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We investigate a nonautonomous two-species competitive systemwith stage structure and double time delays due tomaturation for
two species, where toxic effect of toxin liberating species on nontoxic species is considered and the inhibiting effect is zero in absence
of either species. Positivity and boundedness of solutions are analytically studied. By utilizing some comparison arguments, an
iterative technique is proposed to discuss permanence of the species within competitive system. Furthermore, existence of positive
periodic solutions is investigated based on continuation theorem of coincidence degree theory. By constructing an appropriate
Lyapunov functional, sufficient conditions for global stability of the unique positive periodic solution are analyzed. Numerical
simulations are carried out to show consistency with theoretical analysis.

1. Introduction

In recent years, many research efforts have been made on
competitive Lotka-Volterra system with stage structure and
time delay. By incorporating a constant time delay into single
species model, a stage-structured model is proposed in the
pioneering work [1], where time delay reflects a delayed birth
of immature population and a reduced survival of immature
population to their maturity. The model system takes the
following form:

𝑥̇

𝑖 (
𝑡) = 𝛼𝑥

𝑚 (
𝑡) − 𝛾𝑥

𝑖 (
𝑡) − 𝛼𝑒

−𝛾𝜏
𝑥

𝑚 (
𝑡 − 𝜏) ,

𝑥̇

𝑚 (
𝑡) = 𝛼𝑒

−𝛾𝜏
𝑥

𝑚 (
𝑡 − 𝜏) − 𝛽𝑥

2

𝑚
(𝑡) ,

(1)

where 𝑥

𝑖
(𝑡) and 𝑥

𝑚
(𝑡) represent the immature population

and mature population density at time 𝑡, respectively. 𝛼 >

0 denotes the birth rate of immature population; 𝛾 > 0

stands for the death rate of immature population. 𝛽 > 0

is the death and overcrowding rate of mature population. 𝜏

denotes time of immature population to maturity. The term
𝛼𝑒

−𝛾𝜏
𝑥

𝑚
(𝑡 − 𝜏) represents the immature species which are

born at time 𝑡 − 𝜏 and survive at time 𝑡 with immature death
rate 𝛾 and therefore represents transformation of immature
species to mature species. It is found that all ecologically
relevant solutions tend to the positive equilibrium solution
as time 𝑡 → ∞, and various aspects of the above proposed
system including positivity and boundedness of solutions are
discussed in [1].

Zeng et al. propose a nonautonomous competitive two-
species model with stage structure in one species in [2],
where conditions of permanence are obtained. Furthermore,
existence and asymptotic stability of periodic solution are
proved under some assumptions if the proposed model turns
out to be a periodic system.A two-species Lotka-Volterra type
competition model with stage structure for both species is
proposed and investigated in [3], where the individuals of
each species are classified as immature and mature. By con-
structing a suitable Lyapunov function, sufficient conditions

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 689573, 15 pages
http://dx.doi.org/10.1155/2014/689573

http://dx.doi.org/10.1155/2014/689573


2 Abstract and Applied Analysis

are derived for the global stability of nonnegative equilibria
of the proposed model in the case of constant coefficients.
Furthermore, a set of easily verifiable sufficient conditions are
obtained for the existence of positive periodic solution when
coefficients are assumed to be positively continuous periodic
functions. In [4], there is a time delayed periodic system
which describes the competition among mature populations.
The evolutionary behavior of model system is analyzed and
some sufficient conditions for competitive coexistence and
exclusion are obtained.

A nonautonomous competitive Lotka-Volterra system is
studied in [5]; it reveals a computable necessary and sufficient
condition for the system to be totally permanent when the
growth rates have averages and the interaction coefficients
are nonnegative constants. Along with this research, perma-
nence for a class of competitive Lotka-Volterra systems is
discussed in [6] which extends the work done in [5], and
a computable necessary and sufficient condition is found
for the permanence of all subsystems of the system and its
small perturbation on the interaction matrix. In [7], a two-
species competitive model with stage structure is discussed,
and the dynamics of coupled system of semilinear parabolic
equations with time delays are investigated, which show that
the introduction of diffusion does not affect the permanence
and extinction of the species, though the introduction of
stage structure brings negative effect on it. In [8], sufficient
conditions are obtained for the existence of a unique, globally
attractive, strictly positive (componentwise), almost periodic
solution of a nonautonomous, almost periodic competitive
two-species model with a stage structure in one species. An
example together with its numeric simulations shows the
feasibility of our main results, which generalize the main
results of Zeng et al. [2]. According to two types of well-
known periodic single species population growth models
with time delay, two corresponding periodic competitive sys-
tems with multiple delays are proposed in [9], and the same
criteria for the existence and globally asymptotic stability
of positive periodic solutions of the above two competitive
systems are derived. In [10], a discrete periodic competitive
model with stage structure is established, and some sufficient
and realistic conditions are obtained for existence of a positive
periodic solution of the proposed system. In [11], a periodic
nonautonomous competitive stage-structured system with
infinite delay is considered, where the adult members of
𝑛-species are in competition. For each of the 𝑛-species
the model incorporates a time delay which represents the
time from birth to maturity of that species. Infinite delay
is introduced which denotes the influential effect of the
entire past history of the system on the current competition
interactions. By using the comparison principle, if the growth
rates are sufficiently large, then the solutions are uniformly
permanent. Then, by using Horn’s fixed point theorem, the
existence of positive periodic solution of the system with
finite delay is discussed. Finally, it is proved that even the
systemwith infinite delay admits a positive periodic solution.

In [12], a nonautonomous predator-prey system with
discrete time delay is studied, where there is epidemic
disease in the predator. By using some techniques of the
differential inequalities and delay differential inequalities,

the permanence of system is discussed under some appro-
priate conditions. When all the coefficients of the system
are periodic, the existence and global attractivity of the
positive periodic solution are studied by Mawhin’s con-
tinuation theorem and constructing a suitable Lyapunov
functional. Furthermore, when the coefficients of the system
are not absolutely periodic but almost periodic, sufficient
conditions are also derived for the existence and asymptotic
stability of the almost periodic solution. In [13], general 𝑛-
species nonautonomous Lotka-Volterra competitive systems
with pure-delays and feedback controls are discussed. New
sufficient conditions, for which a part of the 𝑛-species
remains permanent, are established by applying the method
of multiple Lyapunov functionals and introducing a new
analysis technique.

By utilizing Brouwer fixed point theorem and construct-
ing a suitable Lyapunov function, the periodic solution and
global stability for a nonautonomous competitive Lotka-
Volterra diffusion system are investigated in [14]; it can be
found that the system has a unique periodic solution which
is globally stable under some appropriate conditions. In
[15], a delay differential equation model for the interaction
between two species is investigated.Thematuration delay for
each species is modelled as a distribution, to allow for the
possibility that individuals may take different amount of time
to maturity. Positivity and boundedness of the solutions are
studied, and global stability is analyzed for each equilibrium.
A Lotka-Volterra competitive system with infinite delay and
feedback controls is proposed in [16]. By usingMawhin’s con-
tinuation theorem of coincidence degree theory, an impulsive
nonautonomous Lotka-Volterra predator-prey system with
harvesting terms is investigated in [17]. Some sufficient con-
ditions for the existence of multiple positive almost periodic
solutions for the system under consideration are discussed.
Furthermore, existence of multiple positive almost periodic
solutions to other types of population systems can be studied
by using the samemethod obtained in this paper. By using the
method of multiple Lyapunov functionals and by developing
a new analysis technique, some sufficient conditions are
obtained that guarantee that some of the 𝑛 species are
driven to extinction. A three-dimensional nonautonomous
competitive Lotka-Volterra system is considered in [18]; it is
shown that if the growth rates are positive, bounded, and
continuous functions, and the averages of the growth rates
satisfy certain inequalities, then any positive solution has
the property that one of its components vanishes. In [19],
an almost periodic multispecies Lotka-Volterra mutualism
system with time delays and impulsive effects is investigated.
By using the theory of comparison theorem and constructing
a suitable Lyapunov functional, sufficient conditions which
guarantee the existence and uniqueness and global asymp-
totical stability of almost periodic solution of this system are
obtained.

It is well known that the effect of toxins on ecologi-
cal systems is an important issue from mathematical and
experimental points of view [20, 21]. The first mathematical
model to represent the toxic liberating interaction between
two competing species is introduced by Maynard Smith
[22]. The model is based upon a two-species Lotka-Volterra
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competition model with an additional term to take into
account the effect of toxic substances released by one species
to another, which takes the following form:

̇

𝑁

1 (
𝑡) = 𝑁

1 (
𝑡) [𝛼1

− 𝛽

1
𝑁

1 (
𝑡) − 𝑐

1
𝑁

2 (
𝑡) − 𝜌

1
𝑁

1 (
𝑡)𝑁2 (

𝑡)] ,

̇

𝑁

2 (
𝑡) = 𝑁

2 (
𝑡) [𝛼2

− 𝛽

2
𝑁

2 (
𝑡) − 𝑐

2
𝑁

1 (
𝑡) − 𝜌

2
𝑁

1 (
𝑡)𝑁2 (

𝑡)] ,

(2)

where 𝑁
1
(𝑡) and 𝑁

2
(𝑡) represent the density of two compet-

ing species at time 𝑡, respectively. 𝛼
1
and 𝛼

2
denote the birth

rate of 𝑁
1
(𝑡) species and 𝑁

2
(𝑡) species, respectively. 𝛽

1
and

𝛽

2
are the rate of intraspecific competition term for the first

and second species, respectively. 𝑐
1
and 𝑐
2
stand for the rate of

interspecific competition, respectively.𝜌
1
and𝜌
2
represent the

toxic inhibition rate for the first species by the second species
and vice versa. By considering that 𝜌 denotes the rate of toxic
inhibition for the nontoxic species𝑁

1
(𝑡) released by the toxin

liberating species 𝑁
2
(𝑡) and all other parameters share the

same biological interpretations mentioned in model system
(2), work done in [22] is extended in [23] and the generalized
model system is as follows:

̇

𝑁

1 (
𝑡) = 𝑁

1 (
𝑡) [𝛼1

− 𝛽

1
𝑁

1 (
𝑡) − 𝑐

1
𝑁

2 (
𝑡) − 𝜌𝑁

1 (
𝑡)𝑁

2

2
(𝑡)] ,

̇

𝑁

2 (
𝑡) = 𝑁

2 (
𝑡) [𝛼2

− 𝛽

2
𝑁

2 (
𝑡) − 𝑐

2
𝑁

1 (
𝑡)] ,

(3)

where the toxic substance producing action follows the
mathematical term 𝜌𝑁

2

1
(𝑡)𝑁

2

2
(𝑡) [23].

It should be noted that models of the persistence and
extinction of a population or community in a polluted
environment have been investigated in [23]. But all of those
papers have a basic assumption that the capacity of the
environment is so large that the change of toxicant in the
environment that comes from uptake and egestation by the
organisms can be neglected. This assumption is not made
in [24, 25], some sufficient conditions on persistence or
extinction of a population have been obtained, and the
threshold between the two has also been obtained for most
situations. In [26, 27], there are modified delay differential
equation models of the growth of two species of plankton
having competitive and allelopathic effects on each other. By
using the continuation theoremof coincidence degree theory,
a set of easily verifiable sufficient conditions are obtained for
the existence of positive periodic solutions for this model.
Recently, some discussions and investigations of the nonau-
tonomous competitive model with toxic effects are made. A
periodic competitive stage-structured Lotka-Volterra model
with the effects of toxic substances is investigated in [28].
It is shown that toxic substances play an important role
in the extinction of species. A set of sufficient conditions
guarantee that one of the components is driven to extinction
while the other is globally attractive.The dynamical behavior
of a two-species competitive system affected by toxic sub-
stances is investigated in [21], where each species produces
a substance toxic to the other species. Boundedness and
local and global stabilities are also addressed. It should be
noted that toxic interaction follows the mathematical term

suggested in model system (2) and each mature individual
produces a substance toxic to the other mature individuals
only when the other mature individual is present, and the
immature individual is not affected by the toxicant [21].
However, to the author’s best knowledge, dynamical behavior
and stability analysis of nonautonomous stage-structured
competitive systemwith toxin liberating species and nontoxic
species have not been investigated. Generally speaking, it
takes some time for a species to reachmaturity to produce the
toxicant; then toxin liberating mature individual produces a
substance toxic to the nontoxic mature individuals only. The
inhibiting effect is zero in absence of either species, and the
immature individual of each species is not affected by the
toxicant. Furthermore, the species compete each other for
the limited life resource within closed environment, but this
competition only happens among the mature individuals and
does not involve the immature individuals. Consequently, it is
necessary to investigate the dynamic effect of stage structure
and toxic effect on the population dynamics of two-species
competitive systemwith toxin liberating species and nontoxic
species.

The rest section of this paper is organized as follows:
a nonautonomous two-species competitive model is estab-
lished in the second section. Stage structure and maturation
delay for each species are introduced, and toxic effect of
toxin liberating species on nontoxic species is considered.
In the third section, qualitative analyses are performed to
investigate the effect of stage structure and toxic substances
on the dynamical behavior of two-species competitive model
system.The positivity and boundedness of solutions are ana-
lytically studied. By utilizing some comparison arguments, an
iterative technique is proposed to discuss permanence of the
species within competitive system. Furthermore, existence of
positive periodic solutions is considered based on continua-
tion theorem of coincidence degree theory. By constructing
an appropriate Lyapunov functional, sufficient conditions for
global stability of the unique positive periodic solution are
analyzed. Numerical simulations are provided to support the
theoretical findings obtained in this paper. Finally, this paper
ends with a conclusion.

2. Model Formulation

In this paper, the effect of stage structure and toxic substances
on the dynamical behavior of two-species competitive model
system is investigated under the following five hypotheses,
which are given as follows.

(H1) Two competing species, that is, nontoxic species and
toxin liberating species, are considered in this paper. It
is assumed that each species is divided into two-stage
groups, and the immature and mature individuals are
divided by a fixed period. 𝑥

1
(𝑡) and 𝑦

1
(𝑡) represent

immature population density of nontoxic species
and toxin liberating species at time 𝑡, respectively;
𝑥

2
(𝑡) and 𝑦

2
(𝑡) denote mature population density of

nontoxic species and toxin liberating species at time
𝑡, respectively.
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(H2) 𝜔-periodic continuous functions 𝛼

1
(𝑡) > 0 and

𝛼

2
(𝑡) > 0 denote the birth rate of immature popula-

tion of nontoxic species and toxin liberating species at
time 𝑡, respectively. 𝜔-periodic continuous functions
𝛾

1
(𝑡) > 0 and 𝛾

2
(𝑡) > 0 stand for the death rate of

immature population of nontoxic species and toxin
liberating species at time 𝑡, respectively. 𝜔-periodic
continuous functions 𝛽

1
(𝑡) > 0 and 𝛽

2
(𝑡) > 0 are the

death and overcrowding rate of mature population of
nontoxic species and toxin liberating species at time
𝑡, respectively.

(H3) 𝜏
1
denotes time of immature nontoxic species to

maturity. The term 𝛼

1
(𝑡 − 𝜏

1
)𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡 − 𝜏

1
)

represents the immature nontoxic species which are
born at time 𝑡 − 𝜏

1
and survive at time 𝑡 with

immature death rate. 𝜏
2
denotes time of immature

toxin liberating species to maturity. The term 𝛼

2
(𝑡 −

𝜏

2
)𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑦

2
(𝑡−𝜏

2
) represents the immature toxin

liberating species which are born at time 𝑡 − 𝜏

2
and

survive at time 𝑡 with immature death rate.

(H4) For toxin liberating species, it takes some time to
attain its level of maturity to produce the toxic
substances, and toxin liberating mature individual
produces a substance toxic to the nontoxic mature
individuals only. The inhibiting effect is zero in
absence of either species, and the immature individ-
ual of each species is not affected by the toxicant.
Based on model system (3), the toxic effect released
by toxin liberating species on nontoxic species is
described by the mathematical term 𝜌(𝑡)𝑥

2

2
(𝑡)𝑦

2

2
(𝑡),

where toxic inhibition rate is represented by an 𝜔-
periodic continuous function 𝜌(𝑡) > 0.

(H5) Nontoxic species and toxin liberating species com-
pete each other for the common resource within
closed environment, but this competition only hap-
pens among the mature individuals and does not
involve the immature individuals. 𝜔-periodic con-
tinuous function 𝑐

1
(𝑡) > 0 represents interspecific

competition rate for the mature nontoxic species by
the mature toxin liberating species, and 𝜔-periodic
continuous function 𝑐

2
(𝑡) > 0 represents interspe-

cific competition rate for the mature toxin liberating
species by the mature nontoxic species.

Based onhypotheses (H1)–(H5), a nonautonomous stage-
structured competitive model with toxic effect and double
maturation delays is established as follows:

𝑥̇

1 (
𝑡) = 𝛼

1 (
𝑡) 𝑥2 (

𝑡) − 𝛾

1 (
𝑡) 𝑥1 (

𝑡)

− 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡 − 𝜏

1
) ,

𝑥̇

2 (
𝑡) = 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡 − 𝜏

1
) − 𝛽

1 (
𝑡) 𝑥

2

2
(𝑡)

− 𝑐

1 (
𝑡) 𝑥2 (

𝑡) 𝑦2 (
𝑡) − 𝜌 (𝑡) 𝑥

2

2
(𝑡) 𝑦

2

2
(𝑡) ,

̇𝑦

1 (
𝑡) = 𝛼

2 (
𝑡) 𝑦2 (

𝑡) − 𝛾

2 (
𝑡) 𝑦1 (

𝑡)

− 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑦

2
(𝑡 − 𝜏

2
) ,

̇𝑦

2 (
𝑡) = 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑦

2
(𝑡 − 𝜏

2
) − 𝛽

2 (
𝑡) 𝑦

2

2
(𝑡)

− 𝑐

2 (
𝑡) 𝑥2 (

𝑡) 𝑦2 (
𝑡) .

(4)

In this paper, model system (4) is investigated with the
following initial conditions:

𝑥

𝑖 (
𝜃) = 𝜙

𝑖 (
𝜃) > 0, −𝜏

1
≤ 𝜃 ≤ 0, 𝑖 = 1, 2,

𝑦

𝑖 (
𝜃) = 𝜓

𝑖 (
𝜃) > 0, −𝜏

2
≤ 𝜃 ≤ 0, 𝑖 = 1, 2.

(5)

For the continuity of the initial conditions, it is required
that

𝑥

1 (
0) = ∫

0

−𝜏
1

𝛼

1 (
𝜃) 𝜙2 (

𝜃) 𝑒

∫
𝜃

0
𝛾
1
(𝑠)d𝑠d𝜃,

𝑦

1 (
0) = ∫

0

−𝜏
2

𝛼

2 (
𝜃) 𝜓2 (

𝜃) 𝑒

∫
𝜃

0
𝛾
2
(𝑠)d𝑠d𝜃.

(6)

3. Qualitative Analysis of Model System

In this section, qualitative analysis of the nonautonomous
model system (4) is performed, which is utilized to discuss
dynamic effect of toxic effect and maturation delay on popu-
lation dynamics.The positivity and boundedness of solutions
are analytically studied. By utilizing some comparison argu-
ments, an iterative technique is proposed to discuss perma-
nence of the species within competitive system. Furthermore,
existence of positive periodic solutions is investigated based
on continuation theorem of coincidence degree theory. By
constructing an appropriate Lyapunov functional, sufficient
conditions for global stability of the unique positive periodic
solution are analyzed.

Some mathematical notations are adopted for conve-
nience of the following statement:

𝑓

𝐿
= min
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

, 𝑓

𝑀
= max
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡)

󵄨

󵄨

󵄨

󵄨

, (7)

where 𝑓(𝑡) is a 𝜔-periodic continuous function.

3.1. Permanence of Solutions

Theorem 1. Solutions of model system (4) with initial condi-
tions (5) and (6) are positive for all 𝑡 > 0.

Proof. Firstly, we show that 𝑥
2
(𝑡) > 0 for all 𝑡 > 0. Otherwise,

if it is false, since 𝑥
2
(𝑡) > 0 for all 𝑡 ∈ [−𝜏

1
, 0], then it can be

derived that there exists a 𝑡
1
> 0 such that 𝑥

2
(𝑡

1
) = 0.

Define 𝑡
0
= inf{𝑡 > 0 | 𝑥

2
(𝑡) = 0}. According to the

definition of 𝑡
0
, it can be obtained that

𝑥̇

2
(𝑡

0
) ≤ 0. (8)
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It follows from the second equation of model system (4)
that

𝑥̇

2
(𝑡

0
)

=

{

{

{

𝛼

1
(𝑡

0
− 𝜏

1
) 𝑒

−∫
𝑡0

𝑡0−𝜏1

𝛾
1
(𝑠)d𝑠

𝜙

2
(𝑡

0
− 𝜏

1
) > 0, 0 ≤ 𝑡

0
≤ 𝜏

1
,

𝛼

1
(𝑡

0
− 𝜏

1
) 𝑒

−∫
𝑡0

𝑡0−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡

0
− 𝜏

1
) > 0, 𝑡 > 𝜏

1
,

(9)

and it is easy to show that 𝑥̇
2
(𝑡

0
) > 0, which is a contradiction

to (8). Hence, 𝑥
2
(𝑡) > 0 for all 𝑡 > 0.

By a direct computation, it follows from the first equation
of model system (4) that

𝑥

1 (
𝑡) = ∫

𝑡

𝑡−𝜏
1

𝛼

1 (
𝑠) 𝑒

∫
𝑠

𝑡
𝛾
1
(𝑚)d𝑠

𝑥

2 (
𝑠) d𝑠, (10)

since 𝑥
2
(𝑡) > 0 for all 𝑡 > 0; it is easy to show that 𝑥

1
(𝑡) > 0

for all 𝑡 > 0 based on (10).
By utilizing the similar proof, it can be obtained that

𝑦

1
(𝑡) > 0 and 𝑦

2
(𝑡) > 0 for all 𝑡 > 0. Consequently, solutions

of model system (4) with initial conditions (5) and (6) are
positive for all 𝑡 > 0.

Theorem 2. Solutions of model system (4) with initial condi-
tions (5) and (6) are ultimately bounded.

Proof. Let 𝑤(𝑡) = 𝑥

1
(𝑡) + 𝑥

2
(𝑡) + 𝑦

1
(𝑡) + 𝑦

2
(𝑡), where

(𝑥

1
(𝑡), 𝑥

2
(𝑡), 𝑦

1
(𝑡), 𝑦

2
(𝑡)) is an arbitrary positive solution of

model system (4) with the initial conditions (5) and (6).
Calculating the derivative of 𝑤(𝑡) along the solution of

model system (4) gives that

𝑤̇ (𝑡) ≤ (𝛼

1 (
𝑡) + 𝛾

1 (
𝑡)) 𝑥2 (

𝑡) − 𝛾

1 (
𝑡) (𝑥1 (

𝑡) + 𝑥

2 (
𝑡))

− 𝛽

1 (
𝑡) 𝑥

2

2
(𝑡)

+ (𝛼

2 (
𝑡) + 𝛾

2 (
𝑡)) 𝑦2 (

𝑡) − 𝛾

2 (
𝑡) (𝑦1 (

𝑡) + 𝑦

2 (
𝑡))

− 𝛽

2 (
𝑡) 𝑦

2

2
(𝑡)

≤ (𝛼

𝑀

1
+ 𝛾

𝑀

1
) 𝑥

2 (
𝑡) − 𝛽

𝐿

1
𝑥

2

2
(𝑡) − 𝑟

𝐿

1
(𝑥

1 (
𝑡) + 𝑥

2 (
𝑡))

+ (𝛼

𝑀

2
+ 𝛾

𝑀

2
) 𝑦

2 (
𝑡) − 𝛽

𝐿

2
𝑦

2

2
(𝑡) − 𝑟

𝐿

2
(𝑦

1 (
𝑡) + 𝑦

2 (
𝑡))

≤ − 𝛾

𝐿
𝑤 (𝑡) + (𝛼

𝑀

1
+ 𝛾

𝑀

1
) 𝑥

2 (
𝑡) − 𝛽

𝐿

1
𝑥

2

2
(𝑡)

+ (𝛼

𝑀

2
+ 𝛾

𝑀

2
) 𝑦

2 (
𝑡) − 𝛽

𝐿

2
𝑦

2

2
(𝑡)

≤ − 𝛾

𝐿
𝑤 (𝑡) +

(𝛼

𝑀

1
+ 𝛾

𝑀

1
)

2

4𝛽

𝐿

1

+

(𝛼

𝑀

2
+ 𝛾

𝑀

2
)

2

4𝛽

𝐿

2

,

(11)

where 𝛾𝐿 = min{𝛾𝐿
1
, 𝛾

𝐿

2
}.

By using the standard comparison principle [20], it
follows from (11) that

𝑤 (𝑡) ≤

𝛽

𝐿

2
(𝛼

𝑀

1
+ 𝛾

𝑀

1
)

2

+ 𝛽

𝐿

1
(𝛼

𝑀

2
+ 𝛾

𝑀

2
)

2

4𝛾

𝐿
𝛽

𝐿

1
𝛽

𝐿

2

,

(12)

which implies that any solution of model system (4) with
initial conditions (5) and (6) is ultimately bounded.

Lemma 3 (see [29]). Consider the following differential equa-
tion:

𝑥̇ (𝑡) = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥

2
(𝑡) , (13)

where 𝑎, 𝑏, 𝑐, 𝜏 > 0 and 𝑥(𝑡) > 0 for −𝜏 ≤ 𝑡 ≤ 0; we have that

(i) if 𝑎 > 𝑏, then lim
𝑡→+∞

𝑥(𝑡) = (𝑎 − 𝑏)/𝑐;
(ii) if 𝑎 < 𝑏, then lim

𝑡→+∞
𝑥(𝑡) = 0.

Lemma 4 (see [29]). Consider the following differential equa-
tion:

𝑥̇ (𝑡) = 𝑑𝑥 (𝑡 − 𝜎) − 𝑒𝑥

2
(𝑡) , (14)

where 𝑑, 𝑒, 𝜎 > 0 and 𝑥(𝑡) > 0 for −𝜎 ≤ 𝑡 ≤ 0; we have

lim
𝑡→+∞

𝑥 (𝑡) =

𝑑

𝑒

.
(15)

Definition 5 (see [30]). Model system

̇

𝑋 (𝑡) = 𝑓 (𝑡, 𝑋

𝑡 (
𝜃)) , (16)

where 𝑡 ≥ 0, 𝜃 ∈ [−𝜏, 0], 𝑋 ∈ R𝑛. Model system (16) is
said to be permanent if, for any solution 𝑋(𝑡, 𝜙), there exists
a constant 𝑚 > 0 and 𝑇 = 𝑇(𝜙) such that 𝑋(𝑡) > 𝑚 for all
𝑡 > 𝑇.

Definition 6 (see [30]). The domain 𝐷 ∈ C𝑛 is said to be an
ultimately bounded domain, if𝐷 is a closed, bounded subset
of C𝑛, and there exists a constant 𝑇 = 𝑇(𝜙) such that𝑋

𝑡
(𝜃) ∈

𝐷 for all 𝑡 > 𝑇.

Theorem 7. If 𝛼𝐿
1
𝛽

𝐿

2
> 𝑐

𝑀

1
𝛼

𝑀

2
and 𝛼𝐿

2
𝛽

𝐿

1
> 𝑐

𝑀

2
𝛼

𝑀

1
, then model

system (4) is permanent with initial conditions (5) and (6).

Proof. According to the second equation of model system (4)
andTheorem 1, we get that

𝑥̇

2 (
𝑡) ≤ 𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
𝑥

2
(𝑡 − 𝜏

1
) − 𝛽

𝐿

1
𝑥

2

2
(𝑡) .

(17)

By virtue of Lemma 4 and (17), there exists a positive time
𝑇

1
such that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇

1
, it yields

𝑥

2 (
𝑡) ≤

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

+ 𝜖 := 𝑀

(1)

2
.

(18)

By rearranging (10), it can be obtained that

𝑥

1 (
𝑡) = 𝑒

−∫
𝑡

0
𝛾
1
(𝑠)d𝑠

∫

𝑡

𝑡−𝜏
1

𝛼

1 (
𝑠) 𝑒

∫
𝑠

0
𝛾
1
(𝑚)d𝑚

𝑥

2 (
𝑠) d𝑠. (19)

For any 𝑡 ≥ 𝑇

1
, it follows from (18) and (19) that

𝑥

1 (
𝑡) ≤

𝑎

𝑀

1
𝑀

(1)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏
1
)

𝛾

𝐿

1

:= 𝑀

(1)

1
.

(20)
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Based on the fourth equation of model system (4) and
Theorem 1, it can be obtained that

̇𝑦

2 (
𝑡) ≤ 𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
𝑦

2
(𝑡 − 𝜏

2
) − 𝛽

𝐿

2
𝑦

2

2
(𝑡)

(21)

holds for 𝑡 ≥ 𝑇

1
.

By virtue of Lemma 4 and (21), there exists 𝑇
2
> 𝑇

1
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇

2
, it yields

𝑦

2 (
𝑡) ≤

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

+ 𝜖 := 𝑀

(1)

4
.

(22)

By direct computing, it follows from the third equation of
model system (4) that

𝑦

1 (
𝑡) = 𝑒

−∫
𝑡

0
𝛾
2
(𝑠)d𝑠

∫

𝑡

𝑡−𝜏
2

𝛼

2 (
𝑠) 𝑒

∫
𝑠

0
𝛾
2
(𝑚)d𝑚

𝑦

2 (
𝑠) d𝑠. (23)

For any 𝑡 ≥ 𝑇

2
, it follows from (22) and (23) that

𝑦

1 (
𝑡) ≤

𝛼

𝑀

2
𝑀

(1)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏
2
)

𝛾

𝐿

2

:= 𝑀

(1)

3
.

(24)

Furthermore, it follows from the second equation of
model system (4) that

𝑥̇

2 (
𝑡) ≥ 𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
𝑥

2
(𝑡 − 𝜏

1
)

− (𝛽

𝑀

1
+ 𝜌

𝑀

1
(𝑀

(1)

4
)

2

) 𝑥

2

2
(𝑡) − 𝑐

𝑀

1
𝑀

(1)

4
𝑥

2 (
𝑡) .

(25)

Based on Lemma 3 and (25), there exists 𝑇
3
> 𝑇

2
and for

any 𝑡 ≥ 𝑇

3
and sufficiently small 𝜖 > 0,

𝑥

2 (
𝑡) ≥

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
− 𝑐

𝑀

1
𝑀

(1)

4

𝛽

𝑀

1
+ 𝜌

𝑀

1
(𝑀

(1)

4
)

2
− 𝜖 := 𝑚

(1)

2 (26)

holds provided that

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
> 𝑐

𝑀

1
𝑀

(1)

4
.

(27)

According to (19), for any 𝑡 ≥ 𝑇

3
, we get that

𝑥

1 (
𝑡) ≥

𝛼

𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏
1
)𝑚

(1)

2

𝛾

𝑀

1

:= 𝑚

(1)

1
.

(28)

For any 𝑡 ≥ 𝑇

3
, it follows from the fourth equation of

model system (4) that

̇𝑦

2 (
𝑡) ≥ 𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
𝑦

2
(𝑡 − 𝜏

2
) − 𝛽

𝑀

2
𝑦

2

2
(𝑡) − 𝑐

𝑀

2
𝑀

(1)

2
𝑦

2 (
𝑡) .

(29)

Based on Lemma 3 and (29), there exists 𝑇
4
> 𝑇

3
and for

any 𝑡 ≥ 𝑇

4
and sufficiently small 𝜖 > 0,

𝑦

2 (
𝑡) ≥

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝑐

𝑀

2
𝑀

(1)

2

𝛽

𝑀

2

− 𝜖 := 𝑚

(1)

4
(30)

holds provided that

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
> 𝑐

𝑀

2
𝑀

(1)

2
.

(31)

According to (23) and (30), it can be obtained that

𝑦

1 (
𝑡) ≥

𝛼

𝐿

2
𝑚

(1)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏
2
)

𝛾

𝑀

2

:= 𝑚

(1)

3
.

(32)

According to the second equation of model system (4),
we get that

𝑥̇

2 (
𝑡) ≤ 𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
𝑥

2
(𝑡 − 𝜏

1
)

− (𝛽

𝐿

1
+ 𝜌

𝐿
(𝑚

(1)

4
)

2

) 𝑥

2

2
(𝑡) − 𝑐

𝐿

1
𝑚

(1)

4
𝑥

2 (
𝑡) .

(33)

By virtue of Lemma 3 and (33), there exists 𝑇
5
> 𝑇

4
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇

5
, it yields

𝑥

2 (
𝑡) ≤

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
− 𝑐

𝐿

1
𝑚

(1)

4

𝛽

𝐿

1
+ 𝜌

𝐿
(𝑚

(1)

4
)

2
+ 𝜖 := 𝑀

(2)

2
, (34)

which holds provided that

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
> 𝑐

𝐿

1
𝑚

(1)

4
.

(35)

For any 𝑡 ≥ 𝑇

5
, it follows from (19) and (34) that

𝑥

1 (
𝑡) ≤

𝛼

𝑀

1
𝑀

(2)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏
1
)

𝛾

𝐿

1

:= 𝑀

(2)

1
.

(36)

Based on the fourth equation of model system (4), it can
be obtained that

̇𝑦

2 (
𝑡) ≤ 𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
𝑦

2
(𝑡 − 𝜏

2
) − 𝛽

𝐿

2
𝑦

2

2
(𝑡) − 𝑐

𝐿

2
𝑚

(1)

2
𝑦

2 (
𝑡)

(37)

holds for 𝑡 ≥ 𝑇

5
.

By virtue of Lemma 3 and (37), there exists 𝑇
6
> 𝑇

5
such

that, for sufficiently small 𝜖 > 0 and 𝑡 ≥ 𝑇

6
, it yields

𝑦

2 (
𝑡) ≤

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
− 𝑐

𝐿

2
𝑚

(1)

2

𝛽

𝐿

2

+ 𝜖 := 𝑀

(2)

4
,

(38)

which holds provided that

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
> 𝑐

𝐿

2
𝑚

(1)

2
.

(39)

For any 𝑡 ≥ 𝑇

6
, it follows from (23) and (38) that

𝑦

1 (
𝑡) ≤

𝛼

𝑀

2
𝑀

(2)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏
2
)

𝛾

𝐿

2

:= 𝑀

(2)

3
.

(40)

Furthermore, it follows from the second equation of
model system (4) that

𝑥̇

2 (
𝑡) ≥ 𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
2
𝑥

2
(𝑡 − 𝜏

1
)

− (𝛽

𝑀

1
+ 𝜌

𝑀
(𝑀

(2)

4
)

2

) 𝑥

2

2
(𝑡) − 𝑐

𝑀

1
𝑀

(2)

4
𝑥

2 (
𝑡) .

(41)
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Based on Lemma 3 and (41), there exists 𝑇
7
> 𝑇

6
and, for

any 𝑡 ≥ 𝑇

7
and sufficiently small 𝜖 > 0,

𝑥

2 (
𝑡) ≥

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
− 𝑐

𝑀

1
𝑀

(2)

4

𝛽

𝑀

1
+ 𝜌

𝑀
(𝑀

(2)

4
)

2
− 𝜖 := 𝑚

(2)

2 (42)

holds provided that

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
> 𝑐

𝑀

1
𝑀

(2)

4
.

(43)

According to (19) and (42), for any 𝑡 ≥ 𝑇

7
, we get that

𝑥

1 (
𝑡) ≥

𝛼

𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏
1
)𝑚

(2)

2

𝛾

𝑀

1

:= 𝑚

(2)

1
.

(44)

For any 𝑡 ≥ 𝑇

7
, it follows from the fourth equation of

model system (4) that

̇𝑦

2 (
𝑡) ≥ 𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
𝑦

2
(𝑡 − 𝜏

2
) − 𝛽

𝑀

2
𝑦

2

2
(𝑡) − 𝑐

𝑀

2
𝑀

(2)

2
𝑦

2 (
𝑡) .

(45)

Based on Lemma 3 and (45), there exists 𝑇
8
> 𝑇

7
and, for

any 𝑡 ≥ 𝑇

8
and sufficiently small 𝜖 > 0,

𝑦

2 (
𝑡) ≥

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝑐

𝑀

2
𝑀

(2)

2

𝛽

𝑀

2

− 𝜖 := 𝑚

(2)

4
(46)

holds provided that

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
> 𝑐

𝑀

2
𝑀

(2)

2
.

(47)

According to (23) and (46), it can be obtained that

𝑦

1 (
𝑡) ≥

𝛼

𝐿

2
𝑚

(2)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏
2
)

𝛾

𝑀

2

:= 𝑚

(2)

3
.

(48)

By using simple computation, it is easy to show that six
inequalities (27), (31), (35), (39), (43), and (47) hold if the
following two inequalities 𝛼𝐿

1
𝛽

𝐿

2
> 𝑐

𝑀

1
𝛼

𝑀

2
and 𝛼𝐿

2
𝛽

𝐿

1
> 𝑐

𝑀

2
𝛼

𝑀

1

hold.
Furthermore, eight sequences will be obtained by repeat-

ing the discussion in this manner, which are given as follows:

𝑀

(𝑛+1)

1
=

𝛼

𝑀

1
𝑀

(𝑛+1)

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏
1
)

𝛾

𝐿

1

,

𝑀

(𝑛+1)

2
=

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
− 𝑐

𝐿

1
𝑚

(𝑛)

4

𝛽

𝐿

1
+ 𝜌

𝐿
(𝑚

(𝑛)

4
)

2
+ 𝜖,

𝑀

(𝑛+1)

3
=

𝛼

𝑀

2
𝑀

(𝑛+1)

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏
2
)

𝛾

𝐿

2

,

𝑀

(𝑛+1)

4
=

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
− 𝑐

𝐿

2
𝑚

(𝑛)

2

𝛽

𝐿

2

+ 𝜖,

𝑚

(𝑛+1)

1
=

𝛼

𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏
1
)𝑚

(𝑛+1)

2

𝛾

𝑀

1

,

𝑚

(𝑛+1)

2
=

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
− 𝑐

𝑀

1
𝑀

(𝑛+1)

4

𝛽

𝑀

1
+ 𝜌

𝑀
(𝑀

(𝑛+1)

4
)

2
− 𝜖,

𝑚

(𝑛+1)

3
=

𝛼

𝐿

2
𝑚

(𝑛+1)

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏
2
)

𝛾

𝑀

2

,

𝑚

(𝑛+1)

4
=

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝑐

𝑀

2
𝑀

(𝑛+1)

2

𝛽

𝑀

2

− 𝜖.

(49)

It is easy to show that𝑀(𝑛)
𝑖

> 0 and the sequences {𝑀(𝑛)
𝑖
}

(𝑖 = 1, 2, 3, 4) are decreasing as 𝑛 increases, which implies that
lim
𝑛→∞

𝑀

(𝑛)

𝑖
= 𝑀

∗

𝑖
exists; furthermore, it is easy to show

that 𝑚(𝑛)
𝑖

< 𝑀

(𝑛)

𝑖
and the sequences {𝑚(𝑛)

𝑖
} (𝑖 = 1, 2, 3, 4) are

increasing as 𝑛 increases, which implies that lim
𝑛→∞

𝑚

(𝑛)

𝑖
=

𝑚

∗

𝑖
exists. Consequently, it follows from (49) that

𝑀

∗

1
=

𝛼

𝑀

1
𝑀

∗

2
(1 − 𝑒

−𝛾
𝑀

1
𝜏
1
)

𝛾

𝐿

1

, 𝑀

∗

2
=

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
− 𝑐

𝐿

1
𝑚

∗

4

𝛽

𝐿

1
+ 𝜌

𝐿
𝑚

∗2

4

,

𝑀

∗

3
=

𝛼

𝑀

2
𝑀

∗

4
(1 − 𝑒

−𝛾
𝑀

2
𝜏
2
)

𝛾

𝐿

2

, 𝑀

∗

4
=

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
− 𝑐

𝐿

2
𝑚

∗

2

𝛽

𝐿

2

,

𝑚

∗

1
=

𝛼

𝐿

1
(1 − 𝑒

−𝛾
𝐿

1
𝜏
1
)𝑚

∗

2

𝛾

𝑀

1

, 𝑚

∗

2
=

𝛼

𝐿

1
𝑒

−𝛾
𝑀

1
𝜏
1
− 𝑐

𝑀

1
𝑀

∗

4

𝛽

𝑀

1
+ 𝜌

𝑀
𝑀

∗2

4

,

𝑚

∗

3
=

𝛼

𝐿

2
𝑚

∗

4
(1 − 𝑒

−𝛾
𝐿

2
𝜏
2
)

𝛾

𝑀

2

, 𝑚

∗

4
=

𝛼

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝑐

𝑀

2
𝑀

∗

2

𝛽

𝑀

2

.

(50)

Based on Definition 5 and (50), it can be concluded that
model system (4) is persistent if 𝛼𝐿

1
𝛽

𝐿

2
> 𝑐

𝑀

1
𝛼

𝑀

2
and 𝛼

𝐿

2
𝛽

𝐿

1
>

𝑐

𝑀

2
𝛼

𝑀

1
hold.

3.2. Existence of Positive Periodic Solutions

Definition 8 (see [31]). Let 𝐿 : Dom𝐿 ⊂ 𝑋 → 𝑌 be a linear
mapping and let 𝑁 : 𝑋 → 𝑌 be a continuous mapping,
where 𝑋 and 𝑌 are real Banach spaces. If dimKer 𝐿 =

codimIm 𝐿 < +∞ and Im 𝐿 is closed in 𝑌, then 𝐿 is called
a Fredholm mapping of index zero.

If 𝐿 is Fredholm mapping of index zero and there exist
continuous projectors 𝑃 : 𝑋 → 𝑋 and𝑄 : 𝑌 → 𝑌 such that

Im𝑃 = Ker 𝐿, Im 𝐿 = Ker𝑄 = Im (𝐼 − 𝑄) , (51)

then restriction 𝐿
𝑝
of 𝐿 to Dom𝐿∩Ker𝑃 : (𝐼−𝑃)𝑋 → Im 𝐿

is invertible.

Definition 9 (see [31]). Denote the inverse of 𝐿
𝑝
by 𝐾

𝑝
.

Supposing that Ω is an open bounded subset of 𝑋, if 𝑄𝑁(Ω)

is bounded and 𝐾

𝑝
(𝐼 − 𝑄)𝑁 : Ω → 𝑋 is compact, then

the mapping 𝑁 is called 𝐿-compact on Ω. Since Im𝑄 is
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isomorphic toKer𝐿, there exists an isomorphism 𝐽 : Im𝑄 →

Ker 𝐿.

Lemma 10 (see [31]). LetΩ ⊂ 𝑋 be an open bounded set, let 𝐿
be a Fredholm mapping of index zero, and let𝑁 be 𝐿-compact
on Ω. If the following three conditions hold:

(i) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for any 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜕Ω ∩ Dom𝐿,

(ii) 𝑄𝑁𝑥 ̸= 0 for any 𝑥 ∈ 𝜕Ω ∩ Ker 𝐿,

(iii) deg{𝐽𝑄𝑁,Ω ∩ Ker 𝐿, 0} ̸= 0,

then 𝐿𝑥 = 𝑁𝑥 has at least one solution inΩ ∩ Dom𝐿.

Theorem 11. If 𝛼𝐿
1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1

> 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2 , 𝛼𝐿
2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2

>

𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
2 , then model system (4) with initial conditions (5)

and (6) has at least one positive 𝜔-periodic solution.

Proof. Consider the subsystem of model system (4):

𝑥̇

2 (
𝑡) = 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡 − 𝜏

1
) − 𝛽

1 (
𝑡) 𝑥

2

2
(𝑡)

− 𝑐

1 (
𝑡) 𝑥2 (

𝑡) 𝑦2 (
𝑡) − 𝜌 (𝑡) 𝑥

2

2
(𝑡) 𝑦

2

2
(𝑡) ,

̇𝑦

2 (
𝑡) = 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑦

2
(𝑡 − 𝜏

2
)

− 𝛽

2 (
𝑡) 𝑦

2

2
(𝑡) − 𝑐

2 (
𝑡) 𝑥2 (

𝑡) 𝑦2 (
𝑡) .

(52)

Let 𝑢
1
(𝑡) = ln[𝑥

2
(𝑡)], 𝑢

2
(𝑡) = ln[𝑦

2
(𝑡)].

By substituting𝑢
1
(𝑡) and𝑢

2
(𝑡) into (52), it can be obtained

that

𝑢̇

1 (
𝑡) = 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡−𝜏
1
)−𝑢
1
(𝑡)

− 𝛽

1 (
𝑡) 𝑒

𝑢
1
(𝑡)
− 𝑐

1 (
𝑡) 𝑒

𝑢
2
(𝑡)
− 𝜌 (𝑡) 𝑒

𝑢
1
(𝑡)+2𝑢

2
(𝑡)
,

𝑢̇

2 (
𝑡) = 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡−𝜏
2
)−𝑢
2
(𝑡)

− 𝛽

2 (
𝑡) 𝑒

𝑢
2
(𝑡)
− 𝑐

2 (
𝑡) 𝑒

𝑢
1
(𝑡)
.

(53)

It should be noted that if model system (53) has one
𝜔-periodic solution (𝑢

∗

1
(𝑡), 𝑢

∗

2
(𝑡))

𝑇, then (𝑥

∗

2
(𝑡), 𝑦

∗

2
(𝑡))

𝑇
=

(𝑒

𝑢
∗

1
(𝑡)
, 𝑒

𝑢
∗

2
(𝑡)
)

𝑇 is a positive 𝜔-periodic solution of model
system (52).

In order to utilize Lemma 10 in a straightforwardmanner,
we define

𝑋 = 𝑌 = {(𝑢

1 (
𝑡) , 𝑢2 (

𝑡))

𝑇

∈ 𝐶 (R,R
2
) : 𝑢

𝑖 (
𝑡 + 𝜔) = 𝑢

𝑖 (
𝑡) , 𝑖 = 1, 2} ,

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

(𝑢

1 (
𝑡) , 𝑢2 (

𝑡))

𝑇󵄩󵄩
󵄩

󵄩

󵄩

󵄩

= max
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

1 (
𝑡)

󵄨

󵄨

󵄨

󵄨

+ max
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

2 (
𝑡)

󵄨

󵄨

󵄨

󵄨

,

(54)

where | ⋅ | denotes the Euclidean norm; it is easy to show that
both 𝑋 and 𝑌 are Banach spaces with the norm ‖ ⋅ ‖; then
define

Dom𝐿 ∩ 𝑋 󳨀→ 𝑋,

𝐿(𝑢

1 (
𝑡) , 𝑢2 (

𝑡))

𝑇
= (

d𝑢
1 (
𝑡)

d𝑡
,

d𝑢
2 (
𝑡)

d𝑡
)

𝑇

,

(55)

where Dom𝐿 = {(𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝐶(R,R2)}, 𝑁[

𝑢
1

𝑢
2
] =

[

𝑓
1
(𝑡)

𝑓
2
(𝑡)
], and

𝑓

1 (
𝑡) = 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡−𝜏
1
)−𝑢
1
(𝑡)

− 𝛽

1 (
𝑡) 𝑒

𝑢
1
(𝑡)
− 𝑐

1 (
𝑡) 𝑒

𝑢
2
(𝑡)
− 𝜌 (𝑡) 𝑒

𝑢
1
(𝑡)+2𝑢

2
(𝑡)
,

𝑓

2 (
𝑡) = 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡−𝜏
2
)−𝑢
2
(𝑡)

− 𝛽

2 (
𝑡) 𝑒

𝑢
2
(𝑡)
− 𝑐

2 (
𝑡) 𝑒

𝑢
1
(𝑡)
.

(56)

Furthermore, we define

𝑃[

𝑢

1

𝑢

2

] = 𝑄[

𝑢

1

𝑢

2

] =

[

[

[

[

1

𝜔

∫

𝜔

0

𝑢

1 (
𝑡) d𝑡

1

𝜔

∫

𝜔

0

𝑢

2 (
𝑡) d𝑡

]

]

]

]

, [

𝑢

1

𝑢

2

] ∈ 𝑋 = 𝑌.

(57)

According to the above definitions, it is not difficult to
verify that Ker 𝐿 = {𝑥 | 𝑥 ∈ 𝑋, 𝑥 = ℎ, ℎ ∈ R2},
Im 𝐿 = {𝑦 ∈ 𝑌 | ∫

𝜔

0
𝑦(𝑡)d𝑡 = 0} are closed in 𝑌, dimKer𝐿 =

codimIm𝐿 = 2, and both 𝑃 and 𝑄 are continuous projectors
such that Im𝑃 = Ker 𝐿 and Ker𝑄 = Im 𝐿 = Im(𝐼 − 𝑄).

Based on the above analysis, it can be obtained that 𝐿 is a
Fredholm mapping of index zero.

Furthermore, the inverse𝐾
𝑝
: Im 𝐿 → Dom𝐿∩Ker𝑃 of

𝐿

𝑝
exists and takes the following form:

𝐾

𝑝
(𝑦) = ∫

𝑡

0

𝑦 (𝑠) d𝑠 − 1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑦 (𝑠) d𝑠 d𝑡. (58)

Hence, 𝑄𝑁 : 𝑋 → 𝑌 and 𝐾
𝑝
(𝐼 − 𝑄)𝑁 : 𝑋 → 𝑋 can be

defined as follows, respectively,

𝑄𝑁𝑥 =

[

[

[

[

1

𝜔

∫

𝜔

0

𝑓

1 (
𝑡) d𝑡

1

𝜔

∫

𝜔

0

𝑓

2 (
𝑡) d𝑡

]

]

]

]

,

𝐾

𝑝 (
𝐼 − 𝑄)𝑁𝑥 = ∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠 − 1

𝜔

∫

𝜔

0

∫

𝑡

0

𝑁𝑥 (𝑠) d𝑠 d𝑡

− (

𝑡

𝜔

−

1

2

)∫

𝜔

0

𝑁𝑥 (𝑠) d𝑠.

(59)

It is easy to show that𝑄𝑁 and𝐾
𝑝
(𝐼−𝑄)𝑁 are continuous.

In order to facilitate the proof based on Lemma 10, we also
need to find an appropriate open and bounded subset Ω,
which can be found by the following two steps.
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Step 1. According to the operator equation 𝐿𝑥 = 𝜆𝑁𝑥 for 𝜆 ∈

(0, 1), the upper and lower bound of 𝑢
1
(𝑡) and 𝑢

2
(𝑡) will be

estimated as follows:
d𝑢
1 (
𝑡)

d𝑡
= 𝜆𝑓

1 (
𝑡) ,

d𝑢
2 (
𝑡)

d𝑡
= 𝜆𝑓

2 (
𝑡) ,

(60)

where 𝑓
1
(𝑡) and 𝑓

2
(𝑡) have been defined in (56).

Suppose that (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋 is a solution of model

system (60) for some 𝜆 ∈ (0, 1). By integrating (60) over the
interval [0, 𝜔], it can be obtained that

∫

𝜔

0

𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡−𝜏
1
)−𝑢
1
(𝑡)d𝑡

= ∫

𝜔

0

𝛽

1 (
𝑡) 𝑒

𝑢
1
(𝑡)
+ 𝑐

1 (
𝑡) 𝑒

𝑢
2
(𝑡)
+ 𝜌 (𝑡) 𝑒

𝑢
1
(𝑡)+2𝑢

2
(𝑡)d𝑡,

(61)

∫

𝜔

0

𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡−𝜏
2
)−𝑢
2
(𝑡)d𝑡

= ∫

𝜔

0

𝛽

2 (
𝑡) 𝑒

𝑢
2
(𝑡)
+ 𝑐

2 (
𝑡) 𝑒

𝑢
1
(𝑡)d𝑡.

(62)

Based on definition (𝑢
1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋, there exist 𝜉

𝑖
, 𝜂

𝑖
∈

[0, 𝜔] such that

𝑢

𝑖
(𝜉

𝑖
) = min
𝑡∈[0,𝜔]

𝑢

𝑖 (
𝑡) , 𝑢

𝑖
(𝜂

𝑖
) = max
𝑡∈[0,𝜔]

𝑢

𝑖 (
𝑡) , 𝑖 = 1, 2.

(63)

Multiplying the first equation of (60) by 𝑒𝑢1(𝑡) and inte-
grating it over [0, 𝜔] give that

∫

𝜔

0

𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡−𝜏
1
)d𝑡

= ∫

𝜔

0

𝛽

1 (
𝑡) 𝑒

2𝑢
1
(𝑡)
+ 𝑐

1 (
𝑡) 𝑒

𝑢
1
(𝑡)+𝑢
2
(𝑡)

+ 𝜌 (𝑡) 𝑒

2(𝑢
1
(𝑡)+𝑢
2
(𝑡))d𝑡.

(64)

It follows from (64) that

𝛽

𝐿

1
∫

𝜔

0

𝑒

2𝑢
1
(𝑡)d𝑡 + 𝑐

𝐿

1
∫

𝜔

0

𝑒

𝑢
1
(𝑡)+𝑢
2
(𝑡)d𝑡

+ 𝜌

𝐿
∫

𝜔

0

𝑒

2(𝑢
1
(𝑡)+𝑢
2
(𝑡))d𝑡 ≤ 𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡.

(65)

On the other hand, by using the inequality,

(∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡)

2

≤ 𝜔∫

𝜔

0

𝑒

2𝑢
1
(𝑡)d𝑡. (66)

Based on (65) and (66), it can be obtained that

𝛽

𝐿

1
(∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡)

2

≤ 𝜔𝛽

𝐿

1
∫

𝜔

0

𝑒

2𝑢
1
(𝑡)d𝑡

≤ 𝜔𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡,

(67)

which derives that

𝛽

𝐿

1
∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡 ≤ 𝜔𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1
, 𝑢

1
(𝜉

1
) ≤ ln

𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

.

(68)

It follows from (60) and (68) that

∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡 < 2∫

𝜔

0

𝛽

1 (
𝑡) 𝑒

𝑢
1
(𝑡)

≤

2𝜔𝛼

𝑀

1
𝛽

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

.

(69)

According to (68) and (69), it can be obtained that

𝑢

1 (
𝑡) ≤ 𝑢

1
(𝜉

1
) + ∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡

≤ ln
𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

+

2𝜔𝛼

𝑀

1
𝛽

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

.

(70)

Multiplying the second equation of (60) by 𝑒

𝑢
2
(𝑡) and

integrating it over [0, 𝜔] give that

∫

𝜔

0

𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡−𝜏
2
)d𝑡

= ∫

𝜔

0

𝛽

2 (
𝑡) 𝑒

2𝑢
2
(𝑡)
+ 𝑐

2 (
𝑡) 𝑒

𝑢
1
(𝑡)+𝑢
2
(𝑡)d𝑡.

(71)

It follows from (71) that

𝛽

𝐿

2
∫

𝜔

0

𝑒

2𝑢
2
(𝑡)d𝑡 + 𝑐

𝐿

2
∫

𝜔

0

𝑒

𝑢
1
(𝑡)+𝑢
2
(𝑡)d𝑡

≤ 𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
∫

𝜔

0

𝑒

𝑢
2
(𝑡)d𝑡.

(72)

Based on (66) and (72), it can be obtained that

𝛽

𝐿

2
(∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡)

2

≤ 𝜔𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2
∫

𝜔

0

𝑒

𝑢
2
(𝑡)d𝑡, (73)

which derives that

∫

𝜔

0

𝑒

𝑢
2
(𝑡)d𝑡 ≤

𝜔𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

, 𝑢

2
(𝜉

2
) ≤ ln

𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

.

(74)

It follows from (60) and (74) that

∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡 < 2∫

𝜔

0

𝛽

2 (
𝑡) 𝑒

𝑢
2
(𝑡)d𝑡 ≤

2𝜔𝛼

𝑀

2
𝛽

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

.

(75)

According to (74) and (75), it can be obtained that

𝑢

2 (
𝑡) ≤ 𝑢

2
(𝜉

2
) + ∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡

≤ ln
𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

+

2𝜔𝛼

𝑀

2
𝛽

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

.

(76)
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It should be noted that

∫

𝜔

0

𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡)d𝑡

= ∫

𝜔

0

𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑒

𝑢
1
(𝑡−𝜏
1
)d𝑡.

(77)

Based on (64), it can be obtained that

(𝛼

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
1
−

𝑐

𝑀

1
𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

)∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡

≤ (𝛽

𝑀

1
+

2𝜌

𝑀
𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

)∫

𝜔

0

𝑒

2𝑢
1
(𝑡)d𝑡,

(78)

which derives that

∫

𝜔

0

𝑒

𝑢
1
(𝑡)d𝑡 ≥

𝜔 (𝛼

𝐿

1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
− 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2
)

𝛽

𝑀

1
𝛽

𝐿

2
+ 2𝛼

𝑀

2
𝜌

𝑀
𝑒

−𝛾
𝐿

2
𝜏
2

,

𝑢

1
(𝜂

1
) ≥ ln

𝛼

𝐿

1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
− 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝑀

1
𝛽

𝐿

2
+ 2𝛼

𝑀

2
𝜌

𝑀
𝑒

−𝛾
𝐿

2
𝜏
2

(79)

hold provided that 𝛼𝐿
1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
> 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2 .

According to (69) and (79), it can be obtained that

𝑢

1 (
𝑡) ≥ 𝑢

1
(𝜂

1
) − ∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

1
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡

≥ ln
𝛼

𝐿

1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
− 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝑀

1
𝛽

𝐿

2
+ 2𝛼

𝑀

2
𝜌

𝑀
𝑒

−𝛾
𝐿

2
𝜏
2

−

2𝜔𝛼

𝑀

1
𝛽

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

1

.

(80)

By virtue of (70) and (80), if 𝛼𝐿
1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
> 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2 ,

then
max
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

1 (
𝑡)

󵄨

󵄨

󵄨

󵄨

< max

{

{

{

{

{

{

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
𝛼

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

2𝜔𝛼

𝑀

1
𝛽

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
𝛼

𝐿

1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
− 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝑀

1
𝛽

𝐿

2
+ 2𝛼

𝑀

2
𝜌

𝑀
𝑒

−𝛾
𝐿

2
𝜏
2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

2𝜔𝛼

𝑀

1
𝛽

𝑀

1
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1

}

}

}

}

}

}

}

}

}

}

}

:= 𝐻

1
.

(81)

Similarly, it is easy to show that

∫

𝜔

0

𝛼

2 (
𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡)d𝑡

= ∫

𝜔

0

𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

𝑒

𝑢
2
(𝑡−𝜏
2
)d𝑡,

(82)

which derives that

𝑢

2
(𝜂

2
) ≥ ln

𝛼

𝐿

2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1
𝛽

𝑀

2

(83)

holds provided that 𝛼𝐿
2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
> 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
1 .

According to (75) and (83), it is derived that

𝑢

2 (
𝑡) ≥ 𝑢

2
(𝜂

2
) − ∫

𝜔

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

d𝑡

≥ ln
𝛼

𝐿

2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1
𝛽

𝑀

2

−

2𝜔𝛼

𝑀

2
𝛽

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

.

(84)

By virtue of (76) and (84), if 𝛼𝐿
2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
> 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
2 ,

then

max
𝑡∈[0,𝜔]

󵄨

󵄨

󵄨

󵄨

𝑢

2 (
𝑡)

󵄨

󵄨

󵄨

󵄨

< max

{

{

{

{

{

{

{

{

{

{

{

{

{

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
𝛼

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

2𝜔𝛼

𝑀

2
𝛽

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

,

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

ln
𝛼

𝐿

2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
− 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
1

𝛽

𝐿

1
𝛽

𝑀

2

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

+

2𝜔𝛼

𝑀

2
𝛽

𝑀

2
𝑒

−𝛾
𝐿

2
𝜏
2

𝛽

𝐿

2

}

}

}

}

}

}

}

}

}

}

}

}

}

:= 𝐻

2
.

(85)

It is obvious that 𝐻

1
and 𝐻

2
in (81) and (85) are

independent of 𝜆.

Step 2. In order to construct an appropriate open and
bounded subset Ω, denote 𝐻 = 𝐻

1
+ 𝐻

2
+ 𝐻

0
, where 𝐻

0

is sufficiently large such that the unique solution (𝑢∗, V∗)𝑇 of
the following algebraic equations:

1

𝜔

∫

𝜔

0

𝑓

1 (
𝑡) d𝑡 = 0,

1

𝜔

∫

𝜔

0

𝑓

2 (
𝑡) d𝑡 = 0, (86)

satisfies ‖(𝑢∗, V∗)𝑇‖ = |𝑢

∗
| + |V∗| < 𝐻.

Select Ω = {(𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝑋 : ‖(𝑢

1
, 𝑢

2
)

𝑇
‖ < 𝐻}, which

implies that condition (i) of Lemma 10 holds.
When (𝑢

1
(𝑡), 𝑢

2
(𝑡))

𝑇
∈ 𝜕Ω ∩ Ker 𝐿 = 𝜕Ω ∩ R2, (𝑢

1
, 𝑢

2
)

𝑇

is a constant vector inR2 with |𝑢
1
| + |𝑢

2
| = 𝐻. Consequently,

it can be concluded that

𝑄𝑁[

𝑢

1

𝑢

2

] =

[

[

[

[

1

𝜔

∫

𝜔

0

𝑓

1 (
𝑡) d𝑡

1

𝜔

∫

𝜔

0

𝑓

2 (
𝑡) d𝑡

]

]

]

]

̸= [

0

0

] , (87)

which implies that condition (ii) of Lemma 10 is satisfied.
Take 𝐽 = 𝐼 : Im𝑄 → Ker 𝐿, (𝑢

1
, 𝑢

2
)

𝑇
→ (𝑢

1
, 𝑢

2
)

𝑇. It
follows from straightforward computation that

deg (𝐽𝑄𝑁(𝑢

1
, 𝑢

2
)

𝑇
, Ω ∩ Ker 𝐿, (0, 0)𝑇) = 1, (88)

where (𝑢

∗

1
, 𝑢

∗

2
) is the unique solution of (86). Hence, the

condition (iii) of Lemma 10 holds.
Furthermore, it is easy to see that the set {𝐾

𝑝
(𝐼 − 𝑄)𝑁𝑥 |

𝑥 ∈ Ω} is equicontinuous and uniformly bounded. By using
the Arzela-Ascoli theorem [31], it can be shown that 𝐾

𝑝
(𝐼 −

𝑄)𝑁 : Ω → 𝑋 is compact and𝑁 is 𝐿-compact.
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Consequently, all conditions (i)–(iii) of Lemma 10 hold
forΩ. It follows fromLemma 10 thatmodel system (53) has at
least one 𝜔-periodic solution (𝑢

∗

1
(𝑡), 𝑢

∗

2
(𝑡))

𝑇, and model sys-
tem (52) has at least one𝜔-periodic solution (𝑥∗

2
(𝑡), 𝑦

∗

2
(𝑡))

𝑇
=

(𝑒

𝑢
∗

1
(𝑡)
, 𝑒

𝑢
∗

2
(𝑡)
)

𝑇.
Let (𝑥∗

2
(𝑡), 𝑦

∗

2
(𝑡))

𝑇 be a positive 𝜔-periodic solution of
model system (52); it follows from (19) and (23) that

𝑥

∗

1
(𝑡) = 𝑒

−∫
𝑡

0
𝛾
1
(𝑠)d𝑠

∫

𝑡

𝑡−𝜏
1

𝛼

1 (
𝑠) 𝑒

∫
𝑠

0
𝛾
1
(𝑚)d𝑚

𝑥

∗

2
(𝑠) d𝑠,

𝑦

∗

1
(𝑡) = 𝑒

−∫
𝑡

0
𝛾
2
(𝑠)d𝑠

∫

𝑡

𝑡−𝜏
2

𝛼

2 (
𝑠) 𝑒

∫
𝑠

0
𝛾
2
(𝑚)d𝑚

𝑦

∗

2
(𝑠) d𝑠

(89)

are 𝜔-periodic continuous function.
Based on the above analysis, if the following two inequal-

ities hold:

𝛼

𝐿

1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
> 𝛼

𝑀

2
𝑐

𝑀

1
𝑒

−𝛾
𝐿

2
𝜏
2
, 𝛼

𝐿

2
𝛽

𝐿

1
𝑒

−𝛾
𝑀

2
𝜏
2
> 𝛼

𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
2
,

(90)

then model system (4) with initial conditions (5) and
(6) has at least one positive 𝜔-periodic solution (𝑥

∗

1
(𝑡),

𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇.

3.3. Global Stability Analysis

Theorem 12. If lim inf
𝑡→+∞

𝐺

𝑘
(𝑡) > 0, 𝑘 = 1, 2, then

model system (4) with initial conditions (5) and (6) has
a unique positive 𝜔-periodic globally stable solution (𝑥

∗

1
(𝑡),

𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇, where

𝐺

1
= −𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑚)d𝑚

− 2𝑐

1 (
𝑡)𝑀

∗

4

+ 2𝛽

1 (
𝑡)𝑚

∗

2
− 8𝑀

∗

2
𝑀

∗2

4
𝜌 (𝑡) ,

𝐺

2 (
𝑡) = −𝑞𝛼

2 (
𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾
2
(𝑚)d𝑚

+ 2𝑞𝛽

2 (
𝑡)𝑚

∗

4
+ 2𝑞𝑐

1 (
𝑡)𝑚

∗

2
,

(91)

and 𝑞 is a positive constant and𝑚
𝑖
,𝑀
𝑖
, 𝑖 = 1, 2, 3, 4, have been

defined in (50).

Proof. Suppose that (𝑥∗
1
(𝑡), 𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇 is a positive
𝜔-periodic solution of model system (4) with initial condi-
tions (5) and (6).

Construct a Lyapunov functional as follows:

𝑉

1 (
𝑡) =

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

+ ∫

𝑡

𝑡−𝜏
1

𝛼

1 (
𝑠) 𝑒

−∫
𝑠+𝜏1

𝑠
𝛾
1
(𝑠)d𝑚

×

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑠) − 𝑥

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠.
(92)

By calculating the upper right derivative of𝑉
1
(𝑡) along the

positive 𝜔-periodic solution of model system (4), it can be
obtained that

𝐷

+
𝑉

1 (
𝑡) = sgn [𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)]

× {𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

2
(𝑡 − 𝜏

1
)

− 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑠)d𝑠

𝑥

∗

2
(𝑡 − 𝜏

1
)

− 𝛽

1 (
𝑡) 𝑥

2

2
(𝑡) + 𝛽

1 (
𝑡) 𝑥

∗2

2
(𝑡)

− 𝑐

1 (
𝑡) 𝑥2 (

𝑡) 𝑦2 (
𝑡) + 𝑐

1 (
𝑡) 𝑥

∗

2
(𝑡) 𝑦

∗

2
(𝑡)

−𝜌 (𝑡) 𝑥

2

2
(𝑡) 𝑦

2

2
(𝑡) + 𝜌 (𝑡) 𝑥

∗2

2
(𝑡) 𝑦

∗2

2
(𝑡) }

+ 𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑚)d𝑚 󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

− 𝛼

1
(𝑡 − 𝜏

1
) 𝑒

−∫
𝑡

𝑡−𝜏1

𝛾
1
(𝑚)d𝑚

×

󵄨

󵄨

󵄨

󵄨

𝑥

2
(𝑡 − 𝜏

1
) − 𝑥

∗

2
(𝑡 − 𝜏

1
)

󵄨

󵄨

󵄨

󵄨

≤ −𝛽

1 (
𝑡) [𝑥2 (

𝑡) + 𝑥

∗

2
(𝑡)]

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

+ 𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑚)d𝑚 󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

− 𝑐

1 (
𝑡) sgn [𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)]

× [𝑥

2 (
𝑡) 𝑦2 (

𝑡) − 𝑥

∗

2
(𝑡) 𝑦

∗

2
(𝑡)]

− 𝜌 (𝑡) sgn [𝑥2 (𝑡) − 𝑥

∗

2
(𝑡)]

× [𝑥

2 (
𝑡) 𝑦2 (

𝑡) + 𝑥

∗

2
(𝑡) 𝑦

∗

2
(𝑡)]

× [𝑥

2 (
𝑡) 𝑦2 (

𝑡) − 𝑥

∗

2
(𝑡) 𝑦

∗

2
(𝑡)]

≤ − {𝛽

1 (
𝑡) [(𝑥2 (

𝑡) + 𝑥

∗

2
(𝑡))]

+ 𝑐

1 (
𝑡) [𝑦2 (

𝑡) − 𝑦

∗

2
(𝑡)]

+ 𝜌 (𝑡) (𝑦2 (
𝑡) − 𝑦

∗

2
(𝑡))

× [(𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)) 𝑦2 (

𝑡)

+ (𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)) 𝑥

∗

2
(𝑡)]

−𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑚)d𝑚

}

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

.

(93)

Similarly, construct another Lyapunov functional as fol-
lows:
𝑉

2 (
𝑡) =

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

+ ∫

𝑡

𝑡−𝜏
2

𝛼

2 (
𝑠) 𝑒

−∫
𝑠+𝜏2

𝑠
𝛾
2
(𝑠)d𝑚 󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑠) − 𝑦

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠.
(94)

By calculating the upper right derivative of𝑉
2
(𝑡) along the

positive 𝜔-periodic solution of model system (4), it can be
obtained that

𝐷

+
𝑉

2 (
𝑡) = sgn [𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)]

× {𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑠)d𝑠

× [𝑦

2
(𝑡 − 𝜏

2
) − 𝑦

∗

2
(𝑡 − 𝜏

2
)]

− 𝛽

2 (
𝑡) [𝑦2 (

𝑡) + 𝑦

∗

2
(𝑡)] [𝑦2 (

𝑡) − 𝑦

∗

2
(𝑡)]

− 𝑐

2 (
𝑡) [𝑥2 (

𝑡) 𝑦2 (
𝑡) − 𝑥

∗

2
(𝑡) 𝑦

∗

2
(𝑡)] }
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+ 𝛼

2 (
𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾
2
(𝑚)d𝑚 󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

− 𝛼

2
(𝑡 − 𝜏

2
) 𝑒

−∫
𝑡

𝑡−𝜏2

𝛾
2
(𝑚)d𝑚

×

󵄨

󵄨

󵄨

󵄨

𝑦

2
(𝑡 − 𝜏

2
) − 𝑦

∗

2
(𝑡 − 𝜏

2
)

󵄨

󵄨

󵄨

󵄨

≤ − {𝛽

2 (
𝑡) [𝑦2 (

𝑡) + 𝑦

∗

2
(𝑡)] + 𝑐

1 (
𝑡) [𝑥2 (

𝑡) − 𝑥

∗

2
(𝑡)]}

×

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

+ 𝛼

2 (
𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾
2
(𝑚)d𝑚 󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

.

(95)

Let

𝑉 (𝑡) = 𝑉

1 (
𝑡) + 𝑞𝑉

2 (
𝑡) , (96)

where 𝑞 is a positive constant.
By calculating the upper right derivative of𝑉(𝑡) along the

positive 𝜔-periodic solution of model system (4) based on
(93) and (95), it can be obtained as follows:

𝐷

+
𝑉 (𝑡) ≤

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

× {𝛼

1 (
𝑡) 𝑒

−∫
𝑡+𝜏1

𝑡
𝛾
1
(𝑚)d𝑚

− 𝛽

1 (
𝑡) [𝑥2 (

𝑡) + 𝑥

∗

2
(𝑡)]

+ [𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)] [𝑐1 (

𝑡) + 𝜌 (𝑡)

× ((𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)) 𝑦2 (

𝑡)

+ (𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡))

× 𝑥

∗

2
(𝑡))] }

+

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

{𝑞𝛼

2 (
𝑡) 𝑒

−∫
𝑡+𝜏2

𝑡
𝛾
2
(𝑚)d𝑚

− 𝑞𝛽

2 (
𝑡)

× [𝑦

2 (
𝑡) + 𝑦

∗

2
(𝑡)]

−𝑞𝑐

1 (
𝑡) [𝑥2 (

𝑡) − 𝑥

∗

2
(𝑡)] } .

(97)

According toTheorem 7, there exists a positive value 𝑇 >

0, when 𝑡 ≥ 𝑇; we get that

𝑚

∗

2
− 𝜖 < 𝑥

2 (
𝑡) < 𝑀

∗

2
+ 𝜖, 𝑚

∗

2
− 𝜖 < 𝑥

∗

2
(𝑡) < 𝑀

∗

2
+ 𝜖,

𝑚

∗

4
− 𝜖 < 𝑦

2 (
𝑡) < 𝑀

∗

4
+ 𝜖, 𝑚

∗

4
− 𝜖 < 𝑦

∗

2
(𝑡) < 𝑀

∗

4
+ 𝜖

(98)

hold for sufficiently small 𝜖 > 0.
Based on (98), when 𝑡 > 𝑇+max{𝜏

1
, 𝜏

2
}, it is derived that

𝐷

+
𝑉 (𝑡) ≤ − (𝐺

1 (
𝑡) − 𝜖)

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

− (𝐺

2 (
𝑡) − 𝜖)

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

,

(99)

where 𝐺
1
(𝑡) and 𝐺

2
(𝑡) have been defined inTheorem 12.

If lim inf
𝑡→+∞

𝐺

𝑘
(𝑡) > 0 for 𝑘 = 1, 2, then there exist

two constants 𝛿
1
> 0 and 𝛿

2
> 0 such that for 𝑡 ≥ 𝑇

∗
:=

𝑇 + 2max{𝜏
1
, 𝜏

2
}

𝐺

1 (
𝑡) ≥ 𝛿

1
> 0, 𝐺

2 (
𝑡) ≥ 𝛿

2
> 0. (100)

Consequently, for 𝑡 ≥ 𝑇

∗, we have

𝐷

+
𝑉 (𝑡) ≤ −

𝛿

1

2

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

−

𝛿

2

2

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑡) − 𝑦

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

.
(101)

By integrating both sides of (101) on the interval [𝑇∗, 𝑡],
it can be obtained that, for 𝑡 ≥ 𝑇

∗,

𝑉 (𝑡) +

𝛿

1

2

∫

𝑡

𝑇
∗

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑠) − 𝑥

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠

+

𝛿

2

2

∫

𝑡

𝑇
∗

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑠) − 𝑦

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠 ≤ 𝑉 (𝑇

∗
) .

(102)

Hence, 𝑉(𝑡) is bounded on the interval [𝑇∗, +∞) and

∫

𝑡

𝑇
∗

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑠) − 𝑥

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠 < +∞,

∫

𝑡

𝑇
∗

󵄨

󵄨

󵄨

󵄨

𝑦

2 (
𝑠) − 𝑦

∗

2
(𝑠)

󵄨

󵄨

󵄨

󵄨

d𝑠 < +∞.

(103)

According to Barbalat’s Lemma [31], it can be concluded
that

lim
𝑡→∞

󵄨

󵄨

󵄨

󵄨

𝑥

2 (
𝑡) − 𝑥

∗

2
(𝑡)

󵄨

󵄨

󵄨

󵄨

= 0, lim
𝑡→∞
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(104)

It follows from (19) and (23) that
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(105)

Based on (104) and (105), it can be concluded that

lim
𝑡→∞
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Therefore, it follows from (104) and (106) that model
system (4) with initial conditions (5) and (6) has a
unique positive 𝜔-periodic globally stable solution (𝑥

∗

1
(𝑡),

𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇.

3.4. Numerical Simulation. In this subsection, numerical
simulations are carried out to substantiate the analytical find-
ings obtained this paper. In order to facilitate the numerical
simulations, 𝜔-periodic continuous functions introduced in
model system (4) are selected as follows: 𝛼

1
(𝑡) = 2.1 +

sin(𝑡)/10, 𝛾
1
(𝑡) = 0.2 + sin(𝑡)/200, 𝛽

1
(𝑡) = 1 + sin(𝑡)/300,

𝑐

1
(𝑡) = 0.2+ sin(𝑡)/300, 𝜌(𝑡) = 0.05+ sin(𝑡)/400, 𝛼

2
(𝑡) = 4.1+

sin(𝑡)/18, 𝛾
2
(𝑡) = 0.1+sin(𝑡)/580, 𝛽

2
(𝑡) = 0.3+sin(𝑡)/30, and
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Figure 1: Dynamical responses of the unique positive 2𝜋-periodic
globally stable solution of model system (4).

𝑐

2
(𝑡) = 0.15 + sin(𝑡)/270. The maturation delay for nontoxic

species and toxin liberating species is given as follows: 𝜏
1
=

0.1 and 𝜏

2
= 0.2, respectively. By using straightforward

computation, it can be found that 𝛼𝐿
1
𝛽

𝐿

2
𝑒

−𝛾
𝑀

2
𝜏
1
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𝑀

1
𝑐

𝑀

2
𝑒

−𝛾
𝐿

1
𝜏
1 ; then model system (4) has at

least one positive 𝜔-periodic solution based on Theorem 11.
Further computations show that 𝐺

1
(𝑡) ≥ 0.4281 and

𝐺

2
(𝑡) ≥ 1.4006. Consequently, it follows from Theorem 12

that model system (4) has a unique positive 2𝜋-periodic
globally stable solution (𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇, whose
dynamical responses are plotted in Figure 1. Furthermore,
the unique positive 2𝜋-periodic globally stable solution
(𝑥

∗

1
(𝑡), 𝑥

∗

2
(𝑡), 𝑦

∗

1
(𝑡), 𝑦

∗

2
(𝑡))

𝑇 is plotted in the 𝑥
1
-𝑥
2
plane and

𝑦

1
-𝑦
2
plane, which can be found in Figures 2 and 3, respec-

tively. It should be noted that two different initial solutions
are included to show the attractivity of different solutions.

4. Conclusion

In this paper, a nonautonomous dynamicalmodel is proposed
to investigate population dynamics of competitive system
with toxin liberating species and nontoxic species, where
stage structure and maturation delay for two species are
considered. It is well known that the effect of toxin ecolog-
ical systems is an important issue from mathematical and
experimental points of view. Generally speaking, it takes
some time for a species to reach maturity to produce the
toxicant, the toxin liberating mature individual produces a
substance toxic to the nontoxic mature individuals only, and
the inhibiting effect is zero in absence of either species.
Furthermore, the species compete each other for the limited
life resource within closed environment, but this competition
only happens among the mature individuals and does not
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plotted in red and blue color, respectively.

involve the immature individuals. Consequently, it is nec-
essary to investigate the dynamic effect of stage structure
and toxic substances on population dynamics of two-species
competitive system.

Qualitative analysis of the proposed model system is
discussed in the third section of this paper. It follows from
Theorems 1 and 2 that solutions of model system (4) with
initial conditions are positive and ultimately bounded. By
utilizing some comparison arguments, an iterative technique
is proposed to discuss permanence of the species; model
system (4) is persistent, which can be found in Theorem 7.
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Furthermore, existence of positive periodic solutions is con-
sidered in Theorem 11 based on continuation theorem of
coincidence degree theory, which shows that model system
(4) has at least one positive 𝜔-solution. By constructing
an appropriate Lyapunov functional, sufficient conditions
for global stability of the unique positive periodic solution
are analyzed; that is, lim inf

𝑡→+∞
𝐺

𝑘
(𝑡) > 0, 𝑘 = 1, 2,

which can be found in Theorem 12. Finally, numerical sim-
ulations are provided to show dynamical responses of the
unique positive 2𝜋-periodic globally stable solution, which
are plotted in Figure 1. Furthermore, the unique positive
2𝜋-periodic globally stable solution is plotted in the 𝑥

1
-𝑥
2

plane and 𝑦

1
-𝑦
2
plane, which can be found in Figures 2

and 3, respectively. Since biological phenomenon associated
with stage structure and toxin substances extensively exists
within competitive system, theoretical results obtained in this
paper are theoretically beneficial to discuss dynamic effect of
maturation delay and toxic effect on population dynamics; it
makes this work done in this paper has some positive and new
features.
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