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In this paper, we mainly study the properties of transcendental meromorphic solutions f(z) of difference Painlevé equations w(z +
Dw(z - 1)(w(z) - 1) = n(z)wz(z) - Mz)w(z) and w(z + Nw(z — 1)(w(z) — 1) = y(z)w(z) and obtain precise estimations of the
exponents of convergence of zeros, poles of Af(z) and Af(z)/ f(z), and of fixed points of f(z + ¢) for any ¢ € C.

1. Introduction and Main Results

At the beginning of last century, Painlevé, Gambier, and
Fuchs classified a large number of second-order differential
equations in terms of a characteristic which is now known
as the Painlevé property [1-4]. Ablowitz et al. [5] considered
discrete equations as delay equations in the complex plane
which enabled them to utilize complex analytic methods.
They looked at, for instance, difference equations of the type

y(z+1)+y(z-1)=R(zy), )

where R is rational in both of its arguments. It is shown that
if (1) has at least one nonrational finite-order meromorphic
solution, then deg R < 2.

In this paper, we use the basic notions of Nevanlinna’s
theory (see [6, 7]). In addition, we use the notations

o(w) to denote the order of growth of the meromor-
phic function w(z);

Mw) and A(1/w), respectively, to denote the expo-
nents of convergence of zeros and poles of w(z);

T(w) to denote the exponent of convergence of fixed
points of w(z).

The quantity §(a, w) is called the deficiency of the value
a to w(z). Furthermore, we denote by S(r, w) any quantity

satistying S(r,w) = o(T'(r,w)) for all » outside of a set with
finite logarithmic measure and by

S (w) = {a meromorphic: T (r,a) =S (r,w)}  (2)

the field of small functions with respect to w. A meromorphic
solution w of a difference (or differential) equation is called
admissible if all coefficients of the equation are in §'(w).

Recently, Halburd and Korhonen [8] considered (1) and
got the following theorem.

Theorem A. Let R(z, y) be rational in both of its arguments
such that its denominator has at least two distinct roots. If
the second-order difference equation (1) admits a nonrational
meromorphic solution of finite order such that there is a finite
real constant ¢ > 1, such that for sufficiently large r,

c_lﬁl (r,w) <nyy (r,w) < cny (r,w) (3)

holds, then (1) is a difference Painlevé II equation

Az+p)y+v

yErDaye-n= e @)

where A, y, and v are constants.
Remark 1. Ifwhasapoleatz = z,, we say the singularity at z,

is of type I if w(z, £ 1) = +e(e = 1) and of type IT if w(z, +
1) = Fe. We denote by 7;(r, w) the number of type I poles
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(ignoring multiplicities) in the disc {z : |z| < r}. Similarly,
the function 71, (r, w) counts poles of type II.

In 2010, Chen and Shon [9] researched the properties of
finite-order meromorphic solutions of difference Painlevé I
and II equations. They mainly discussed the existence and
the forms of rational solutions and value distribution of
transcendental meromorphic solutions.

For difference Painlevé III equations, we recall the follow-
ing.

Theorem B (see [10]). Assume that equation
w(z+1)w(z-1)=R(z,w) (5)

has an admissible meromorphic solution w of hyperorder less
than one, where R(z,w) is rational and irreducible in w and
meromorphic in z, then either w satisfies a difference Riccati
equation

a(z)w(z) + B(2)

W@ +7) ()

w(z+1)=
where a(z), B(z), y(z) € S(w) are algebroid functions or (5)
can be transformed to one of the following equations:

_ 1@ w () - A (@) w(2) +p(2)
(w(2) - 1) (w(2) -7 (2))

wz+Dw(z-1)

>

(7a)
2
wE+Dwe-1) = TV E-A@wE = o,
w(z)-1
wz+ Yw(-1)= 1B@@=-1E) (7¢)
w(z)-1
wiz+DwiEz-1)=hE)uw"(z). (7d)

In (7a), the coefficients satisfy KZ(Z)[/!(Z +Du(z-1) = Hz(z),
Mz + Du(z) = k(2)Mz - Dz + 1), k(2)A(z + 2)Mz - 1) =
k(z — 1)Mz)A(z + 1), and one of the following:
D=1z + vz -1) =1, x(z) = v(z);
2)nz+1)=n(z-1)=vz), k=1

In (7b), n(z)n(z +1) = 1 and Mz + 2)A(z - 1) = M2)A(z +1).
In (7¢), the coefficients satisfy one of the following:

(1) # = 1 and either A(z) = Mz + )Mz — 1) or A(z +
Az - 3) = Mz +2)A(z - 2);

2) Mz+DAMz-1) = Mz +2)Mz-2), 5(z+ DA(z +1) =
Mz +2)n(z - 1), and n(z)n(z — 1) = n(z + 2)n(z - 3);

(3) n(z + 2)n(z - 2) = n(z)n(z — 1), Mz) = n(z - 1);

(4) Mz +3)A(z - 3) = Mz + 2)Mz — 2)A(2), y(z)AM(z) =
n(z + 2)n(z - 2).

In (7d), h(z) € S(w) andm € Z, |m| < 2.
Zhang and Yang [11] investigated the difference Painlevé

III equations (7a)-(7d) with constant coefficients and
obtained the following results.
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Theorem C. If w is a nonconstant meromorphic solution of
difference equation (7d), where m = -2,-1,0,1 and h is a
nonzero constant. Then

(i) w cannot be a rational function;
(i) Mw) = 7(w) = o(w).

Lan and Chen [12] studied some difference Painlevé III
equations and proved the following.

Theorem D. Suppose that h(z) is a nonconstant rational func-
tion. Suppose w(z) is a transcendental meromorphic solution
with finite order of (7d), where m = -2,-1,0, 1. Set Aw(z) =
w(z + 1) —w(z). Then

(i) w(z) has no Nevanlinna exceptional value;

(i) MAw) = M1/Aw) = o(w), MAw/w) = AM(1/(Aw/
w)) = o(w).

In general, T(w(z + ¢)) # T(w(z)), where c is a nonzero
constant. For example, w(z) = e°+z, w(z) has no fixed points,
but w(z + 1) = ee” + z + 1 has infinitely many fixed points
and 7(w(z + 1)) = o(w) = 1. Combining Theorems C and
D, we continue to study properties (including fixed points) of
transcendental meromorphic solutions of difference Painlevé
III equations (7b) and (7¢), and obtain the following.

Theorem 2. Suppose that y(z) and A(z) are nonconstant
polynomials. Suppose w(z) is a transcendental meromorphic
solution with finite order of difference Painlevé III equation

wiz+HwEz-1)(w(z)-1) :q(z)wz(z)—/\(z)w(z).
(8)

Then

(i) w(z) has at most one Nevanlinna exceptional value;

(ii) for any ¢ € C, w(z+c) has infinitely many fixed points,
and T(w(z + ¢)) = o(w);

(iii)) MAw) = M1/Aw) = o(w) and A(1/(Aw/w)) = o(w);

(iv) if there exists some nonconstant rational function b(z)
such that M(z) = b(z)(n(z)-b(z) +1), then MAw/w) =
o(w).

Theorem 3. Suppose that n(z) is a nonconstant polynomiall.
Suppose w(z) is a transcendental meromorphic solution with
finite order of difference Painlevé I1I equation

wiE+lhwiEz-1)(wz)-1)=1)w(z). 9)
Then

(i) w(z) has no Nevanlinna exceptional value;
(ii) for any c € C, w(z+c) has infinitely many fixed points,
and T(w(z + ¢)) = o(w);
(iii) MAw) = A(1/Aw) = o(w) and A(1/(Aw/w)) = o(w);

(iv) if there exists some rational function b(z) such that
n(z) = b(z)(b(z) - 1), then A(Aw/w) = o(w).
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2. Lemmas for the Proofs of Theorems

Lemma 4 (see [13]). Let f(z) be a meromorphic function of
finite order o and let 1y be a nonzero complex number. Then for
each € > 0, one has

" <r’ fi‘z (Z)ﬂ) ) o (r’ f{z(i)n) ) =0

Lemma 5 (see [13]). Let f(z) be a meromorphic function with
order o = o(f), 0 < 00, and let nj be a fixed nonzero complex
number, then for each € > 0, one has

T(r,f(z+n)=T(r, f(2))+0O (r”_lﬂ) +O (logr).
(11)

Lemmas 4 and 5 show the following.

Lemma 6. Let ¢ be a nonzero constant and f(z) be a
meromorphic function with finite order o. Then for each & > 0,
one has

N(r, ﬁ) = N(r, ]%) +0(r" ") + O (logr).
(12)

Lemma 7 (see [14, 15]). Let w be a transcendental meromor-
phic solution of finite order of difference equation

P(z,w) =0, (13)

where P(z,w) is a difference polynomial inw(z). If P(z,a) # 0
for a meromorphic function a € S(w), then

( 1
m|r,
w—

Lemma 8 (see [15]). Let f(z) be a transcendental meromor-
phic solution of finite order o of difference equation of the form

Uz f)P(zf) = Q= f), (15)

whereU(z, f), P(z, f), and Q(z, f) are difference polynomials
such that the total degree deg ;U(z, f) = nin f(2) and its shifts,
and deng(z, f) < n If Uz, f) contains just one term of
maximal total degree in f(z) and its shifts, then for each & > 0,

m(r,P(z, f)) =0 (rofHE) +8(r, f) (16)

possibly outside of an exceptional set of finite logarithmic
measure.

) = S(rw). (14)
a

3. Proofs of Theorems
Proof of Theorem 2. (i) By (8), we have

wiz+)wEz-Nw(z)

(17)
—wE+DwiEz-1)+q@)w (2)-Az)w(z).
Applying Lemma 8 to (17), we have
m(r,w) =S(r,w), (18)

which yields N(r, w) = T'(r, w) +S(r, w), that is, §(co, w) = 0.

By (17), we have

Alz) _
w(z)

wz+)w(z-1)
w(z) w(z)

1n(2) + (I1-w(2). (19

By (18), (19), and Lemma 4, we obtain
m<r, 1 >Sm<r,w(z+1)>+m<r,w(z_l)>
w(z) w(z) w(z)

+m(r,w(z))+m(r,11(z))+m(r,ﬁ>

=S(r,w(z)).
(20)

Thus,
N <r, L) S Trhw@)+Sthw@), (1)
w(z)

which means that §(0, w) = 0.
Set

Plz,w)=w(z+)w(z-1)(w(z)-1)
(22)
1@ w (2)+ A (2)w(z) = 0.

Assume that w(z) has two Nevanlinna exceptional values
a,c(a#c). By 8(co,w) = 0 and §(0,w) = 0, we see that
ac #0, 00. By Lemma 7, we have P(z,a) = 0 and P(z,¢) = 0.
That is,

a’ (a-1)- azn(z) +al(z) =0,
(23)

Fe-1)- czn(z) +cA(z) =0.
Hence,

(a-on)=(@-c)a+c-1). (24)
Since a # ¢, then#(z) = a+c—11is a constant. This contradicts
the fact that #(z) is a nonconstant polynomial. So, w(z) has at
most one Nevanlinna exceptional value.

(ii) For any ¢ € C, substituting z + ¢ for z in (8), we obtain

wiz+c+Dw(z+c-1)(w(z+c)-1)

(25)

=nz+ow’(z+c)-A(z+c)w(z+c).

Set g(z) = w(z + c). Thus, (25) can be written as

gz+1)g(z-1)(g(2) - 1)
) (26)
=n(z+c)g(z)" —A(z+c)g(2).
Set
P (z,9)=9g(z+1)gz-1)(g(z)-1)

(27)

-nz+0) g2’ +A(z+0c)g(z)=0.



Since #(z) and A(z) are polynomials,
P, (z,2)

=Z<@+1ﬂz—D2
<

(28)
—zn(z+c)+)t(z+c)) # 0.

By P,(z,z) # 0 and Lemma 7, we have m(r,1/(g(z) — z)) =
S(r, g), which follows N(r, 1/(g(z)-z)) = T(r, g)+S(r, g). By
g(z) = w(z+c) and Lemma 5, we have N(r, 1/(w(z+c)-z)) =

T(r,w(z)) + S(r, w(z)). Thus, T(w(z + ¢)) = o(w(z)).
(iil) By (8), we have
wiE+Dhw(iz-1) nE)w(z)-Az)

= . (29)
w(z) w(2) w(z) (w(z) - 1)
Applying Valiron-Mohon'ko theorem and Lemma 5 to (29),

we obtain

2T (1w (2))
()
=T (r wfuz(:)l) wl(uz(z) )> e
<r(n o) () s
- a(uz(:)l)> s(r wi}z(:)l)) HShw@)
ZTG’ﬁiS)>+S@zU@D
(30)
Thus,
T@mma)gT<anSX>+30mm@y (31)

By (31) and Lemma 4, we have

()= ) ()
= T(r, A_w) + S (r,w) (32)
w

>T(r,w)+S(r,w).

Therefore, A(1/(Aw/w)) = o(w), that is, A(1/(Aw/w)) =
o(w).

Substituting w(z + 1) = w(z) + Aw(z), w(z - 1) = w(z) -
Aw(z — 1) into (8), we see
(w(z) + Aw (2)) (w(z) — Aw (z — 1))
1@ (@) -A@w) (33)

w(z)-1
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that is,

(Aw(z)-Aw(z-1)w(z) - Aw(z) Aw(z - 1)

-w’ (2) + (1(2) + 1) w’ (2) -
w(z)-1

Let z, be a zero of w, by (33), z, is a zero of w(z) + Aw(z) or
w(z) — Aw(z — 1). Since w(z,) = 0, then z, must be a zero of
Aw(z) or Aw(z — 1). Thus, by (21) and Lemma 6, we obtain

T (r,w(2))

1 1
SN(T‘,W>+N(T,m>+S(T‘,w(Z))

= 2N <r, Awl(z)) +S(r, Aw (2)) + S (r,w (2))

A(2)w(2) (34)

S2N<r >+S(r,w(Z))-

1
T Aw (2)
(35)
Hence, o(w) < A(Aw), that is, A(Aw) = o(w).
Applying Valiron-Mohon'’ko Theorem and Lemma 5 to
(34), we deduce

3T (r,w (2))

-T (r, —w’ (2) + (1 (2) + 1) w’ (2) - /\(Z)w(z))
w(z)-1
+S(r,w(z))
=T (r,(Aw (z) - Aw(z - 1)) w(z) - Aw (2) Aw (z - 1))
+S(r,w(z))

<T(r,w(z))+2T (r,Aw(2)) + 2T (r, Aw (z — 1))
+S(r,w(z))

=T (r,w(z))+4T (r, Aw (2))
+S(r,Aw (2)) + S (r,w (2))

<T(r,w(z)) +4T (r,Aw (2)) + S(r,w (z)) .

Thus,
TwE@) ST rMw@) +SrwE). 67
By (18), (37), and Lemma 4, we have
N (r, Aw) = T (r, Aw) — m (r, Aw)

> T(r,Aw)—m(r,AUw) -m(r,w)

(38)
=T (r,Aw) + S (r,w)

2%T(r,w)+$(r,w).

Hence, A(1/Aw) > o(w), that is, A(1/Aw) = o(w).
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(iv) Suppose that A(z) = b(z)(1(z) — b(z) + 1), where b(z)
is some nonconstant rational function. Now we prove that
MAw/w) = o(w). Set

Giz)=(Aw@)-Aw(z-1)w(z)-Aw(z) Aw(z-1).

(39)

By (34), (39), and A(z) = b(z)(y(z) — b(z) + 1), we have

~w’ (2) + (n(z) + 1) w? (2) -
w(z)-1

—w (z) (w(2) - b(2)) (w(2) -
w(z)-1

G2) = A(z)w(2)

@) +b(z)-1)

(40)

Since b(z) is a nonconstant rational function, then b(z +
1)/b(z) # b(z)/b(z—1).By (22) and A(z) = b(z)(y(z)-b(z)+
1), we know

P(z,b(2))
=b(z+1)b(z-1)(b(z)-1)
-V’ (2)1(2) +b(2) A (2)
=b(z+ )bz -1)(b(2)-1) - b ()7 (2) ()

+b° (2) (n(z) -
)

Similarly, we obtain P(z,#(z) —b(z)+1) # 0.By P(z,b(z)) #
0,P(z,1(z) — b(z) + 1) # 0and Lemma 7, we have

1
m(r,w_b(z))=8(r,w),

b(z)+1)

b(z+1)b(z—1)

=t (2) (b(2) - )( b)) b@)

1 (42)
m<nw—md+b@y4>25“w*
By (18), (20), (40) and (42), we obtain
1 1 1
() 2l g) o (o)
! (43)
+m(r,w) +m<r,a>
=S(r,w).
By (39), we obtain
G() 1 Aw(z) )
Aw () Aw(z-1) Aw(z) <Aw(z— D 1>w(z) 1.
(44)

It sees from Lemma 4 that
m <r .t >
T Aw (2) Aw (z - 1)
1
<m <r, 2 ) +m <r,
(Aw (2))

=2m <r, Awl(z) ) +S(r, Aw (2)),

< (Aw (z)) )

Aw (z) )
Aw(z-1)

i Aw(z)Aw(z—1)>+m<r’m§z(uz<;>l))
B < Aw(z)Aw(Z_1)>+5(7,Aw(z)).
Hence,

(" Sursat)

1
=2m <r, Aw(2)

From (18), (43), (44), (46) and Lemma 4, we deduce that

1
2’”(“ Aw <z)>
_ < 1
=M\ Aw (z) Aw (z — 1)

(5) ()

+m(r,w(2)) +S(r, Aw (2))

>+S(r,Aw(z)).

> +S(r, Aw (2))

Aw (z) >
T Aw(z - 1)

<m <r, Awl(z) ) +S(r,Aw (2)) + S (r,w (2))

1
< m(r, Aw(z)) +S(r,w(2)),

(47)
which yields
1
m <r, A (z)> =S(r,w(z2)). (48)
By (18) and (48) we have
1 w
m(r,m)=m<r,E>Sm(r,w) o)
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and by (31),
N(r,@) = T(r,%) +S(r,w)>T (r,w) +S(r,w).
(50)
Then MAw/w) > o(w). So, A(Aw/w) = o(w). O
Proof of Theorem 3. (i) By (9), we have
wz+)wEz-1Nw(z)
(51)
=wE+DwE-1)+y()w(z).
Applying Lemma 8 to (51), we have
m(r,w) =S (r,w). (52)

Thus, N(r,w) = T(r,w) + S(r, w), which yields §(co, w) = 0.
Again by (9), we have

nkz) wE+hw(Ez-1)

v@ - 0@ 0@ (w(z)-1). (53)

From (52), (53), and Lemma 4, we deduce that

1 w(z+1) w(z-1)
m(r,a> Sm(r, 0@ >+m<r,—w(z) )
+m(r,w)+m<r,l> (54)
n
=S(r,w),
which follows
N <r, ! ) =T (r,w(z))+S(r,w). (55)
w(z)
Thus, §(0, w) = 0.

Set

Pzw)=wiz+HhwEz-1)(w(E)-1)-ni)w(z).
(56)

For any a € C\ {0}, since #(z) is a nonconstant polynomial,
then P(z,a) = a*(a - 1) - an(z) # 0.By P(z,a) # 0
and Lemma 7, we know that m(r,1/(w — a)) = S(r,w),
which means that N(r, 1/(w —a)) = T(r, w) + S(r, w). Hence,
d(a, w) = 0. Combining §(co, w) = 0,8(0, w) = 0, we see that
w has no Nevanlinna exceptional value.

(ii) For any ¢ € C, substituting z + ¢ for z in (9), we see
that

wz+c+Dw(z+c-1)(w(z+c)-1)
(57)
=n(z+c)w(z+c).

Set g(z) = w(z + ¢). Thus, (57) can be written as

gz+1)gz-1)(g(2)-1)=n(z+c)g(z).  (58)
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Set
P (z,9)=g(z+1)gz-1)(g(z) - 1)
-n(z+c)g(z) =0.

(59)

Since #(z) is a polynomial, then
z+1)(z-1)
z

P (z,2) =z —11(z+c)> #0. (60)
By this and Lemma 7, we have m(r, 1/(g(z) - z)) = S(r, 9),
which follows N(r, 1/(g(z) — z)) = T(r, g(z)) + S(r, g(z)). By
g(z) = w(z + ¢) and Lemma 5, we see that N(r, 1/(w(z +¢) -
z)) = T(r,w(z)) + S(r, w(z)). Thus, T(w(z + ¢)) = o(w(z)).

(iif) Substituting w(z + 1) = w(z) + Aw(z),w(z — 1) =
w(z) — Aw(z — 1) into (9), we have

n(z)w(z)

(w(2) + dw (@) (w(2) - dw (z = 1) = s

(61)

If z, is a zero of w(z), by (61), z, must be a zero of Aw(z)
or Aw(z — 1). Thus, by (55) and Lemma 6, we have

T (r,w(z))
1
=N <r’ w (@

SN<T,®>+N<r,ﬁ>+s<r,w(z»

1
" Aw (z)

>+S(r,w(z))

S2N<r >+S(r,w(z)).
(62)

Hence, o(w) < A(Aw), that is, A(Aw) = o(w).
By (61), we have
(Aw((z)-Aw(z-1)w(z) - Aw(z) Aw(z-1)
W (@) +w (2) + (D) w(2) (63)
B w(z)-1

Applying Valiron-Mohon’ko theorem and Lemma 5 to (63),
we deduce

3T (r,w (2))

3
=T<r) -w’ (2) + w? (2) + 7 (2) w(2)
w(z)-1

) +S(r,w(2))
=T (r,(Aw(z) - Aw (z - 1)) w(2) - Aw (2) Aw (z - 1))
+S(r,w(2))
<T(r,w(z))+2T (r, Aw (2))
+2T (r,Aw(z-1))+S(r,w (z))
=T (r,w(z)) +4T (r, Aw (2))
+S8(r, Aw (2)) + S (r,w (2))

<T(r,w(z))+4T (r,Aw (2)) + S(r,w (2)) .
(64)
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Hence,
%T (ryw(z) <T(r,Aw(2)) +S(r,w(z)). (65)

Combining (65) with (52) and Lemma 4, we have

N (r,Aw) =T (r, Aw) — m (r, Aw)

zT(r,Aw)—m<r,%w>—m(r,w)

(66)
=T (r,Aw) + S (r,w)

1
> 5T(r,w)+S(r,w),

which yields A(1/Aw) > o(w). So, A(1/Aw) = o(w).
By (9), we have

wE+hw(E-1) _ 1 (z)
w(z) w(z) w(z)(w(z)-1)

(67)
Applying Valiron-Mohon’ko theorem and Lemma 5 to (67),
we obtain

2T (r,w (2))

n(z)
“wwxw@—nyw”wu”

(
( w(z+1)w(z-
(

T

Il
~

7 )>+S(r,w(z))

w(z) w(z)

r)w(z+1)> (r,

w(z)

w(z-1)
w(z+1)> < w(z+1)
r, 7,
w(z)

IN
~

>+S(r,w(z))

Il
[N

T

>+S(r,w(z))

I/\

r,

(
( Aw (z)

) +S(r,w(z)).
(68)

Thus,

Aw (z)
w(z)

By (69) and Lemma 4, we see that

()1 (n ) ()
= T(r, A_w) + S (r,w) (70)
w

>T(r,w)+S(r,w).

T(rw(z)<T (r, ) +S(r,w(z).  (69)

Hence, A(1/(Aw/w)) > o(w), that is, A(1/(Aw/w)) = o(w).
(iv) Suppose that 7(z) = b(z)(b(z)—1), where b(z) is some
rational function. Now we prove that A(Aw/w) = o(w). Set

Glz)=(Aw () -Aw(z-1)w(z) - Aw(z) Aw(z-1).

(71)

7
By (63), (71), and r(z) = b(z)(b(z) — 1), we have
G- Y (@) (v (2) - wl(Z) -1(2))
w(z) — 72)
_w(@)w(2)-b(2) (w(z)+b(z)-1)
w(z)-1 ’
Since 1(z) = b(z)(b(z) — 1) is a nonconstant polynomial,

b(z) is a nonconstant rational function. Then b(z + 1)/b(z) #
b(z)/b(z — 1). By (56) and #(z) = b(z)(b(z) — 1), we know

P(z,b(2))

b(z+1)b(z-1)
b(z) b(z)

- 1) # 0. 7

Similarly, we obtain P(z,—b(z) + 1) # 0. By P(z,b(z)) # 0,
P(z,-b(z) + 1) # 0, and Lemma 7, we have

1
m(?’,m) = S(T,U)(Z)),

=#ww@%n<

X (74)
" wErem ) S
‘By (52), (54), (74), and (72), we obtain
e R G R G I
+m(r’w+b— 1) =Snw).

Using the same method as in the proof of (iv) in
Theorem 2, we may obtain m(r, 1/Aw) = S(r, w). By this and
(52), we have

(o) ml ) mernl)
=S(r,w),

and by (69),
N(r,L> = T<r,A—w
Aw/w w

Then A(Aw/w) > o(w). So, A(Aw/w)

>+S(r,w) >T(r,w)+S(r,w).
(77)

= o(w). O
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