
Research Article
The Tensor Product Representation of Polynomials of
Weak Type in a DF-Space

Masaru Nishihara1 and Kwang Ho Shon2

1 Department of Computer Science and Engineering, Faculty of Information Engineering, Fukuoka Institute of Technology,
Fukuoka 811-0295, Japan

2Department of Mathematics, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea

Correspondence should be addressed to Kwang Ho Shon; khshon@pusan.ac.kr

Received 15 December 2013; Accepted 19 February 2014; Published 30 March 2014

Academic Editor: Zong-Xuan Chen

Copyright © 2014 M. Nishihara and K. H. Shon.This is an open access article distributed under the Creative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Let 𝐸 and 𝐹 be locally convex spaces over C and let 𝑃(𝑛𝐸; 𝐹) be the space of all continuous 𝑛-homogeneous polynomials from 𝐸

to 𝐹. We denote by ⨂
𝑛,𝑠,𝜋

𝐸 the 𝑛-fold symmetric tensor product space of 𝐸 endowed with the projective topology. Then, it is well
known that each polynomial 𝑝 ∈ 𝑃(

𝑛

𝐸; 𝐹) is represented as an element in the space 𝐿(⨂
𝑛,𝑠,𝜋

𝐸; 𝐹) of all continuous linear mappings
from ⨂

𝑛,𝑠,𝜋
𝐸 to 𝐹. A polynomial 𝑝 ∈ 𝑃(

𝑛

𝐸; 𝐹) is said to be of weak type if, for every bounded set 𝐵 of 𝐸, 𝑝|
𝐵
is weakly continuous

on 𝐵. We denote by 𝑃
𝑤
(
𝑛

𝐸; 𝐹) the space of all 𝑛-homogeneous polynomials of weak type from 𝐸 to 𝐹. In this paper, in case that 𝐸
is a DF space, we will give the tensor product representation of the space 𝑃

𝑤
(
𝑛

𝐸; 𝐹).

1. Notations and Preliminaries

In this section, we collect some notations, some definitions,
and some basic properties of locally convex spaces which we
use throughout this paper.

Let 𝐸
1
and 𝐸

2
be complex vector spaces. Then the pair

⟨𝐸
1
, 𝐸
2
⟩ is called a dual pair if there exists a bilinear form:

(𝑥
1
, 𝑥
2
) → ⟨𝑥

1
, 𝑥
2
⟩ ((𝑥

1
, 𝑥
2
) ∈ 𝐸
1
× 𝐸
2
) (1)

satisfying the following conditions:

(1) If ⟨𝑥
1
, 𝑥
2
⟩ = 0 for every 𝑥

2
∈ 𝐸
2
, 𝑥
1
= 0.

(2) If ⟨𝑥
1
, 𝑥
2
⟩ = 0 for every 𝑥

1
∈ 𝐸
1
, 𝑥
2
= 0.

We denote by 𝜎(𝐸
1
, 𝐸
2
) (resp., 𝜎(𝐸

2
, 𝐸
1
)) the topology on 𝐸

1

(resp., 𝐸
2
) defined by the subset of seminorms:

{
⟨⋅, 𝑥2⟩

 ; 𝑥2 ∈ 𝐸
2
} (resp. {

⟨𝑥1, ⋅⟩
 ; 𝑥1 ∈ 𝐸

1
}) . (2)

Let 𝐸 be a locally convex space. We denote by 𝑐𝑠(𝐸) the set
of all nontrivial continuous seminorms on 𝐸. The topology
𝜎(𝐸, 𝐸



) on𝐸 is called theweak topology of𝐸 and the topology
𝜎(𝐸


, 𝐸) on 𝐸
 is called the weak ∗ topology of 𝐸. We denote

byB(𝐸) the family of all bounded subsets of 𝐸. We denote by
‖ ‖
𝐵
the seminorm on 𝐸

 defined by

𝑥

𝐵

= sup {

⟨𝑥, 𝑥


⟩

; 𝑥 ∈ 𝐵} , (3)

for every 𝐵 ∈ B(𝐸). The strong topology on 𝐸
 is the topology

on 𝐸
 defined by the set of seminorms {‖ ‖

𝐵
; 𝐵 ∈ B(𝐸)} on

𝐸
.We denote by𝐸

𝛽
the locally convex space𝐸 endowedwith

the strong topology.Wedenote by𝐸 the dual space of𝐸
𝛽
. Let

𝐴 be a subset of 𝐸. We denote by 𝐴 the topological closure of
the subset 𝐴 of 𝐸 ⊂ 𝐸

 for the topology 𝜎(𝐸


, 𝐸


). The polar
set 𝐴∘ of 𝐴 is defined by

𝐴
∘

= {𝑥


∈ 𝐸


; sup
𝑥∈𝐴


⟨𝑥, 𝑥


⟩

≤ 1} . (4)

We denote by 𝐴
∘∘ the bipolar set of 𝐴 for the dual pair

⟨𝐸


, 𝐸


⟩. A subset 𝑆 of 𝐸 is said to be equicontinuous if there
exists a neighborhood 𝑉 of 0 in 𝐸 such that 𝑆 ⊂ 𝑉

∘.

Lemma 1. Let𝑀 be a bounded subset of a locally convex space
𝐸. Then the following statements hold:

(1) 𝑀 = 𝑀
∘∘ if𝑀 is absolutely convex.
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(2) 𝑀 is compact with the topology 𝜎(𝐸, 𝐸).

(3) 𝐸 = ⋃
𝑀∈B(𝐸)𝑀.

(4) Let 𝐴 be an equicontinuous subset of 𝐸 for the dual
pair ⟨𝐸



, 𝐸


⟩. Then there exists an absolutely convex
bounded subset𝑀 of 𝐸, such that 𝐴 ⊂ 𝑀

∘∘.

Proof. (1) Since 𝑀 ⊂ 𝑀
∘∘ and 𝑀

∘∘ is 𝜎(𝐸, 𝐸)-closed, 𝑀 ⊂

𝑀
∘∘. We shall show 𝑀

∘∘

⊂ 𝑀. We assume that 𝑥
0

∉ 𝑀.
We denote by 𝐸



𝜎(𝐸

,𝐸

)
the locally convex space 𝐸

 endowed
with the topology 𝜎(𝐸



, 𝐸


). Since (𝐸


𝜎(𝐸

,𝐸

)
)


= 𝐸
 and

𝑀 is 𝜎(𝐸


, 𝐸


)-closed absolutely convex, by Hahn-Banach
theorem there exists 𝑥 ∈ 𝐸

 such that

sup
𝑥

∈𝑀


⟨𝑥


, 𝑥


⟩

≤ 1,


⟨𝑥


0
, 𝑥


⟩

> 1.

(5)

Thus, it is valid that 𝑥 ∈ 𝑀
∘ and 𝑥



0
∉ 𝑀
∘∘. Thus we have

𝑀
∘∘

⊂ 𝑀. Since 𝑀∘∘ ⊂ 𝑀
∘∘, 𝑀∘∘ ⊂ 𝑀. Hence, we have 𝑀 =

𝑀
∘∘.
(2) We denote by Γ(𝑀) the 𝜎(𝐸



, 𝐸


)-closed absolutely
convex hull of the set𝑀. By the statement (1) we have

Γ (𝑀) = 𝑀
∘∘

. (6)

The polar set 𝑀∘ is an absolutely convex neighborhood of 0
in 𝐸


𝛽
. Therefore, Γ(𝑀) is a 𝜎(𝐸



, 𝐸


)-closed equicontinuous
subset of𝐸. By Banach-Alaoglu theorem, Γ(𝑀) is 𝜎(𝐸, 𝐸)-
compact. Since𝑀 ⊂ Γ(𝑀),𝑀 is also 𝜎(𝐸



, 𝐸


)-compact.
(3) It is clear that ⋃

𝑀∈B(𝐸)𝑀 ⊂ 𝐸
. We shall show that

𝐸


⊂ ⋃
𝑀∈B(𝐸)𝑀. Let 𝑥 be a point of 𝐸. Then, there exists

an open neighborhood 𝑉 of 0 in 𝐸


𝛽
such that |⟨𝑥, 𝑥⟩| ≤ 1

for every 𝑥 ∈ 𝑉. By the definition of the space 𝐸
𝛽
there exists

an absolutely convex bounded subset 𝑀 ∈ B(𝐸) such that
𝑀
∘

⊂ 𝑉. Thus, by the statement (1) we have

𝑥


∈ 𝑉
∘

⊂ 𝑀
∘∘

= 𝑀. (7)

Thus, we have 𝐸 = ⋃
𝑀∈B(𝐸)𝑀.

(4) Since𝐴 is an equicontinuous subset of𝐸, there exists
a neighborhood 𝑉 of 0 in 𝐸



𝛽
such that 𝐴 ⊂ 𝑉

∘. Since 𝑉 is a
neighborhood of 0 in 𝐸



𝛽
, there exists an absolutely convex

bounded subset 𝑀 of 𝐸 such that 𝑀∘ ⊂ 𝑉. Thus, we have
𝐴 ⊂ 𝑉

∘

⊂ 𝑀
∘∘. This completes the proof.

A filter F = {𝐹
𝛼
} of a locally convex space 𝐸 is called a

Cauchy filter if for every neighborhood 𝑈 of 0 there exists an
𝐹 ∈ F such that {𝑥−𝑦; 𝑥, 𝑦 ∈ 𝐹} ⊂ 𝑈. A locally convex space
𝐸 is said to be complete if any Cauchy filter on 𝐸 converges to
a point of 𝐸.There exists the smallest complete locally convex
space 𝐸 containing 𝐸 as a subspace. The locally convex space
𝐸 is called the completion of 𝐸.

2. The Extension of Polynomial Mappings of
Weak Type

In this section, we will give basic properties of polynomial
mappings on locally convex spaces and discuss the extension
of weak type on locally convex spaces. For more detailed
properties of polynomials on locally convex spaces, see
Dineen [1, 2] and Mujica [3]. Let 𝐸 and 𝐹 be locally convex
spaces and let 𝑛 be a positive integer. We denote by 𝐿

𝑎
(
𝑛

𝐸; 𝐹)

the space of all 𝑛-linear mappings from the product space 𝐸𝑛
of 𝑛-copies of 𝐸 into 𝐹 and denote by 𝐿

𝑎𝑤
(
𝑛

𝐸; 𝐹) the space
of all 𝑛-linear mappings, which are 𝜎(𝐸, 𝐸



)-continuous on
bounded subsets of 𝐸𝑛, from the product space 𝐸

𝑛 into 𝐹. A
mapping 𝑝 : 𝐸 → 𝐹 is called an 𝑛-homogeneous polynomial
from 𝐸 into 𝐹 if there exists an 𝑛-linear mapping 𝑢 from 𝐸

into 𝐹 such that

𝑃 (𝑥) = 𝑢 (𝑥, . . . , 𝑥) , (8)

for every 𝑥 ∈ 𝐸. If 𝑝 is an 𝑛-homogeneous polynomial
from 𝐸 into 𝐹, there exists uniquely a symmetric 𝑛-linear
mapping 𝑢. We denote by 𝑃

𝑎
(
𝑛

𝐸; 𝐹) the space of all 𝑛-
homogeneous polynomials from 𝐸 into 𝐹. We denote by
𝑃(
𝑛

𝐸; 𝐹) (resp., 𝐿(
𝑛

𝐸; 𝐹)) the space of all continuous 𝑛-
homogeneous polynomials from 𝐸 (resp., all continuous 𝑛-
linear mappings from 𝐸

𝑛) into 𝐹. We denote by 𝑃
𝑎𝑤

(
𝑛

𝐸; 𝐹)

the space of all 𝜎(𝐸, 𝐸


)-continuous polynomials on each
bounded subset of 𝐸. We set

𝑃
𝑤
(
𝑛

𝐸; 𝐹) = 𝑃 (
𝑛

𝐸; 𝐹) ∩ 𝑃
𝑎𝑤

(
𝑛

𝐸; 𝐹) ,

𝐿
𝑤
(
𝑛

𝐸; 𝐹) = 𝐿 (
𝑛

𝐸; 𝐹) ∩ 𝐿
𝑎𝑤

(
𝑛

𝐸; 𝐹) .

(9)

A polynomial belonging to 𝑃
𝑤
(
𝑛

𝐸; 𝐹) is said to be of weak
type.

Lemma 2. Let 𝐸 and 𝐹 be locally convex spaces and let 𝑢 be
an 𝑛-linear mapping belonging to 𝐿

𝑤
(
𝑛

𝐸; 𝐹). Let𝐴
1
, . . . , 𝐴

𝑛
be

absolutely convex bounded subsets of 𝐸. Let 𝑎
𝑖
be any point of

𝜎(𝐸


, 𝐸


)-closure 𝐴
𝑖
of 𝐴
𝑖
for each 𝑖 with 2 ≤ 𝑖 ≤ 𝑛. We denote

byN
𝑤
∗(𝐸


)(0) the system of all 𝜎(𝐸, 𝐸)-neighborhoods of 0
in 𝐸
. Then, for any 𝛼 ∈ 𝑐𝑠(𝐹) there exists 𝑉 ∈ N

𝑤
∗(𝐸


)(0)

such that

𝛼 (𝑢 (𝑥
1
, . . . , 𝑥

𝑛
)) < 1, (10)

for every (𝑥
1
, . . . , 𝑥

𝑛
) ∈ (𝑉∩𝐴

1
)×((𝑎

2
+𝑉)∩𝐴

2
)× ⋅ ⋅ ⋅× ((𝑎

𝑛
+

𝑉) ∩ 𝐴
𝑛
).

Proof. We shall prove this lemma by induction on 𝑛. Let 𝑛 =

1. Then, the conclusion of this lemma is true since 0 ∈ 𝐴
1

and𝜎(𝐸, 𝐸


) is the induced topology of the topology𝜎(𝐸, 𝐸)
onto 𝐸.

We suppose that the conclusion of this lemma is true for
all mappings belonging to 𝐿

𝑤
(
𝑛−1

𝐸; 𝐹). And we assume that
for 𝑢 ∈ 𝐿

𝑤
(
𝑛

𝐸; 𝐹), the conclusion is not true. Then, there
exists 𝛼 ∈ 𝑐𝑠(𝐹) such that for every 𝑉 ∈ N

𝑤
∗(𝐸


)(0) there
is a point:

(𝑥
1𝑉

, 𝑥
2𝑉

, . . . , 𝑥
𝑛𝑉

) ∈ (𝑉 ∩ 𝐴
1
) × ((𝑎

2
+ 𝑉) ∩ 𝐴

2
)

× ⋅ ⋅ ⋅ × ((𝑎
𝑛
+ 𝑉) ∩ 𝐴

𝑛
) ,

(11)
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satisfying

𝛼 (𝑢 (𝑥
1𝑉

, 𝑥
2𝑉

, . . . , 𝑥
𝑛𝑉

)) ≥ 1. (12)

Since 𝑢 is 𝜎(𝐸, 𝐸


)-continuous at (0, 0, . . . , 0) on each
absolutely convex bounded subset of 𝐸𝑛 and 𝜎(𝐸, 𝐸



) is the
induced topology of 𝜎(𝐸



, 𝐸


) onto 𝐸, there exists 𝑊 ∈

N
𝑤
∗(𝐸


)(0) such that

𝛼 (𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)) ≤

1

4
(13)

for every 𝑥
𝑖
∈ 2(𝑊 ∩ 𝐴

𝑖
) with 1 ≤ 𝑖 ≤ 𝑛. We choose a

decreasing sequence 𝑊 ⊃ 𝑊(1) ⊃ 𝑊(2) ⊃ ⋅ ⋅ ⋅ ⊃ 𝑊(𝑛 − 1)

of elements ofN
𝑤∗

(𝐸


)(0) by the process of (𝑛 − 1) steps as
follows.

At the first step, we consider the (𝑛 − 1)-linear mapping:

(𝑧
1
, . . . , 𝑧

𝑛−1
) → 𝑢 (𝑧

1
, . . . , 𝑧

𝑛−1
, 𝑥
𝑛𝑊

) , (14)

belonging to 𝐿
𝑤
(
𝑛−1

𝐸; 𝐹). By the assumption of induction,
there exists𝑊(1) ∈ N

𝑤
∗(𝐸


)(0) with𝑊(1) ⊂ 𝑊 such that

𝛼 (𝑢 (𝑧
1
, . . . , 𝑧

𝑛−1
, 𝑥
𝑛𝑊

)) ≤
1

2𝑛
(15)

for every (𝑧
1
, . . . , 𝑧

𝑛−1
) ∈ (𝑊(1) ∩𝐴

1
) × ((𝑎

2
+𝑊(1)) ∩𝐴

2
) ×

⋅ ⋅ ⋅ × ((𝑎
𝑛−1

+ 𝑊(1)) ∩ 𝐴
𝑛−1

).
At the second step, we consider the (𝑛−1)-linearmapping

(𝑧
1
, . . . , 𝑧

𝑛−2
, 𝑧
𝑛
) → 𝑢 (𝑧

1
, . . . , 𝑧

𝑛−2
, 𝑥
𝑛−1𝑊(1)

, 𝑧
𝑛
) (16)

belonging to 𝐿
𝑤
(
𝑛−1

𝐸; 𝐹). By the assumption of induction,
there exists 𝑊(2) ∈ N

𝑤
∗(𝐸


)(0) with 𝑊(2) ⊂ 𝑊(1) such
that

𝛼 (𝑢 (𝑧
1
, . . . , 𝑧

𝑛−2
, 𝑥
𝑛−1𝑊(1)

, 𝑧
𝑛
)) ≤

1

2𝑛
(17)

for every point (𝑧
1
, . . . , 𝑧

𝑛−2
, 𝑧
𝑛
) of

(𝑊 (2) ∩ 𝐴
1
) × ((𝑎

2
+ 𝑊(2)) ∩ 𝐴

2
)

× ⋅ ⋅ ⋅ × ((𝑎
𝑛−2

+ 𝑊(2)) ∩ 𝐴
𝑛−2

) × ((𝑎
𝑛
+ 𝑊(2)) ∩ 𝐴

𝑛
) .

(18)

Repeating this process, at the (𝑛 − 1)th step, we consider
the (𝑛 − 1)-linear mapping:

(𝑧
1
, 𝑧
3
, . . . , 𝑧

𝑛
) → 𝑢 (𝑧

1
, 𝑥
2𝑊(𝑛−2)

, 𝑧
3
, . . . , 𝑧

𝑛
) , (19)

belonging to 𝐿
𝑤
(
𝑛−1

𝐸; 𝐹). By the assumption of induction,
there exists𝑊(𝑛−1) ∈ N

𝑤
∗(𝐸


)(0)with𝑊(𝑛−1) ⊂ 𝑊(𝑛−2)

such that

𝛼 (𝑢 (𝑧
1
, 𝑥
2𝑊(𝑛−2)

, 𝑧
3
, . . . , 𝑧

𝑛
)) ≤

1

2𝑛
(20)

for every (𝑧
1
, 𝑧
3
. . . , 𝑧
𝑛
) ∈ (𝑊(𝑛−1)∩𝐴

1
)×((𝑎

3
+𝑊(𝑛−1))∩

𝐴
3
) × ⋅ ⋅ ⋅ × ((𝑎

𝑛
+ 𝑊(𝑛 − 1)) ∩ 𝐴

𝑛
). Then we have

𝛼 (𝑢 (𝑥
1𝑊(𝑛−1)

, 𝑥
2𝑊(𝑛−1)

− 𝑥
2𝑊(𝑛−2)

, . . . , 𝑥
𝑛−1𝑊(𝑛−1)

−𝑥
𝑛−1𝑊(1)

, 𝑥
𝑛𝑊(𝑛−1)

− 𝑥
𝑛𝑊

))

≥ 𝛼 (𝑢 (𝑥
1𝑊(𝑛−1)

, 𝑥
2𝑊(𝑛−1)

, . . . , 𝑥
𝑛𝑊(𝑛−1)

))

− ∑

(𝑘𝑖)∈𝐾

𝛼 (𝑢 (𝑥
1𝑊(𝑛−1)

, 𝑥
2𝑊(𝑘

2
)
, . . . , 𝑥

𝑛𝑊(𝑘
𝑛
)
))

≥ 1 − (2
𝑛−1

− 1) ×
1

2𝑛
≥

1

2
,

(21)

where𝐾 = {(𝑘
2
, . . . , 𝑘

𝑛
); 𝑘
𝑖
∈ {𝑛 − 1, 𝑛 − 𝑖}, 𝑖 = 2, . . . , 𝑛} \ {(𝑛 −

1, . . . , 𝑛 − 1)} and𝑊(0) = 𝑊.
If we set

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) = (𝑥

1𝑊(𝑛−1)
, 𝑥
2𝑊(𝑛−1)

− 𝑥
2𝑊(𝑛−2)

, . . . ,

𝑥
𝑛𝑊(𝑛−1)

− 𝑥
𝑛𝑊

) ,

(22)

we have

𝛼 (𝑢 (𝑦
1
, . . . , 𝑦

𝑛
)) ≥

1

2
,

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ (𝑊 ∩ 𝐴

1
) × {2 (𝑊 ∩ 𝐴

2
)}

× ⋅ ⋅ ⋅ × {2 (𝑊 ∩ 𝐴
𝑛
)} .

(23)

This is a contradiction by (13). This completes the proof.

Lemma 3. Let 𝐸 be a locally convex space, let 𝐹 be a complete
locally convex space and let 𝑢 be an 𝑛-linearmapping belonging
to 𝐿
𝑤
(
𝑛

𝐸; 𝐹). Let 𝐴
1
, . . . , 𝐴

𝑛
be absolutely convex bounded

subsets of 𝐸. Then there exists a 𝜎(𝐸


, 𝐸


)-continuous mapping
�̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

from 𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
into 𝐹 such that �̃�

𝐴
1
×⋅⋅⋅×𝐴

𝑛

= 𝑢 on
𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
.

Proof. Let 𝑎
𝑖
be any point of the 𝜎(𝐸, 𝐸)-closure𝐴

𝑖
of𝐴
𝑖
for

each 𝑖 with 1 ≤ 𝑖 ≤ 𝑛. At first, we shall show that a filter of 𝐹

F (𝑎
1
, . . . , 𝑎

𝑛
) = {𝑢 ((𝑎

1
+ 𝑉) ∩ 𝐴

1
, . . . , (𝑎

𝑛
+ 𝑉) ∩ 𝐴

𝑛
) ;

𝑉 ∈ N
𝑤
∗ (𝐸


) (0)}

(24)

is a Cauchy filter. Let 𝛼 be an arbitrary continuous seminorm
of 𝐹. By Lemma 2 there exists 𝑉 ∈ N

𝑤
∗(𝐸


)(0) such that

𝛼 (𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)) <

1

𝑛
, (25)

for every point (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) of

𝑛

⋃

𝑖=1

(

𝑛

∏

𝑗=1

((𝛾
𝑖𝑗
𝑎
𝑗
+ 2𝑉) ∩ 2𝐴

𝑗
)) , (26)
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where 𝛾
𝑖𝑗
= 1 (𝑖 ̸= 𝑗) and 𝛾

𝑖𝑗
= 0 (𝑖 = 𝑗). Then, we have

𝛼 (𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) − 𝑢 (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
))

≤ 𝛼 (𝑢 (𝑥
1
− 𝑦
1
, 𝑥
2
, . . . , 𝑥

𝑛
))

+ 𝛼 (𝑢 (𝑦
1
, 𝑥
2
− 𝑦
2
, 𝑥
3
, . . . , 𝑥

𝑛
))

+ 𝛼 (𝑢 (𝑦
1
, 𝑦
2
, 𝑥
3
− 𝑦
3
, 𝑥
4
, . . . , 𝑥

𝑛
))

+ ⋅ ⋅ ⋅ + 𝛼 (𝑢 (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛−1
, 𝑥
𝑛
− 𝑦
𝑛
))

≤ 𝑛 ×
1

𝑛
= 1,

(27)

for every (𝑥
1
, . . . , 𝑥

𝑛
), (𝑦
1
, . . . , 𝑦

𝑛
) ∈ ∏

𝑛

𝑖=1
((𝑎
𝑖
+𝑉)∩𝐴

𝑖
).Thus,

the filter F(𝑎
1
, . . . , 𝑎

𝑛
) is a Cauchy filter. Since 𝐹 is complete

and Hausdorff, there exists uniquely the limit point of the
filter F(𝑎

1
, . . . , 𝑎

𝑛
) for every (𝑎

1
, . . . , 𝑎

𝑛
) ∈ 𝐴

1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
.

We denote by �̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

(𝑎
1
, . . . , 𝑎

𝑛
) the limit point of the filter

F(𝑎
1
, . . . , 𝑎

𝑛
) for every (𝑎

1
, . . . , 𝑎

𝑛
) ∈ 𝐴

1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
. Then

�̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

defines 𝜎(𝐸


, 𝐸


)-continuous mapping from 𝐴
1
×

⋅ ⋅ ⋅ × 𝐴
𝑛
into 𝐹 with

�̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

= 𝑢 on 𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
. (28)

This completes the proof.

Lemma 4. Let 𝐸 be a locally convex space, let 𝐹 be a complete
locally convex space, and let𝑢 be an 𝑛-linearmapping belonging
to 𝐿
𝑤
(
𝑛

𝐸; 𝐹).Then, there exists �̃� ∈ 𝐿
𝑎
(
𝑛

𝐸


; 𝐹)with �̃� | 𝐸
𝑛

= 𝑢

such that �̃� is 𝜎(𝐸, 𝐸)-continuous on 𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
for all

absolutely convex bounded subsets 𝐴
1
, . . . , 𝐴

𝑛
of 𝐸.

Proof. By Lemma 3 for all absolutely convex bounded subsets
𝐴
1
, . . . , 𝐴

𝑛
of 𝐸, there exists a 𝜎(𝐸, 𝐸)-continuousmapping

�̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

from𝐴
1
×⋅ ⋅ ⋅×𝐴

𝑛
to𝐹with �̃�

𝐴
1
×⋅⋅⋅×𝐴

𝑛

= 𝑢 on𝐴
1
×⋅ ⋅ ⋅×

𝐴
𝑛
. If 𝐴
1
, . . . , 𝐴

𝑛
, 𝐵
1
, . . . , 𝐵

𝑛
are absolutely convex bounded

subsets of 𝐸 with 𝐴
𝑖
∩ 𝐵
𝑖

̸= 0 for 1 ≤ 𝑖 ≤ 𝑛, we have

�̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

= �̃�
𝐵
1
×⋅⋅⋅×𝐵

𝑛

(29)

on (𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
) ∩ (𝐵

1
× ⋅ ⋅ ⋅ × 𝐵

𝑛
). Thus, by Lemma 1, we

can define an n-linear mapping �̃� from 𝐸

𝑛 into 𝐹 by setting

�̃� = �̃�
𝐴
1
×⋅⋅⋅×𝐴

𝑛

on 𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
for all absolutely convex

bounded subsets 𝐴
1
, . . . , 𝐴

𝑛
of 𝐸. Then, the mapping �̃�

satisfies all required conditions of this lemma.This completes
the proof.

The following theorem is proved by Aron et al. [4],
González and Gutiérrez [5], Honda et al. [6].

Theorem 5. Let 𝐸 be a locally convex space and let 𝐹 be a
complete locally convex space. Let 𝑝 ∈ 𝑃(

𝑛E; 𝐹). Then, the
following statements are equivalent.

(1) 𝑝 ∈ 𝑃
𝑤
(
𝑛

𝐸; 𝐹).
(2) For each absolutely convex bounded subset 𝑀 of 𝐸, 𝑝

can be extended 𝜎(𝐸


, 𝐸


)-continuously to 𝑀
∘∘, where

𝑀
∘∘ is the bipolar set of𝑀 for the dual pair ⟨𝐸, 𝐸⟩.

(3) There exists 𝑝 ∈ 𝑃
𝑎
(
𝑛

𝐸


; 𝐹) such that 𝑝 is 𝜎(𝐸, 𝐸)-
continuous on each equicontinuous subset of 𝐸 and
𝑝 | 𝐸 = 𝑝.

(4) 𝑝 is weakly uniformly continuous on every bounded
subset of 𝐸.

Proof. We shall show that (1) implies (3). There exists a
symmetric 𝑛-linear mapping 𝑢 from 𝐸

𝑛 into 𝐹 such that
𝑝(𝑥) = 𝑢(𝑥, . . . , 𝑥) for every 𝑥 ∈ 𝐸. By the polarization
formula, we have 𝑢 ∈ 𝐿

𝑤
(
𝑛

𝐸, 𝐹). By Lemma 4 there exists
�̃� ∈ 𝐿

𝑎
(
𝑛

𝐸


; 𝐹) with �̃� | 𝐸
𝑛

= 𝑢 such that �̃� is 𝜎(𝐸


, 𝐸


)-
continuous on𝐴

1
×⋅ ⋅ ⋅×𝐴

𝑛
for all absolutely convex bounded

subsets 𝐴
1
, . . . , 𝐴

𝑛
of 𝐸. We define 𝑝 ∈ 𝑃

𝑎
(
𝑛

𝐸


; 𝐹) by 𝑝(𝑥) =

�̃�(𝑥, . . . , 𝑥) for every 𝑥 ∈ 𝐸
. By Lemma 1, 𝑝 satisfies all

required conditions of the statement (3).
(3) implies (2) since 𝑀

∘∘ is equicontinuous for every
absolutely convex bounded subset𝑀 of 𝐸.

We shall show that (2) implies (4). Let 𝐴 be a bounded
subset of 𝐸. We denote by 𝑀 the absolutely convex hull
of 𝐴 in 𝐸. Then, 𝑀 is a bounded subset of 𝐸, and 𝐴 ⊂

𝑀. By statement (2), there exists a 𝜎(𝐸


, 𝐸


)-continuous
mapping 𝑝

𝑀
from 𝑀 into 𝐹 such that 𝑝

𝑀
= 𝑝 on 𝑀.

Since by Lemma 1 𝑀 is 𝜎(𝐸, 𝐸)-compact, 𝑝
𝑀
is uniformly

𝜎(𝐸


, 𝐸


)-continuous on𝑀. Since 𝑝
𝑀

= 𝑝 on 𝐴, 𝑝 is weakly
uniformly continuous on 𝐴. This implies (4). It is clear that
(4) implies (1). This completes the proof.

3. The Tensor Product Representation of
Polynomials in Locally Convex Spaces

For any 𝑢 ∈ 𝐿
𝑎
(
𝑛

𝐸; 𝐹), we set

𝑠 (𝑢) (𝑥
1
, . . . , 𝑥

𝑛
) =

1

𝑛!
∑

𝜎∈𝑆
𝑛

𝑢 (𝑥
𝜎(1)

, . . . , 𝑥
𝜎(𝑛)

) (30)

for every (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝐸
𝑛, where 𝑆

𝑛
is the permutation group

of degree 𝑛. Then, 𝑠(𝑢) is a symmetric 𝑛-linear mapping from
𝐸
𝑛 to 𝐹 satisfying

𝑢 (𝑥, . . . , 𝑥) = 𝑠 (𝑢) (𝑥, . . . , 𝑥) (31)

for every 𝑥 ∈ 𝐸. We denote 𝐿
𝑠

𝑎
(
𝑛

𝐸; 𝐹) by the space of all
symmetric 𝑛-linear mappings from 𝐸

𝑛 to 𝐹. Let Δ
𝑛
be the

mapping from 𝐸 into 𝐸
𝑛 defined by

Δ
𝑛
(𝑥) = (𝑥, . . . , 𝑥) for every 𝑥 ∈ 𝐸. (32)

For any 𝑢 ∈ 𝐿
𝑎
(
𝑛

𝐸; 𝐹), we define an 𝑛-homogeneous
polynomial Δ∗

𝑛
(𝑢) by

Δ
∗

𝑛
(𝑢) = 𝑢 ∘ Δ

𝑛
. (33)

The mapping

Δ
∗

𝑛
: 𝐿
𝑠

𝑎
(
𝑛

𝐸; 𝐹) → 𝑃
𝑎
(
𝑛

𝐸; 𝐹) (34)

is surjective.
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Theorem 6 (polarization formula). Let 𝑝 ∈ 𝑃
𝑎
(
𝑛

𝐸; 𝐹) and let
𝑢 ∈ 𝐿
𝑠

𝑎
(
𝑛

𝐸; 𝐹). If Δ∗
𝑛
(𝑢) = 𝑝, then

𝑢 (𝑥
1
, . . . , 𝑥

𝑛
) =

1

2𝑛𝑛!
∑

𝜖
𝑖
=±1

𝜖
1
⋅ ⋅ ⋅ 𝜖
𝑛
𝑝(

𝑛

∑

𝑖=1

𝜖
𝑖
𝑥
𝑖
) . (35)

By the above polarization formula, the mapping Δ
∗

𝑛
:

𝐿
𝑠

𝑎
(
𝑛

𝐸; 𝐹) → 𝑃
𝑎
(
𝑛

𝐸; 𝐹) is a linear isomorphism.
We denote by⨂

𝑛
𝐸 the 𝑛-fold tensor product space of 𝐸.

Let 𝑖
𝑛
be the linear mapping from 𝐸

𝑛 into⨂
𝑛
𝐸 defined by

𝑖
𝑛
(𝑥
1
, . . . , 𝑥

𝑛
) = 𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
(36)

for every (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝐸
𝑛. For any 𝑢 ∈ 𝐿

𝑎
(
𝑛

𝐸; 𝐹), there exists
a unique 𝑖∗

𝑛
(𝑢) ∈ 𝐿

𝑎
(⨂
𝑛
𝐸; 𝐹) such that the diagram

En

in i∗n (u)

F

u

⨂
n

E

(37)

commutes. The mapping

𝑖
∗

𝑛
: 𝐿
𝑎
(
𝑛

𝐸; 𝐹) → 𝐿
𝑎
(⨂

𝑛

𝐸; 𝐹) (38)

is a linear isomorphism. Each element of ⨂
𝑛
𝐸 has a repre-

sentation of the form
ℓ

∑

𝑖=1

𝑥
𝑖,1

⊗ 𝑥
𝑖,2

⊗ ⋅ ⋅ ⋅ ⊗ 𝑥
𝑖,𝑛
. (39)

However, this representation will never be unique. We
denote by 𝛿

𝑛
the mapping of 𝐸 into⨂

𝑛
𝐸 defined by

𝛿
𝑛
(𝑥) = 𝑥 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥 (40)

for every 𝑥 ∈ 𝐸.

Proposition 7. A mapping 𝑝 : 𝐸 → 𝐹 is an 𝑛-homogeneous
polynomial if and only if there exists 𝑇 ∈ 𝐿

𝑎
(
𝑛

𝐸; 𝐹) such that
the diagram

Δn

𝛿n
p

u

FT

EnE

⨂
n

E

(41)

commutes.

For any 𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
∈ ⨂
𝑛
𝐸, we set

𝑠 (𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
) =

1

𝑛!
∑

𝜎∈𝑆
𝑛

𝑥
𝜎(1)

⊗ ⋅ ⋅ ⋅ ⊗ 𝑥
𝜎(𝑛)

. (42)

We denote by ⨂
𝑛,𝑠
𝐸 the subspace of ⨂

𝑛
𝐸 generated by

𝑠(𝑥
1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑛
), 𝑥
𝑖
∈ 𝐸. The space ⨂

𝑛,𝑠
𝐸 is called the 𝑛-fold

symmetric tensor product space of 𝐸. Elements of ⨂
𝑛,𝑠
𝐸 are

called 𝑛-symmetric tensors. Clearly, every tensor of the form
𝑥 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥 is a symmetric tensor. Moreover, each element
𝜃 in ⨂

𝑛,𝑠
𝐸 can be expressed as a finite sum (not necessarily

unique) of the form

∑

𝑖

𝑥
𝑖
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑖
. (43)

For any 𝑝 ∈ 𝑃
𝑎
(
𝑛

𝐸; 𝐹), there exists a unique 𝑗
∗

𝑛
(𝑝) ∈

𝐿
𝑎
(⨂
𝑛,𝑠
𝐸; 𝐹) such that the diagram

𝛿n

p

FE

j∗n (p)

⨂
n,s

E

(44)

commutes. The mapping

𝑗
∗

𝑛
: 𝑃
𝑎
(
𝑛

𝐸; 𝐹) → 𝐿
𝑎
(⨂

𝑛,𝑠

𝐸; 𝐹) (45)

is a linear isomorphism. Let 𝑃(𝑛𝐸; 𝐹), 𝐿(𝑛𝐸; 𝐹), and 𝐿
𝑠

(
𝑛

𝐸; 𝐹)

be, respectively, the spaces of continuous 𝑛-homogeneous
polynomials from 𝐸 into 𝐹 and the continuous symmetric 𝑛-
linear mappings from 𝐸 into 𝐹. The restrictions

Δ
∗

𝑛
: 𝐿 (
𝑛

𝐸; 𝐹) → 𝑃 (
𝑛

𝐸; 𝐹) ,

Δ
∗

𝑛
: 𝐿
𝑠

(
𝑛

𝐸; 𝐹) → 𝑃 (
𝑛

𝐸; 𝐹) ,

𝑠 : 𝐿 (
𝑛

𝐸; 𝐹) → 𝐿
𝑠

(
𝑛

𝐸; 𝐹)

(46)

are well-defined. For each 𝛼 ∈ 𝑐𝑠(𝐸) and 𝜃 = ∑
𝑖
𝑥
𝑖
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑖
∈

⨂
𝑛,𝑠
𝐸, we set

𝜋
𝛼,𝑛

(𝜃) = inf {∑

𝑖

𝛼(𝑥
𝑖
)
𝑛

| 𝜃 = ∑

𝑖

𝑥
𝑖
⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝑖
} . (47)

𝜋
𝛼,𝑛

is a seminorm on ⨂
𝑛,𝑠
𝐸. We define the 𝜋-topology

or the projective topology on ⨂
𝑛,𝑠
𝐸 as the locally convex

topology generated by {𝜋
𝛼,𝑛

}
𝛼∈𝑐𝑠(𝐸)

. We denote by⨂
𝑛,𝑠,𝜋

𝐸 the
space endowed with 𝜋-topology and denote by ⨂

𝑛,𝑠,𝜋
𝐸 the

completion ⨂
𝑛,𝑠,𝜋

𝐸. Then, the following is valid (cf. Dineen
[2]).

Proposition 8. Let 𝐸 be a locally convex space, then we have

𝐿 (
𝑛

𝐸; 𝐹) ≅ 𝐿(⨂

𝑛.𝜋

𝐸; 𝐹) ,

𝐿
𝑠

(
𝑛

𝐸; 𝐹) ≅ 𝐿(⨂

𝑛.𝑠,𝜋

𝐸; 𝐹) ≅ 𝑃 (
𝑛

𝐸; 𝐹) .

(48)
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Let E(𝐸


) be the family of all equicontinuous subsets of
𝐸
 with respect to the dual pair ⟨𝐸, 𝐸⟩. We denote by O

𝑤
∗
,𝜖

the family of subsets of 𝐸 defined by

O
𝑤
∗
,𝜖
= {𝑉 | 𝑉 ⊂ 𝐸



, 𝑉 ∩ 𝑀 are

𝜎 (𝐸


, 𝐸


) -open in 𝑀 for all 𝑀 ∈ E (𝐸


)} .

(49)

We denote by 𝜏
𝑤
∗
,𝜖
the topology on 𝐸

 such that the family
of all 𝜏

𝑤
∗
,𝜖
-open sets coincides with O

𝑤
∗
,𝜖
. By Theorem 5, the

following is valid.

Proposition 9. A 𝑛-homogeneous polynomial 𝑝 on 𝐸 is of
weak type if and only if there exists a 𝜏

𝑤
∗
,𝜖
-continuous 𝑛-

homogeneous polynomial 𝑝 on 𝐸
 such that 𝑝 = 𝑝 on 𝐸.

However, in general, the topology 𝜏
𝑤
∗
,𝛽
is not a locally

convex topology (cf. Kōmura [7]).

Definition 10. A locally convex space 𝐸 is called a DF-space if
it contains a countable fundamental system of bounded sets
and if the intersection of any sequence of absolutely convex
neighborhoods of 0 which absorbs all bounded sets is itself a
neighborhood of 0.

Grothendieck [8, 9] proved that the strong dual space of a
metrizable locally convex space is a DF-space and the strong
dual space of a DF-space is a Fréchet space.

All Banach spaces are DF-spaces. The following result is
known.

Proposition 11 (Banach-Dieudonné theorem). Let 𝐸 be a
metrizable locally convex space. Then, the topology 𝜏

𝑤
∗
,𝜖
on 𝐸


is the topology of uniform convergence on all compact sets in 𝐸.

Proof. The proof is on Köthe [10, § 21–10].

If 𝐸 is a DF space, then 𝐸


𝛽
is a Fréchet space. Therefore,

by Proposition 11 the following is valid.

Proposition 12. The topology 𝜏
𝑤
∗
,𝜖
on 𝐸
 is the topology of

uniform convergence on all compact sets in 𝐸
.

We denote by 𝛼
𝐾
the seminorm on 𝐸

 defined by

𝛼
𝐾
(𝑥


) = sup {

⟨𝑥


, 𝑥


⟩

| 𝑥


∈ 𝐾} (50)

for every compact subsets𝐾 of𝐸
𝛽
.We denote by 𝜏

0
the locally

convex topology on 𝐸
 defined by the set of seminorms:

{𝛼
𝐾
| 𝐾 is every compact set of 𝐸} . (51)

We denote by 𝐸
𝜏
0

the locally convex space 𝐸 defined the set
of seminorms:

{𝛼
𝐾
|
𝐸
| 𝐾 is every compact set of 𝐸} . (52)

An 𝑛-homogeneous polynomial 𝑝 on 𝐸
 is 𝜎(𝐸



, 𝐸


)-
continuous on every equicontinuous subsets of𝐸 if and only
if 𝑝 is 𝜏

𝑤
∗
,𝜖
-continuous on 𝐸

. Thus, by Propositions 9 and 11,
we have the following theorem.

Theorem 13. If an 𝑛-homogeneous polynomial 𝑝 on 𝐸 is of
weak type if and only if 𝑝 is 𝜏

𝑜
-continuous in 𝐸 and continuous

on 𝐸 with the initial topology of 𝐸.

Then, we can obtain the following topological tensor
product representation of polynomials of weak type.

Theorem 14. Let 𝐸 be a DF space, then we have

𝐿(⨂

𝑛,𝑠𝜋

𝐸
𝜏
0

; 𝐹) ∩ 𝐿(⨂

𝑛,𝑠𝜋

𝐸; F) ≅ 𝑃
𝑤
(
𝑛

𝐸; 𝐹) (53)

for every complete locally convex space 𝐹.

A topological space 𝑋 is called a 𝑘-space if its topology
is localized on its compact set;, that is, 𝑈 ⊂ 𝑋 is open if and
only if 𝑈 ∩ 𝐾 is open in 𝐾, with the induced topology, for
each compact subset 𝐾 of𝑋. A mapping from a 𝑘-space into
a topological space is continuous if and only if its restriction
to each compact set is continuous.

Let 𝑢 be a mapping from a locally convex space 𝐸 into
a locally convex space 𝐹. If 𝐸 is a 𝑘-space and if 𝑢 is
𝜎(𝐸, 𝐸



)-continuous on every bounded subset of 𝐸, then 𝑢

is continuous on 𝐸 with the initial topology of 𝐸. Thus, we
obtain the following theorem.

Theorem 15. If 𝐸 is a DF space and a 𝑘-space, then we have

𝐿(⨂

𝑛,𝑠𝜋

𝐸
𝜏
0

; 𝐹) ≅ 𝑃
𝑤
(
𝑛

𝐸; 𝐹) (54)

for every complete locally convex space 𝐹.

If 𝐸 is a Banach space, then 𝐸 is a DF-space and a 𝑘-space.
Thus, we have the following corollary.

Corollary 16. If 𝐸 is a Banach space, then we have

𝐿(⨂

𝑛,𝑠𝜋

𝐸
𝜏
0

; 𝐹) ≅ 𝑃
𝑤
(
𝑛

𝐸; 𝐹) (55)

for every complete locally convex space 𝐹.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Kwang Ho Shon was supported by Basic Science Research
Program through theNational Research Foundation of Korea
(NRF) funded by theMinistry of Science and ICT and Future
Planning (2013R1A1A2008978).



Abstract and Applied Analysis 7

References

[1] S. Dineen, Complex Analysis in Locally Convex Spaces, vol. 57
of North-Holland Mathematics Studies, North-Holland, Ams-
terdam, The Netherlands, 1981.

[2] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces,
Springer Monographs in Mathematics, Springer, London, UK,
1999.

[3] J. Mujica, Complex Analysis in Banach Spaces, vol. 120 ofNorth-
Holland Mathematics Studies, North-Holland, Amsterdam,The
Netherlands, 1986.

[4] R. M. Aron, C. Hervés, and M. Valdivia, “Weakly continuous
mappings onBanach spaces,” Journal of Functional Analysis, vol.
52, no. 2, pp. 189–204, 1983.
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