𝑡) 𝜙𝛼𝑗 (𝑥 (𝑔𝑗 (𝑡))) = 0, 𝑡 ∈ [𝑡0,∞)
T
,

(69)
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where 𝑟(𝑡) = 1, 𝑔𝑗, 𝑞𝑗, 𝑗 = 0, 1, 2, . . . , 𝑛, are rd-continuous
functions with 𝑔0(𝑡) ≥ 𝑡 and 𝑞𝑗(𝑡) ≥ 0 on 𝑡 ∈ [𝑡0,∞)T , and 𝛾
and 𝛼𝑗, 𝑗 = 1, 2, . . . , 𝑛, are positive constants. It is easy to see
that (5) holds. Choose an 𝑛-tuple (𝜂1, 𝜂2, . . . , 𝜂𝑛)with 0 < 𝜂𝑗 <
1 satisfying (31). By the definition of 𝜑1, we know 𝜑1(𝑡) ≡ 1.
On the other hand, let𝐻(𝑡, 𝑢) = (𝑡 − 𝑢)

2 and 𝛿(𝑡) ≡ 1. From
(67), we obtain

𝐻
Δ 𝑢 (𝑡, 𝑢) = 𝜎 (𝑢) + 𝑢 − 2𝑡 = −ℎ (𝑡, 𝑢) (𝐻(𝑡, 𝑢))

𝛾/(𝛾+1)
. (70)

We have that ℎ(𝑡, 𝑢) ≥ 0 for 𝑢 ∈ [𝑡0, 𝑡)T and hence ℎ−(𝑡, 𝑢) ≡ 0
for 𝑢 ∈ [𝑡0, 𝑡)T . Therefore,

lim sup
𝑡→∞

1

𝐻 (𝑡, 𝑇)
∫
𝑡

𝑇

[𝛿 (𝑢)𝑄2 (𝑢)𝐻 (𝑡, 𝑢)

−
(ℎ− (𝑡, 𝑢))

𝛾+1
𝑟 (𝑢)

(𝛾 + 1)
𝛾+1

𝛿𝛾 (𝑢)
]Δ𝑢

≥ lim sup
𝑡→∞

1

(𝑡 − 𝑇)
2
∫
𝑡

𝑇

[𝑞0 (𝑢) (𝑡 − 𝑢)
2
] Δ𝑢.

(71)

By Theorem 8, we can say that every solution of (69) is
oscillatory if

lim sup
𝑡→∞

1

(𝑡 − 𝑇)
2
∫
𝑡

𝑇

[𝑞0 (𝑢) (𝑡 − 𝑢)
2
] Δ𝑢 = +∞. (72)

Theorem 10. Assume that one of conditions (5) and (6) holds
and

lim sup
𝑡→∞

𝑅
𝛾
(𝑡, 𝑇) ∫

∞

𝑡

𝑄2 (𝑢) Δ𝑢 > 1. (73)

Then every solution of (18) is oscillatory.

Proof. Assume (1) has a nonoscillatory solution on [𝑡0,∞)T .
Then, without loss of generality, there is a 𝑇 ∈ [𝑡0,∞)T ,
sufficiently large, so that 𝑥(𝑡) > 0 and 𝑥(𝑔(𝑡, 𝑠)) > 0

on [𝑇,∞)T × [𝑎, 𝑏]T̂ . Then, by Lemma 1, we have, for 𝑡 ∈

[𝑇,∞)T ,

𝑥
Δ
(𝑡) > 0, [𝑟(𝑡)𝜙𝛾 (𝑥

Δ
(𝑡))]
Δ

< 0, 𝑡 ≥ 𝑇. (74)

Integrating both sides of the dynamic equation (18) from 𝑡 to
∞, we obtain

𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))

≥ ∫
∞

𝑡

𝑞0 (𝑢) 𝜙𝛾 (𝑥 (ℎ (𝑢))) Δ𝑢

+ ∫
∞

𝑡

∫
𝑏

𝑎

𝑞 (𝑢, 𝑠) 𝜙𝛼(𝑠) (𝑥 (𝑔 (𝑢, 𝑠))) Δ𝜁 (𝑠) Δ𝑢

≥ ∫
∞

𝑡

𝑥
𝛾
(𝑢) {𝑞0 (𝑢) [

𝑥 (ℎ (𝑢))

𝑥 (𝑢)
]

𝛾

+∫
𝑏

𝑎

𝑞 (𝑢, 𝑠)
[𝑥 (𝑔 (𝑢, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑢)
Δ𝜁 (𝑠)}Δ𝑢.

(75)

As shown in the proof of Theorem 5, we have

𝑞0 (𝑢) [
𝑥 (ℎ (𝑢))

𝑥 (𝑢)
]

𝛾

+ ∫
𝑏

𝑎

𝑞 (𝑢, 𝑠)
[𝑥 (𝑔 (𝑢, 𝑠))]

𝛼(𝑠)

𝑥𝛾 (𝑢)
Δ𝜁 (𝑠)

≥ 𝑄2 (𝑢) .

(76)

Then, from (75) and (76), we get

𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡)) ≥ ∫

∞

𝑡

𝑥
𝛾
(𝑢)𝑄 (𝑢) Δ𝑢

≥ 𝑥
𝛾
(𝑡) ∫
∞

𝑡

𝑄2 (𝑢) Δ𝑢.

(77)

Since 𝑥Δ(𝑡) > 0 and 𝑟(𝑡) > 0, we have

1

𝑟 (𝑡)
∫
∞

𝑡

𝑄2 (𝑢) Δ𝑢 ≤ [
𝑥
Δ
(𝑡)

𝑥(𝑡)
]

𝛾

. (78)

Also, by using the fact that 𝑟𝜙𝛾(𝑥
Δ
) is nonincreasing, we have

𝑥 (𝑡) ≥ 𝑥 (𝑡) − 𝑥 (𝑇) = ∫
𝑡

𝑇

𝑥
Δ
(𝑠) Δ𝑠

= ∫
𝑡

𝑇

[𝑟 (𝑠) 𝜙𝛾 (𝑥
Δ
(𝑠))]
1/𝛾

𝑟
−1/𝛾

(𝑠) Δ𝑠

≥ [𝑟 (𝑡) 𝜙𝛾 (𝑥
Δ
(𝑡))]
1/𝛾

∫
𝑡

𝑇

𝑟
−1/𝛾

(𝑠) Δ𝑠

= [𝑟(𝑡)𝜙𝛾 (𝑥
Δ
(𝑡))]
1/𝛾

𝑅 (𝑡, 𝑇) ,

(79)

or

[
𝑥
Δ
(𝑡)

𝑥(𝑡)
]

𝛾

≤
1

𝑟 (𝑡) 𝑅𝛾 (𝑡, 𝑇)
. (80)

In view of (78) and (80), we get

𝑅
𝛾
(𝑡, 𝑇) ∫

∞

𝑡

𝑄2 (𝑢) Δ𝑢 ≤ 1, (81)

which gives us the contradiction

lim sup
𝑡→∞

𝑅
𝛾
(𝑡, 𝑇) ∫

∞

𝑡

𝑄2 (𝑢) Δ𝑢 ≤ 1. (82)

This completes the proof.

Example 11. For 𝑡 ∈ [𝑡0,∞)T , we consider the following
dynamic equation:

[𝜙𝛾 (𝑥
Δ
(𝑡))]
Δ

+
1

𝑡𝜎 (𝑡)
𝜙𝛾 (𝑥 (𝑔0 (𝑡)))

+

𝑛

∑
𝑗=1

𝑞𝑗 (𝑡) 𝜙𝛼𝑗 (𝑥 (𝑔𝑗 (𝑡))) = 0,

(83)

where 𝑟(𝑡) = 1, 𝑞0(𝑡) = 1/𝑡𝜎(𝑡), 𝑔𝑗, 𝑗 = 0, 1, 2, . . . , 𝑛, are rd-
continuous functions with 𝑔0(𝑡) ≥ 𝑡 on 𝑡 ∈ [𝑡0,∞)T , 𝑞𝑗,
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𝑗 = 1, 2, . . . , 𝑛, are nonnegative rd-continuous functions on
T , 𝛾 > 1, and 𝛼𝑗, 𝑗 = 1, 2, . . . , 𝑛, are positive constants. It
is obvious that (5) holds. Choose an 𝑛-tuple (𝜂1, 𝜂2, . . . , 𝜂𝑛)

with 0 < 𝜂𝑗 < 1 satisfying (31). On the other hand, noting
that 𝜑1(𝑡) = 1 and 𝑅(𝑡, 𝑇) = ∫

𝑡

𝑇
𝑟
−1/𝛾

(𝑠)Δ𝑠 = 𝑡 − 𝑇, we can
easily verify that

lim sup
𝑡→∞

𝑅
𝛾
(𝑡, 𝑇) ∫

∞

𝑡

𝑄2 (𝑢) Δ𝑢

≥ lim sup
𝑡→∞

(𝑡 − 𝑇)
𝛾
∫
∞

𝑡

1

𝑢𝜎 (𝑢)
Δ𝑢 = +∞ > 1.

(84)

ByTheorem 10, every solution of (83) is oscillatory.

The last theorem is under the assumption that
∫
∞

𝑡0
𝑄2(𝑢)Δ𝑢 < ∞. Its proof can be similarly done as in

[28] and hence is omitted.

Theorem 12. Assume that one of conditions (5) and (6) holds
and 𝑟(𝑡) is a (delta) differentiable function with 𝑟

Δ
(𝑡) ≥ 0.

Furthermore, assume that 𝑙 = lim inf 𝑡→∞(𝑡/𝜎(𝑡)) > 0 and

lim inf
𝑡→∞

𝑡
𝛾

𝑟 (𝑡)
∫
∞

𝜎(𝑡)

𝑄2 (𝑢) Δ𝑢 >
𝛾
𝛾

𝑙𝛾
2

(𝛾 + 1)
𝛾+1

. (85)

Then every solution of (1) is oscillatory.
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