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We investigate a predator-prey model with dispersal for both predator and prey among n patches; our main purpose is to extend
the global stability criteria by Li and Shuai (2010) on a predator-prey model with dispersal for prey among n patches. By using
the method of constructing Lyapunov functions based on graph-theoretical approach for coupled systems, we derive sufficient
conditions under which the positive coexistence equilibrium of this model is unique and globally asymptotically stable if it exists.

1. Introduction

In the literature of predator-prey population systems, both
continuous reaction-diffusion systems and discrete patchy
models are used to study the spatial heterogeneity [1, 2];
patchy models are often used to describe directed movement
of population among niches or migration among habitats. It
is naturally interesting problem to consider how the dispersal
or migration of predator and prey influences the global
dynamics of the interacting ecological system; thus patchy
predator-prey model received lots of attentions [1, 3–6].

Since the discrete patchy models usually involve high-
dimensional system, it is rather mathematically challenging
to study the uniqueness and stability of the positive equilib-
rium of the predator-prey patchy models, and the available
global dynamics criteria in the literatures mainly focus on
the special case of two-patch [3] or on the permanence and
existence of periodic solutions [4–6].

Recently, Li and Shuai [7] considered the following
predator-prey model with dispersal for prey among 𝑛-patch:
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− 𝑏
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𝑥
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(𝑥
𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
𝑖
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̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) , 𝑖 = 1, . . . , 𝑛.

(1)

Here, 𝑥
𝑖
, 𝑦
𝑖
denote the densities of prey and predators on

the patch 𝑖, respectively. The parameters 𝑟
𝑖
, 𝑏
𝑖
and 𝛾

𝑖
, 𝛿
𝑖

in the model are nonnegative constants. What is more, the
parameters 𝑒

𝑖
and 𝜀

𝑖
in the model are positive constants.

Constant 𝑑𝑥
𝑖𝑗
is the dispersal rate of the prey from patch 𝑗 to

patch 𝑖 and constants 𝛼𝑥
𝑖𝑗
can be selected to represent different

boundary conditions in the continuous diffusion case.
In [7], the authors studied the global stability of the coex-

istence equilibrium of system (1), by considering (1) as a cou-
pled 𝑛 predator-prey submodels on networks. Using results
from graph theory and a developed systematic approach that
allows one to construct global Lyapunov functions for large-
scale coupled systems from building blocks of individual
vertex systems, Li and Shuai [7] obtain the following sharp
results for (1).

Proposition 1 (see [7, Theorem 6.1]). Assume that (𝑑𝑥
𝑖𝑗
)
𝑛×𝑛

is
irreducible. If there exists 𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0, then,

whenever a positive equilibrium 𝐸
∗
exists in (1), it is unique

and globally asymptotically stable in the positive cone 𝑅+
2𝑛
.

Although well-improved results have been seen in the
above work on dispersal predator-prey model, such models
are not well studied yet in the sense that model (1) assumes
no dispersal for predator, which is not realistic in many cases
[1, 3]. Thus it is interesting for us to consider the global
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stability of the positive equilibrium for predator-prey model
with dispersal for both predator and prey.

Motivated by the above work in [7], in this paper we
generalize model (1) into the following predator-prey model
with dispersal for both predator and prey:

𝑥̇
𝑖
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𝑦

𝑖𝑗
𝑦
𝑖
) ,

𝑖 = 1, . . . , 𝑛.

(2)

Here, the parameters 𝑟
𝑖
, 𝑏
𝑖
, 𝑒
𝑖
, 𝛾
𝑖
, 𝛿
𝑖
, and 𝜀

𝑖
are defined the

same as those in (1). The nonnegative constants 𝑑𝑦
𝑖𝑗
, 𝛼𝑦
𝑖𝑗
, and

𝑑
𝑦

𝑖𝑗
are the dispersal rate of the predators from patch 𝑗 to

patch 𝑖, and 𝛼𝑦
𝑖𝑗
represents the different boundary conditions

in the continuous diffusion case. Clearly, when 𝑑𝑦
𝑖𝑗
= 0 for

all 𝑖, 𝑗 = 1, . . . , 𝑛, model (2) directly reduces to (1); thus our
model (2) directly extends model (1) in [7].

The main purpose of this paper is to obtain the global
stability for the coexistence equilibriumof (2).Wewill engage
the techniques of constructing Lyapunov function based on
graph-theory which were well developed by Li et al. in [7–9];
we refer to [10–12] for recent applications. Our study seems
to be the first attempt in applying the network method for
coupled network systems of differential equations to address
the predator-prey systemwith dispersal for both predator and
prey among patches. Networkedmethod has been extensively
investigated in the several fields. For example, multiagent
systems can be seen as complicated network systems. A lot
of researchers take their interest in flocking and consensus of
themultiagent systems [13–17].What ismore, neural network
systems can be seen as complicated network systems. Over
the past few decades, various neural network models have
been extensively investigated [18–20].

A mathematical description of a network is a directed
graph consisting of vertices and directed arcs connecting
them.At each vertex, the local dynamics are given by a system
of differential equations called the vertex system.Thedirected
arcs indicate interconnections and interactions among vertex
systems.

A digraph 𝐺 with 𝑛 vertices for the system (2) can be
constructed as follows. Each vertex represents a patch and
(𝑗, 𝑖) ∈ 𝐸(𝐺) if and only if 𝑑𝑥

𝑖𝑗
, 𝑑
𝑦

𝑖𝑗
> 0. At each vertex of 𝐺,

the vertex dynamics is described by a predator-prey system.
The coupling among these predator-prey systems is provided
by dispersal of predator and prey among patches.

This paper is organized as follows. In the next section,
we introduce preliminaries results on graph-theory based on
coupled network models. In Section 3, we obtain the main
result of system (2). This is followed by a brief conclusion
section.

2. Preliminaries

In this section, we will list some definitions and Theorems
that we will use in the later sections.

A directed graph or digraph𝐺 = (𝑉, 𝐸) contains a set𝑉 =

{1, 2, . . . , 𝑛} of vertices and a set 𝐸 of arcs (𝑖, 𝑗) leading from
initial vertex 𝑖 to terminal vertex 𝑗. A subgraph𝐻 of 𝐺 is said
to be spanning if𝐻 and𝐺 have the same vertex set. A digraph
𝐺 is weighted if each arc (𝑗, 𝑖) is assigned a positive weight.
𝑎
𝑖𝑗
> 0 if and only if there exists an arc from vertex 𝑗 to vertex

𝑖 in 𝐺.
The weight 𝑤(𝐻) of a subgraph 𝐻 is the product of the

weights on all its arcs. A directed path 𝑃 in 𝐺 is a subgraph
with distinct vertices 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑚
such that its set of arcs is

{(𝑖
𝑘
, 𝑖
𝑘+1
) : 𝑘 = 1, 2, . . . , 𝑚}. If 𝑖

𝑚
= 𝑖
1
, we call 𝑃 a directed

cycle.
A connected subgraph 𝑇 is a tree if it contains no cycles,

directed or undirected.
A tree 𝑇 is rooted at vertex 𝑖, called the root, if 𝑖 is not

a terminal vertex of any arcs, and each of the remaining
vertices is a terminal vertex of exactly one arc. A subgraph
𝑄 is unicyclic if it is a disjoint union of rooted trees whose
roots form a directed cycle.

Given a weighted digraph 𝐺 with 𝑛 vertices, define the
weight matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

whose entry 𝑎
𝑖𝑗
equals the weight

of arc (𝑗, 𝑖) if it exists, and 0 otherwise. For our purpose, we
denote a weighted digraph as (𝐺, 𝐴). A digraph 𝐺 is strongly
connected if for any pair of distinct vertices, there exists a
directed path from one to the other. A weighted digraph
(𝐺, 𝐴) is strongly connected if and only if the weight matrix
𝐴 is irreducible.

The Laplacian matrix of (𝐺, 𝐴) is denoted by 𝐿. Let 𝑐
𝑖

denote the cofactor of the 𝑖th diagonal element of 𝐿. The
following results are listed as follows from [7].

Proposition 2 (see [7]). Assume 𝑛 ≥ 2. Then

𝑐
𝑖
= ∑

T∈𝑇𝑖

𝑤 (T) , (3)

where 𝑇
𝑖
is the set of all spanning trees T of (𝐺, 𝐴) that are

rooted at vertex 𝑖, and 𝑤(𝑇) is the weight of 𝑇. In particular,
if (𝐺, 𝐴) is strongly connected, then 𝑐

𝑖
> 0 for 1 ≤ 𝑖 ≤ 𝑛.

Theorem 3 (see [7]). Assume 𝑛 ≥ 2. Let 𝑐
𝑖
be given in

Proposition 2. Then the following identity holds:

𝑛

∑

𝑖,𝑗=1

𝑐
𝑖
𝑎
𝑖𝑗
𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) = ∑

𝑄∈Q
𝑤 (𝑄) ∑

(𝑠,𝑟)∈𝐸(𝐶𝑄)

𝐹
𝑟𝑠
(𝑥
𝑟
, 𝑥
𝑠
) , (4)

where 𝐹
𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑛, are arbitrary functions, Q is the

set of all spanning unicyclic graphs of (𝐺, 𝐴),𝑤(𝑄) is the weight
of 𝑄, and 𝐶

𝑄
denotes the directed cycle of 𝑄.

Given a network represented by digraph𝐺with 𝑛 vertices,
𝑛 ≥ 2, a coupled system can be built on 𝐺 by assigning each
vertex its own internal dynamics and then coupling these
vertex dynamics based on directed arcs in 𝐺. Assume that



Abstract and Applied Analysis 3

each vertex dynamics is described by a system of differential
equations

𝑢
󸀠

𝑖
= 𝑓
𝑖
(𝑡, 𝑢
𝑖
) , (5)

where 𝑢
𝑖
∈ Rmi and 𝑓

𝑖
: R × Rmi

→ Rmi . Let 𝑔
𝑖𝑗
: R × Rmi

×

Rmj
→ Rmi represent the influence of vertex 𝑗 on vertex 𝑖,

and let 𝑔
𝑖𝑗
≡ 0 if there exists no arc from 𝑗 to 𝑖 in 𝐺. Then we

obtain the following coupled system on graph 𝐺:

𝑢
󸀠

𝑖
= 𝑓
𝑖
(𝑡, 𝑢
𝑖
) +

𝑛

∑

𝑗=1

𝑔
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) , 𝑖 = 1, 2, . . . , 𝑛. (6)

Here functions 𝑓
𝑖
, 𝑔
𝑖𝑗
are such that initial-value problems

have unique solutions.
We assume that each vertex system has a globally stable

equilibrium and possesses a global Lyapunov function 𝑉
𝑖
.

Theorem 4 (see [7]). Assume that the following assumptions
are satisfied.

(1) There exist functions 𝑉
𝑖
(𝑡, 𝑢
𝑖
), 𝐹
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) and con-

stants 𝑎
𝑖𝑗
≥ 0 such that

𝑉̇
𝑖
(𝑡, 𝑢
𝑖
) ≤

𝑛

∑

𝑖,𝑗=1

𝑎
𝑖𝑗
𝐹
𝑖𝑗
(𝑡, 𝑢
𝑖
, 𝑢
𝑗
) , 𝑡 > 0, 𝑢

𝑖
∈ 𝐷
𝑖
. (7)

(2) Along each directed cycle 𝐶 of the weighted digraph
(𝐺, 𝐴), 𝐴 = (𝑎

𝑖𝑗
),

∑

(𝑠,𝑟)∈𝐸(𝐶)

𝐹
𝑟𝑠
(𝑡, 𝑢
𝑟
, 𝑢
𝑠
) ≤ 0. (8)

(3) Constants 𝑐
𝑖
are given by the cofactor of the 𝑖th diagonal

element of 𝐿.

Then the function 𝑉(𝑡, 𝑢) = ∑𝑛
𝑖=1
𝑐
𝑖
𝑉
𝑖
(𝑡, 𝑢
𝑖
) satisfies 𝑉̇(𝑡, 𝑢) ≤ 0

for 𝑡 > 0, 𝑢 ∈ 𝐷; namely, 𝑉 is a Lyapunov function for the
system (6).

3. Main Results

In this section, the stability for the positive equilibrium of
the 𝑛-patch predator-preymodel (2) is considered.We regard
(2) as a coupled system on a network. Using a Lyapunov
function for the 𝑛-patch predator-prey model with dispersal
and Theorem 4 of Section 2, we will establish that a positive
equilibrium of the 𝑛-patch predator-prey model (2) with
dispersal is globally asymptotically stable in R2𝑛

+
as long as it

exists.
First of all, we will give a lemma for the system (2).

Lemma 5. The set R2𝑛
+

is the positive invariant set for the
system (2).

ThenextTheorem gives the globally asymptotically stable
condition for the positive equilibrium of the system (2).

Theorem 6. Assume that a positive equilibrium 𝐸
∗

=

(𝑥
∗

1
, 𝑦
∗

1
, 𝑥
∗

2
, 𝑦
∗

2
, . . . , 𝑥

∗

𝑛
, 𝑦
∗

𝑛
) exists for the system (2) and the

following assumptions hold.

(1) Dispersal matrixes (𝑑𝑥
𝑖𝑗
)
𝑛×𝑛

, (𝑑𝑦
𝑖𝑗
)
𝑛×𝑛

are irreducible;
moreover there exists 𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0.

(2) There exists nonnegative constant 𝜆 such that 𝜆 ⋅

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, or 𝑑𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
=

𝜆 ⋅ 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Then, the positive equilibrium 𝐸
∗ is unique and globally

asymptotically stable in 𝑅2𝑛
+
.

Proof. Let

𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
,

𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = −𝛾

𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
.

(9)

In the sequel, we have

𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
) = −

1

𝑥
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) ,

𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
) = −

1

𝑦
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
∗

𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
∗

𝑖
) .

(10)

Set Lyapunov functions as

𝑉
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
− 𝑥
∗

𝑖
ln
𝑥
𝑖

𝑥
∗

𝑖

)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
𝑖
− 𝑦
∗

𝑖
ln
𝑦
𝑖

𝑦
∗

𝑖

) .

(11)

Direct differentiating 𝑉
𝑖
along the system (2), we have

𝑉̇
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) = 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) [𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) [𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)

+

𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)

𝑥
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
𝑖
)

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)

+

𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)

𝑦
∗

𝑖

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
𝑖
)

= 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) [𝑍
1

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
1

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) [𝑍
2

𝑖
(𝑥
𝑖
, 𝑦
𝑖
) − 𝑍
2

𝑖
(𝑥
∗

𝑖
, 𝑦
∗

𝑖
)]

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)
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= −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
) 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)

− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2
+ 𝑒
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
) 𝜀
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
)

= −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) ,

(12)

where

𝐹
𝑥

𝑖𝑗
(𝑥
𝑖
, 𝑥
𝑗
) =

𝑥
𝑗

𝑥
∗

𝑗

−

𝑥
𝑖

𝑥
∗

𝑖

+ 1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

,

𝐹
𝑦

𝑖𝑗
(𝑦
𝑖
, 𝑦
𝑗
) =

𝑦
𝑗

𝑦
∗

𝑗

−

𝑦
𝑖

𝑦
∗

𝑖

+ 1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

.

(13)

Set 𝑎𝑥
𝑖𝑗
= 𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
, 𝑏𝑦
𝑖𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
,𝐴 = (𝑎

𝑥

𝑖𝑗
)
𝑛×𝑛

, and 𝐵 = (𝑏𝑦
𝑖𝑗
)
𝑛×𝑛

.
One has

𝐺
𝑥

𝑖
(𝑥
𝑖
) = −

𝑥
𝑖

𝑥
∗

𝑖

+ ln
𝑥
𝑖

𝑥
∗

𝑖

, 𝐺
𝑦

𝑖
(𝑦
𝑖
) = −

𝑦
𝑖

𝑦
∗

𝑖

+ ln
𝑦
𝑖

𝑦
∗

𝑖

. (14)

Next, we have two cases to consider.

Case I. 𝑑𝑥
𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝜆 ⋅ 𝑑

𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Case II. 𝜆 ⋅ 𝑑𝑥
𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
= 𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
for 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

For Case I, from the fact that 𝑎𝑥
𝑖𝑗
= 𝑑
𝑥

𝑖𝑗
𝜀
𝑖
𝑥
∗

𝑗
and 𝑏𝑦

𝑖𝑗
=

𝑑
𝑦

𝑖𝑗
𝑒
𝑖
𝑦
∗

𝑗
, we obtain that 𝑎𝑥

𝑖𝑗
= 𝜆𝑏
𝑦

𝑖𝑗
; thus 𝐴 = 𝜆 ⋅ 𝐵. Then we

obtain that

𝑉̇
𝑖
(𝑥
𝑖
, 𝑦
𝑖
) ≤ −𝜀

𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑗=1

𝑎
𝑥

𝑖𝑗
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+

𝑛

∑

𝑗=1

𝑎
𝑥

𝑖𝑗
(1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ ln
𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
))

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ ln
𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

)

≤ −𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
− 𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+ 𝜆

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+ 𝜆

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

+ ln
𝑥
∗

𝑖
𝑥
𝑗

𝑥
𝑖
𝑥
∗

𝑗

)

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
))

+

𝑛

∑

𝑗=1

𝑏
𝑦

𝑖𝑗
(1 −

𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

+ ln
𝑦
∗

𝑖
𝑦
𝑗

𝑦
𝑖
𝑦
∗

𝑗

) .

(15)

Let 𝑐𝑦
𝑖
denote the cofactor of the 𝑖th diagonal element of the

matrix 𝐵. From the irreducible character of matrix 𝐵, we have
𝑐
𝑦

𝑖
> 0.
Furthermore, set Lyapunov functions as

𝑉 (𝑥, 𝑦) = 𝑉 (𝑥
1
, 𝑦
1
, . . . , 𝑥

𝑛
, 𝑦
𝑛
)

=

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑉
𝑥

𝑖
(𝑥
𝑖
) +

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑉
𝑦

𝑖
(𝑦
𝑖
) .

(16)

Then differentiating 𝑉 along the solution of the system (2),
we obtain that

𝑉̇ (𝑥, 𝑦) ≤ −

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝜀
𝑖
𝑏
𝑖
(𝑥
𝑖
− 𝑥
∗

𝑖
)
2
−

𝑛

∑

𝑖=1

𝑐
𝑦

𝑖
𝑒
𝑖
𝛿
𝑖
(𝑦
𝑖
− 𝑦
∗

𝑖
)
2

+

𝑛

∑

𝑖,𝑗=1

𝜆𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
))

+

𝑛

∑

𝑖,𝑗=1

𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
)) .

(17)

Let 𝐺 represent the directed graph associated with matrix
𝐵. Then 𝐺 has vertices 1, 2, . . . , 𝑛 with a directed arc (𝑘, 𝑗)
from 𝑘 to 𝑗 if and only if 𝑏𝑦

𝑘𝑗
̸= 0. Then 𝐸(𝐺) is the set of all

directed arcs of 𝐺. By Kirchhoff ’s Matrix-Tree Theorem (see
Proposition 2) we know that 𝜐

𝑘
= 𝐶
𝑘𝑘

can be expressed as
a sum of weights of all directed spanning subtrees 𝑇 of 𝐺
that are rooted at vertex 𝑘. Thus, each term in 𝜐

𝑘
𝑎
𝑘𝑗

is the
weight 𝜔(𝑄) of a unicyclic subgraph 𝑄 of 𝐺 obtained from
such a tree 𝑇 by adding a directed arc (𝑘, 𝑗) from the root
𝑘 to vertex 𝑗. Because the arc (𝑘, 𝑗) is a part of the unique
cycle 𝐶𝑄 of 𝑄 and that the same unicyclic graph 𝑄 can be
formed when each arc of 𝐶𝑄 is added to a corresponding
rooted tree 𝑇, then the double sum can be expressed as a sum
over all unicyclic subgraphs 𝑄 containing vertices 1, 2, . . . , 𝑛.
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Therefore, following from the irreducible character of matrix
𝐵 andTheorem 2.3 in [7], we obtain

𝑛

∑

𝑖,𝑗=1

𝜆𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑥

𝑖
(𝑥
𝑖
) − 𝐺
𝑥

𝑗
(𝑥
𝑗
)) = 0,

𝑛

∑

𝑖,𝑗=1

𝑏
𝑦

𝑖𝑗
𝑐
𝑦

𝑖
(𝐺
𝑦

𝑖
(𝑦
𝑖
) − 𝐺
𝑦

𝑗
(𝑦
𝑗
)) = 0.

(18)

Combining with the fact that 1 − 𝑎 + ln 𝑎 ≤ 0, therefore we
have

𝑉̇ (𝑥, 𝑦) ≤ 0. (19)

When we consider 𝑉̇(𝑥, 𝑦) = 0, by condition 1, there exists
𝑘 ∈ 𝑁

+
such that

(𝑥
𝑘
− 𝑥
∗

𝑘
)
2
= 0 or (𝑦

𝑘
− 𝑦
∗

𝑘
)
2
= 0. (20)

It means that 𝑥
𝑘
= 𝑥
∗

𝑘
or 𝑦
𝑘
= 𝑦
∗

𝑘
.

If 𝑖 and 𝑘 can be connected with an arc from 𝑘 to 𝑖 in 𝐺,
then we have 𝑎𝑦

𝑖𝑘
> 0 and 𝑏𝑦

𝑖𝑘
> 0. Furthermore,

1 −

𝑥
∗

𝑖
𝑥
𝑘

𝑥
𝑖
𝑥
∗

𝑘

+ ln
𝑥
∗

𝑖
𝑥
𝑘

𝑥
𝑖
𝑥
∗

𝑘

= 0,

1 −

𝑦
∗

𝑖
𝑦
𝑘

𝑦
𝑖
𝑦
∗

𝑘

+ ln
𝑦
∗

𝑖
𝑦
𝑘

𝑦
𝑖
𝑦
∗

𝑘

= 0.

(21)

Because of 1 − 𝑎 + ln 𝑎 ≤ 0 and 1 − 𝑎 + ln 𝑎 = 0,⇔ 𝑎 = 0. we
deduce that

𝑥
𝑖

𝑥
∗

𝑖

=

𝑥
𝑘

𝑥
∗

𝑘

,

𝑦
𝑖

𝑦
∗

𝑖

=

𝑦
𝑘

𝑦
∗

𝑘

. (22)

From𝑥
𝑘
= 𝑥
∗

𝑘
, or𝑦
𝑘
= 𝑦
∗

𝑘
, we obtain that𝑥

𝑖
= 𝑥
∗

𝑖
and𝑦
𝑖
/𝑦
∗

𝑖
=

𝑦
𝑘
/𝑦
∗

𝑘
or 𝑦
𝑖
= 𝑦
∗

𝑖
and 𝑥

𝑖
/𝑥
∗

𝑖
= 𝑥
𝑘
/𝑥
∗

𝑘
.

By condition 1 and the definition of matrixes 𝐴, 𝐵, we get
that𝐵 are irreducible. By strong connectivity of𝐺, there exists
a directed path 𝑃 from any 𝑖 to 𝑘. Then we have that, for any
𝑖 = 1, 2, . . . , 𝑛, there must be

𝑥
𝑖
= 𝑥
∗

𝑖
,

𝑦
𝑖

𝑦
∗

𝑖

= 𝜇, 𝜇 ≥ 0, (23)

or for any 𝑖 = 1, 2, . . . , 𝑛, there must be

𝑦
𝑖
= 𝑦
∗

𝑖
,

𝑥
𝑖

𝑥
∗

𝑖

= 𝜇, 𝜇 ≥ 0. (24)

Next, we will prove that the largest compact invariant subset
of {(𝑥, 𝑦) | 𝑉̇(𝑥, 𝑦) = 0} is the singleton {𝐸∗}.

We only consider the case that

𝑥
𝑖
= 𝑥
∗

𝑖
,

𝑦
𝑖

𝑦
∗

𝑖

= 𝜇, 𝑖 = 1, 2, . . . , 𝑛, 𝜇 ≥ 0. (25)

The case that

𝑦
𝑖
= 𝑦
∗

𝑖
,

𝑥
𝑖

𝑥
∗

𝑖

= 𝜇, 𝑖 = 1, 2, . . . , 𝑛, 𝜇 ≥ 0 (26)

is similar to this case. So we omit it.

If 𝜇 = 0, we have 𝑦
𝑖
= 0 for any 𝑖 = 1, 2, . . . , 𝑛, and then

we have

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0, (27)

which contradicts to the fact that

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0. (28)

If 𝜇 > 0 and 𝜇 ̸= 1, we have 𝑦
𝑖
= 𝜇𝑦
∗

𝑖
for any 𝑖 = 1, 2, . . . , 𝑛,

and then we have

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝜇𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0, (29)

which also contradicts to the fact that

𝑥
∗

𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
∗

𝑖
− 𝑒
𝑖
𝑦
∗

𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑥

𝑖𝑗
(𝑥
∗

𝑗
− 𝛼
𝑥

𝑖𝑗
𝑥
∗

𝑖
) = 0. (30)

Therefore, we obtain that 𝜇 = 1, which means

𝑥
𝑖
= 𝑥
∗

𝑖
, 𝑦
𝑖
= 𝑦
∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (31)

Namely, we get that the largest compact invariant subset of
{(𝑥, 𝑦) | 𝑉̇(𝑥, 𝑦) = 0} is the singleton {𝐸

∗
}. Therefore,

by the LaSalle Invariance Principle ([21]), 𝐸∗ is globally
asymptotically stable in R2𝑛

+
.

With the similar arguments to the Case I, we can prove
that 𝐸∗ is globally asymptotically stable in R2𝑛

+
for Case II.

This completes the proof.

Remark 7. Theorem 6 is applicable to model (1): consider
model (2) with 𝑑𝑦

𝑖𝑗
= 0, 𝑖, 𝑗 = 1, . . . , 𝑛, and let 𝜆 = 0; thus

Theorem 6 directly reduces to Proposition 1 by Li and Shuai
[7] for (1).

By Theorem 6 and similar arguments to Remark 7,
we directly have the following global stability theorem for
the predator-prey model with discrete dispersal of predator
among patches.

Corollary 8. Consider the model

𝑥̇
𝑖
= 𝑥
𝑖
(𝑟
𝑖
− 𝑏
𝑖
𝑥
𝑖
− 𝑒
𝑖
𝑦
𝑖
) ,

̇𝑦
𝑖
= 𝑦
𝑖
(−𝛾
𝑖
− 𝛿
𝑖
𝑦
𝑖
+ 𝜀
𝑖
𝑥
𝑖
) +

𝑛

∑

𝑗=1

𝑑
𝑦

𝑖𝑗
(𝑦
𝑗
− 𝛼
𝑦

𝑖𝑗
𝑦
𝑖
) ,

𝑖 = 1, . . . , 𝑛.

(32)

Assume that the matrix (𝑑𝑦
𝑖𝑗
)
𝑛×𝑛

is irreducible. If there exists
𝑘 such that 𝑏

𝑘
> 0 or 𝛿

𝑘
> 0; then, whenever a

positive equilibrium 𝐸
∗
exists in (32), it is unique and globally

asymptotically stable in the positive cone 𝑅2𝑛
+
.
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4. Discussion

In this paper, we generalize the model of the 𝑛-patch
predator-prey model of [7] to the general model (2) that
both the prey and the predator have dispersal among 𝑛-
patches. Based on the network method for coupled systems
of differential equations developed in [7–9], we prove that the
positive equilibrium of (2) is globally asymptotically stable
given some conditions on the coupling (seeTheorem 6). Our
main theorem generalizes Theorem 6.1 in [7] and our results
also cover the other case of (2) in that only the predators
disperse among patches.

Biologically, our result of Theorem 6 implies that if
predator-prey system is dispersing among strongly connected
patches (which is equivalent to the irreducibility of the
dispersal matrixes of predator and prey) and if the system
is permanent (which guarantees the existence of positive
equilibrium), then the numbers of both predators and prey in
each patches will eventually be stable at some corresponding
positive values given the well-coupled dispersal (condition 2
of Theorem 6).

We remark that our Theorem 6 requires the extra con-
dition 2 for the coupling dispersal coefficients and that the
global dynamics for the coexistence equilibrium of (2) with-
out condition 2 of Theorem 6 are still unclear. It remains an
interesting future problem for the patchy dispersal predator-
prey model.
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