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We establish some new generalizations and refinements of the local fractional integral Hölder’s inequality and some related results
on fractal space. We also show that many existing inequalities related to the local fractional integral Hölder’s inequality are special
cases of the main inequalities which are presented here.

1. Introduction

Let 𝑝𝑗 (𝑗 = 1, 2, . . .) be constrained by
𝑚

∑

𝑗=1

1

𝑝𝑗
= 1. (1)

Suppose also that 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 (𝑗 = 1, 2, . . . , 𝑚) are
continuous real-valued functions on [𝑎, 𝑏]. Then each of the
following assertions holds true.

(1) For 𝑝𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚), we have the following
inequality known as the Hölder inequality (see [1]):

∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) 𝑑𝑥 ≦

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

𝑓
𝑝𝑗
𝑗 (𝑥)𝑑𝑥)

1/𝑝𝑗

. (2)

(2) For 0 < 𝑝𝑚 < 1 and 𝑝𝑗 < 0 (𝑗 = 1, 2, . . . , 𝑚 − 1), we
have the following reverseHölder inequality (see [2]):

∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) 𝑑𝑥 ≧

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

𝑓
𝑝𝑗
𝑗 (𝑥)𝑑𝑥)

1/𝑝𝑗

. (3)

In the special case when 𝑚 = 2 and 𝑝1 = 𝑝2, inequality (2)
reduces to the celebratedCauchy inequality (see [3]). Both the

Cauchy inequality and the Hölder inequality play significant
roles in many different branches of modern pure and applied
mathematics. A great number of generalizations, refinements,
variations, and applications of each of these inequalities have
been studied in the literature (see [3–13] and the references
cited therein). Recently, Yang [14] established the following
local fractional integral Hölder’s inequality on fractal space.

Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐶𝛼(𝑎, 𝑏), 𝑝 > 1, and 1/𝑝 + 1/𝑞 = 1. Then

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥)
 (𝑑𝑥)
𝛼

≦ (
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑥)

𝑝
(𝑑𝑥)
𝛼
)

1/𝑝

× (
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑔 (𝑥)

𝑞
(𝑑𝑥)
𝛼
)

1/𝑞

.

(4)

More recently, Chen [15] gave a generalization of inequal-
ity (4) and its corresponding reverse form as follows.

Let 𝑓𝑗(𝑥) ∈ 𝐶𝛼(𝑎, 𝑏), 𝑝𝑗 ∈ 𝑅(𝑗 = 1, 2, . . . , 𝑚), and
𝑚

∑

𝑗=1

1

𝑝𝑗
= 1. (5)
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Then each of the following assertions holds true. (1) For 𝑝𝑗 >
1 (𝑗 = 1, 2, . . . , 𝑚), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1


𝑓𝑗 (𝑥)


(𝑑𝑥)
𝛼

≦

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

1

Γ (1 + 𝛼)


𝑓𝑗 (𝑥)



𝑝𝑗
(𝑑𝑥)
𝛼
)

1/𝑝𝑗

.

(6)

(2) For 0 < 𝑝1 < 1 and 𝑝𝑗 < 0 (𝑗 = 2, . . . , 𝑚), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1


𝑓𝑗 (𝑥)


(𝑑𝑥)
𝛼

≧

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

1

Γ (1 + 𝛼)


𝑓𝑗 (𝑥)



𝑝𝑗
(𝑑𝑥)
𝛼
)

1/𝑝𝑗

.

(7)

The study of local fractional calculus has been an inter-
esting topic (see [14–25]). In fact, local fractional calculus
[14, 16, 17] has turned out to be a very useful tool to deal with
the continuously nondifferentiable functions and fractals.
This formalism has had a great variety of applications in
describing physical phenomena, for example, elasticity [17,
26, 27], continuum mechanics [26], quantum mechanics
[28, 29], wave phenomena and heat-diffusion analysis [30–
34], and other branches of pure and applied mathematics
[15, 35–37] and nonlinear dynamics [38, 39]. For more
details and other applications of local fractional calculus, the
interested reader may refer to the recent works [14–42] (see
also the monograph [43] dealing extensively with fractional
differential equations).

The purpose of this paper is to give some new generaliza-
tions and refinements of inequalities (6) and (7). Some related
inequalities are also considered. This paper is structured as
follows. In Section 2, we introduce some basic facts about
local fractional calculus. In Section 3, we establish some new
generalizations and refinements of the local fractional inte-
gralHölder inequality and their corresponding reverse forms.
Finally, we give our concluding remarks and observations in
Section 4.

2. Preliminaries

In this section, we recall some known results of local frac-
tional calculus (see [14, 16, 17]). Throughout this section we
will always assume that 𝐹 is a subset of the real line and is a
fractal.

Lemma 1 (see [17]). Assume that𝑓 : (𝐹, 𝑑) → (Ω

, 𝑑

) is a bi-

Lipschitz mapping; then there are two positive constants 𝜌, 𝜏,
and 𝐹 ⊂ 𝑅,

𝜌
𝑠
𝐻
𝑠
(𝐹) ≦ 𝐻

𝑠
(𝑓 (𝐹)) ≦ 𝜏

𝑠
𝐻
𝑠
(𝐹) , (8)

such that

𝜌
𝛼𝑥1 − 𝑥2


𝛼
≦

𝑓 (𝑥1) − 𝑓 (𝑥2)
 ≦ 𝜏
𝛼𝑥1 − 𝑥2


𝛼 (9)

holds true for all 𝑥1, 𝑥2 ∈ 𝐹.

Based on Lemma 1, it is easy to show that [14]
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≦ 𝜏
𝛼𝑥1 − 𝑥2


𝛼
, (10)

such that the following inequality holds true [14]:
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≦ 𝜀
𝛼
, (11)

where 𝛼 is fractal dimension of 𝐹.

Definition 2 (see [14, 17]). Assume that 𝜀, 𝛿 > 0, |𝑥−𝑥0|
𝛼
≦ 𝛿,

and 𝜀, 𝛿 ∈ 𝑅; if
𝑓 (𝑥) − 𝑓 (𝑥0)

 ≦ 𝜀
𝛼
, (12)

then 𝑓(𝑥) is called local fractional continuous at 𝑥 = 𝑥0,
denoted by lim𝑥→𝑥0𝑓(𝑥) = 𝑓(𝑥0). If 𝑓(𝑥) is local fractional
continuous on the interval (𝑎, 𝑏), then wewrite (see, e.g., [14])

𝑓 (𝑥) ∈ 𝐶𝛼 (𝑎, 𝑏) , (13)

where 𝐶𝛼(𝑎, 𝑏) denotes the space of local fractional continu-
ous functions on (𝑎, 𝑏).

Definition 3 (see [16, 17]). Suppose that 𝑓(𝑥) is a nondiffer-
entiable function of exponent 𝛼 (0 < 𝛼 ≦ 1). If the following
inequality holds true

𝑓 (𝑥) − 𝑓 (𝑦)
 ≦ 𝐶

𝑥 − 𝑦

𝛼
, (14)

then 𝑓(𝑥) is a Hölder function of exponent 𝛼 for 𝑥, 𝑦 ∈ 𝐹.

Definition 4 (see [16, 17]). If 𝑓(𝑥) satisfies the following
inequality

𝑓 (𝑥) − 𝑓 (𝑥0)
 ≦ 𝑜 ((𝑥 − 𝑥0)

𝛼
) , (15)

then 𝑓(𝑥) is continuous of order 𝛼 (0 < 𝛼 ≦ 1) or, briefly,
𝛼-continuous.

Definition 5 (see [14, 16–18]). Suppose that 𝑓(𝑥) is local
fractional continuous on the interval (𝑎, 𝑏); then the local
fractional derivative of 𝑓(𝑥) of order 𝛼 at 𝑥 = 𝑥0 is given by

𝑓
(𝛼)

(𝑥0) =
𝑑
𝛼
𝑓(𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Γ (1 + 𝛼) Δ (𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 ,

(16)

provided this limit exists.

From Definition 5, we have the following conclusion (see
[14]):

𝑓
(𝛼)

(𝑥) = 𝐷
(𝛼)
𝑥 𝑓 (𝑥) , (17)

which is denoted by (see [14])

𝑓 (𝑥) ∈ 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) , (18)

where 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) denotes the space of local fractional deriv-

able functions on (𝑎, 𝑏).
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Definition 6 (see [14, 16–18]). Suppose that 𝑓(𝑥) is local
fractional continuous on the interval (𝑎, 𝑏); then the local
fractional integral of the function 𝑓(𝑥) in the interval [𝑎, 𝑏]
is defined by

𝑎𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
,

(19)

where Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗, Δ𝑡 = max{Δ𝑡1, Δ𝑡2, . . . , Δ𝑡𝑗, . . .}, and
[𝑡𝑗, 𝑡𝑗+1] (𝑗 = 1, 2, . . . , 𝑁 − 1; 𝑡0 = 𝑎; 𝑡𝑁 = 𝑏) are a partition
of the interval [𝑎, 𝑏].

Let 𝑎𝐼
(𝛼)
𝑥 (𝑎, 𝑏) denote the space of local fractional inte-

grable functions on (𝑎, 𝑏); from Definition 6, we can obtain
the following result (see, for details, [14]):

𝑓 (𝑥) ∈ 𝑎𝐼
(𝛼)

𝑥
(𝑎, 𝑏) , (20)

if there exists (see [14])

𝑎𝐼
(𝛼)

𝑥
𝑓 (𝑥) . (21)

Remark 7 (see [14]). If we suppose that 𝑓(𝑥) ∈ 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) or

𝐶𝛼(𝑎, 𝑏), then we have

𝑓 (𝑥) ∈ 𝛼𝐼
(𝛼)

𝑥
(𝑎, 𝑏) . (22)

3. Main Results

In this section, we state and prove our main results.

Theorem 8. Assume that 𝛼𝑘𝑗 ∈ R (𝑗 = 1, 2, . . . , 𝑚; 𝑘 =

1, 2, . . . , 𝑠),
𝑠

∑

𝑘

1

𝑝𝑘
= 1,

𝑠

∑

𝑘=1

𝛼𝑘𝑗 = 0. (23)

If 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 ∈ 𝐶𝛼(𝑎, 𝑏) (𝑗 = 1, 2, . . . , 𝑚), then each of
the following assertions holds true.

(1) For 𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(24)

(2) For 0 < 𝑝𝑠 < 1 and 𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑠 − 1), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(25)

Proof. (1) Let

𝑔𝑘 (𝑥) = (

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥))

1/𝑝𝑘

. (26)

Applying the assumptions ∑
𝑠
𝑘(1/𝑝𝑘) = 1 and ∑

𝑠
𝑘=1 𝛼𝑘𝑗 = 0, a

direct computation shows that
𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) = 𝑔1𝑔2 ⋅ ⋅ ⋅ 𝑔𝑠

= (

𝑚

∏

𝑗=1

𝑓
1+𝑎1𝛼1𝑗
𝑗 (𝑥))

1/𝑎1

(

𝑚

∏

𝑗=1

𝑓
1+𝑎2𝛼2𝑗
𝑗 (𝑥))

1/𝑎2

⋅ ⋅ ⋅ (

𝑚

∏

𝑗=1

𝑓
1+𝑎𝑠𝛼𝑠𝑗
𝑗 (𝑥))

1/𝑎𝑠

=

𝑚

∏

𝑗=1

𝑓
1/𝑎1+𝛼1𝑗
𝑗 (𝑥)

𝑚

∏

𝑗=1

𝑓
1/𝑎2+𝛼2𝑗
𝑗 (𝑥) ⋅ ⋅ ⋅

𝑚

∏

𝑗=1

𝑓
1/𝑎𝑠+𝛼𝑠𝑗
𝑗 (𝑥)

=

𝑚

∏

𝑗=1

𝑓
1/𝑎1+1/𝑎2+⋅⋅⋅1/𝑎𝑠+𝛼1𝑗+𝛼2𝑗+⋅⋅⋅+𝛼𝑠𝑗
𝑗 (𝑥)

=

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) ;

(27)

that is,
𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) =

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) . (28)

It is easy to see that

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼
=

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼
.

(29)

It follows from the Hölder inequality (6) that

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑔
𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑝𝑘

.

(30)

Substitution of 𝑔𝑘(𝑥) into (30) leads us immediately to
inequality (24). This proves inequality (24).

(2) The proof of inequality (25) is similar to the proof of
inequality (24). Indeed, by using (26), (29), and (7), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑔
𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑝𝑘

.

(31)
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Substitution of 𝑔𝑘(𝑥) into (31) leads to inequality (25) imme-
diately.

Remark 9. Upon setting 𝑠 = 𝑚, 𝛼𝑘𝑗 = −1/𝑝𝑘, for 𝑗 ̸= 𝑘, and
𝛼𝑘𝑘 = 1 − 1/𝑝𝑘, inequalities (24) and (25) are reduced to
inequalities (6) and (7), respectively.

As we remarked earlier, many existing inequalities related
to the local fractional integral Hölder’s inequality are special
cases of inequalities (24) and (25). For example, we have the
following corollary.

Corollary 10. Under the assumptions of Theorem 8 with 𝑠 =

𝑚, 𝛼𝑘𝑗 = −𝑡/𝑝𝑘, for 𝑗 ̸= 𝑘, and 𝛼𝑘𝑘 = 𝑡(1−1/𝑝𝑘) (𝑡 ∈ R), each
of the following assertions holds true.

(1) For 𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑚

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

(

𝑚

∏

𝑗=1

𝑓𝑗(𝑥))

1−𝑡

(𝑓
𝑝𝑘
𝑘

)
𝑡
(𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(32)

(2) For 0 < 𝑝𝑚 < 1 and 𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑚 − 1), one
has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑚

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

(

𝑚

∏

𝑗=1

𝑓𝑗(𝑥))

1−𝑡

(𝑓
𝑝𝑘
𝑘

)
𝑡
(𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(33)

Theorem 11. Assume that 𝑟 ∈ R, 𝛼𝑘𝑗 ∈ R (𝑗 =

1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑠),
𝑠

∑

𝑘

1

𝑝𝑘
= 𝑟,

𝑠

∑

𝑘=1

𝛼𝑘𝑗 = 0. (34)

If 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 ∈ 𝐶𝛼(𝑎, 𝑏) (𝑗 = 1, 2, . . . , 𝑚), then each of
the following assertions holds true.

(1) For 𝑟𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(35)

(2) For 0 < 𝑟𝑝𝑠 < 1 and 𝑟𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑠 − 1), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(36)

Proof. (1) Since 𝑟𝑝𝑘 > 0 and ∑
𝑠
𝑘(1/𝑝𝑘) = 𝑟, we get

∑
𝑠
𝑘(1/𝑟𝑝𝑘) = 1. Then, by applying (24), we immediately

obtain inequality (35).
(2) Since 0 < 𝑟𝑝𝑠 < 1, 𝑟𝑝𝑘 < 0, and∑

𝑠
𝑘(1/𝑝𝑘) = 𝑟, we have

∑
𝑠
𝑘(1/𝑟𝑝𝑘) = 1. Thus, by applying (25), we immediately have

inequality (36). This completes the proof of Theorem 11.

From Theorem 11, we obtain Corollary 12, which is a
generalization of Theorem 11.

Corollary 12. Under the assumptions of Theorem 11, let 𝑠 =

2, 𝑝1 = 𝑝, 𝑝2 = 𝑞, and 𝛼1𝑗 = −𝛼2𝑗 = 𝛼𝑗. Then each of the
following assertions holds true.

(1) For 𝑟𝑝 > 0, one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝

⋅ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1−𝑟𝑞𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑞

.

(37)

(2) For 0 < 𝑟𝑝 < 1, one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝

⋅ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1−𝑟𝑞𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑞

.

(38)

Next we present a refinement of each of inequalities (35)
and (36).

Theorem 13. Under the assumptions ofTheorem 11, each of the
following assertions holds true.

(1) For 𝑟𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦ 𝜑 (𝑐) ≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

,

(39)

where

𝜑 (𝑐) ≡
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑐

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘
(40)

is a nonincreasing function with 𝑎 ≦ 𝑐 ≦ 𝑏.
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(2) For 0 < 𝑟𝑝𝑠 < 1 and 𝑟𝑝𝑘 < 0(𝑘 = 1, 2, . . . , 𝑠 − 1), one
has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧ 𝜙 (𝑐) ≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

,

(41)

where

𝜙 (𝑐) ≡
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑐

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘
(42)

is a nondecreasing function with 𝑎 ≦ 𝑐 ≦ 𝑏.

Proof. (1) Let

𝑔𝑘 (𝑥) = (

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥))

1/𝑟𝑝𝑘

. (43)

By rearrangement, it follows from the assumptions of
Theorem 11 that

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) =

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) . (44)

Then, by Hölder’s inequality (6), we obtain

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼
+

1

Γ (1 + 𝛼)
∫

𝑏

𝑐

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≦
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ (1 + 𝛼)
∫

𝑏

𝑐

𝑔
𝑟𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑟𝑝𝑘

≦

𝑠

∏

𝑘=1

(
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑔
𝑟𝑝𝑘
𝑘

(𝑥) (𝑑𝑥)
𝛼

+
1

Γ (1 + 𝛼)
∫

𝑏

𝑐

𝑔
𝑟𝑝𝑘
𝑘

(𝑥) (𝑑𝑥)
𝛼
)

1/𝑟𝑝𝑘

=

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑔
𝑟𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑟𝑝𝑘

=

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(45)

Hence, the desired result is obtained.
(2) The proof of inequality (41) is similar to the proof of

inequality (39), so we omit the details involved.

4. Concluding Remarks and Observations

Integral inequalities play a major role in the development of
local fractional calculus. In this work, we considered some
new generalizations and refinements of the local fractional
integral Hölder’s inequality and some related results on
fractal space. Hölder’s inequality was obtained by Yang [14]
using local fractional integral. Moreover, the reverse local
fractional integral Hölder’s inequality was established by
Chen [15]. In our present investigation, we have offered
further generalizations and refinements of these inequalities
by using the local fractional integral which was introduced
and investigated by Yang [14, 16, 17]. Special cases of the
various results derived in this paper are shown to be related
to a number of known results.

For the relevant details about the mathematical, physical,
and engineering applications and interpretations of the oper-
ators of fractional calculus and local fractional calculus in
dealing with the intermediate processes and the intermediate
phenomena, the interested reader may be referred to the
monographs by Yang [17] and Kilbas et al. [43] (and indeed
also to some of the other recent investigations which are cited
in this paper).
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