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We propose a new method to solve nonlinear semidefinite complementarity problem by combining a continuous method and a
trust-region-type method. At every iteration, we need to calculate a second-order cone subproblem.We show the well-definedness
of the method. The global convergent result is established.

1. Introduction

Thispaper dealswith the semidefinite complementarity prob-
lem (SDCP) with respect to a mapping 𝐹 : 𝑆 → 𝑆, denoted
by SDCP(𝐹), to find an𝑋 ∈ 𝑆 such that

(𝑋, 𝐹 (𝑋)) ∈ 𝑆
+
× 𝑆
+
, ⟨𝑋, 𝐹 (𝑋)⟩ = 0, (1)

where 𝑆 ⊂ 𝑅
𝑛×𝑛 is a set comprising those 𝑋 ∈ 𝑅

𝑛×𝑛

that are real symmetric. SDCP is the generalization of
linear complementarity problems (LCPs) and semidefinite
programs (SDPs) which has wide applications in engineering
and economics [1]. The study of this problem can be dated
back to the work of Shibata et al. [2]. Since then much
attention has been attracted to SDCPs and various reformu-
lations of SDCPs to minimization problem based on merit
functions have been presented [3–6]. In general, there are
two ways to derive the global convergence of an algorithm:
trust-region methods and line search methods. The above
methods proposed for solving SDCP(𝐹) are all based on a
line search strategy;methods based on trust-region technique
are relatively fewer. Despite having been studied by many
researchers [7, 8], trust-region methods are robust, can be
applied to ill-conditioned problems, and have strong global
convergence properties. Therefore, different from the above
methods, we propose a new algorithm based on trust-region
method to solve SDCPs.

A function 𝐹 : 𝑆 → 𝑆 is said to be monotone if

⟨𝑋 − 𝑌, 𝐹 (𝑋) − 𝐹 (𝑌)⟩ ≥ 0 (2)

for any 𝑋,𝑌 ∈ 𝑆. An SDCP(𝐹) is called a monotone
SDCP(𝐹) if the involved function is a monotone function.
The Frobenius norm of a matrix𝑋 is defined by

‖𝑋‖
𝐹
:= ‖𝑋‖ := √⟨𝑋,𝑋⟩. (3)

Let𝐷𝐹(𝑋) : 𝑆 → 𝑆 be a linear operator satisfying

lim
Δ𝑋→0

‖𝐹 (𝑋 + Δ𝑋) − 𝐹 (𝑋) − 𝐷𝐹 (𝑋)Δ𝑋‖

‖Δ𝑋‖
= 0; (4)

then, 𝐹 is said to be Fréchet differentiable at 𝑋 and 𝐷𝐹(𝑋)

is the Fréchet derivative of 𝐹 at 𝑋. The function 𝐹 is said to
be differentiable if it is differentiable at each 𝑋 ∈ 𝑆 and to
be continuously differentiable if also 𝐷𝐹(𝑋) is continuous at
each 𝑋 ∈ 𝑆. In this paper, we suppose that 𝐹 : 𝑆 → 𝑆 is a
continuously differentiable monotone function.

Recently, there has been much interest in SDCP(𝐹). A
few methods have been developed to solve this problem,
such as interior point methods, merit function methods, and
noninterior point continuation/smoothing methods [3–5].

Our new algorithm is based on the following smoothed
Fischer-Burmeister function:

Φ
𝜇
(𝑋) = 𝑋 + 𝐹 (𝑋) − √𝑋2 + 𝐹(𝑋)

2

+ 2𝜇2𝐼, (5)
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where (𝜇, 𝑋, 𝑌) ∈ 𝑅 × 𝑆 × 𝑆 and 𝐼 is the 𝑛 × 𝑛 identity
matrix. This smoothing function was introduced by Kanzow
[9] in the case of the NCP based on the Fischer-Burmeister
function. Let

𝐻
𝜇
(𝑋) :=

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇
(𝑋)

󵄩󵄩󵄩󵄩󵄩

2

. (6)

From Lemma 1 of [3], we know that if 𝜇 → 0, then

𝐻
𝜇
(𝑋) 󳨀→ 𝐻

0
(𝑋
∗

) := [𝑋
∗

− [𝑋
∗

− 𝐹 (𝑋
∗

)]
+
, 0]
𝑇

, (7)

where [𝑋∗ −𝑌∗]
+
denotes the orthogonal projection of𝑋∗ −

𝑌
∗ at 𝑆
+
, whereas by Lemma 2.1 of [4],

𝐻
0
(𝑋
∗

) = 0 ⇐⇒ 𝑋
∗ sloves SDCP (𝐹) . (8)

Thus, we can solve SDCP(𝐹) by using the following approach:
reformulate SDCP(𝐹) as a system of nonsmooth equation
𝐻
0
(𝑋) = 0 and then approximate nonsmooth equations

by parameterized smooth equations 𝐻
𝜇
(𝑋) = 0; we solve

the smooth equations at each iteration and make ‖𝐻
𝜇
(𝑋)‖

decrease gradually by reducing the smoothing parameter 𝜇
to zero. In practice, however, it is usually impossible to solve
the equation𝐻

𝜇
(𝑋) = 0 exactly for 𝜇 > 0.

In this paper, we present a continuous and approximate
method to solve SDCP(𝐹). At each iteration, the method
solves a quadratic semidefinite program, which can be
converted to a linear semidefinite program with a second-
order cone constraint. A subproblem of this kind can be
solved quite efficiently by using some recent software for
semidefinite and second-order cone programs. The method
is shown to be globally convergent under certain assumption.

The rest of this paper is organized as follows. Section 2
gives the algorithm and discusses the well-posedness for the
algorithm; Section 3 analyzes the global convergence for the
new algorithm; Section 4 presents the numerical results for
the new algorithm; Section 5 concludes this paper.

2. The Algorithm

In this section,wewill propose a smoothing trust-region-type
algorithm for solving SDCP(𝐹) and prove that the proposed
algorithm is well-defined.

Define

𝑄
𝜇𝑘
(Δ𝑋) :=

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘
(𝑋
𝑘
) + 𝐷Φ

𝜇𝑘
(𝑋
𝑘
) Δ𝑋

󵄩󵄩󵄩󵄩󵄩

2

. (9)

We begin with a formal statement of the algorithm which
is in the spirit of [10–12].

Algorithm 1 (continuous trust-region-type method).

(S0) (Initialization) Choose 0 < 𝜌
1
< 𝜌
2
< 1, 0 < 𝜎

1
<

1 < 𝜎
2
, 𝑐max ≥ 𝑐min > 0, 𝑐

0
∈ [𝑐min, 𝑐max], 𝑋

0
∈ 𝑆
+
,

Γ
0
:= (1 + 𝜇)‖Φ

0
(𝑋
0
)‖, 𝛽
0
:= ‖Φ

0
(𝑋
0
)‖, 𝜅 := √2𝑛,

𝜇
0
:= ((𝜀/(2Γ

0
𝜅))𝛽
2

0
)
2, and set 𝑘 := 0.

(S1) Find the solution Δ𝑋𝑘 ∈ 𝑆 of the subproblem

min
Δ𝑋∈𝑆

𝑛×𝑛

1

2
𝑐
𝑘
⟨Δ𝑋, Δ𝑋⟩ + 𝑄

𝜇𝑘
(Δ𝑋) s.t. 𝑋𝑘 + Δ𝑋 ⪰ 0. (10)

If 𝜇
𝑘
= 0 and Δ𝑋𝑘 = 0, then STOP.

(S2) Compute the ratio

𝑟
𝑘
:=

𝐻
𝜇𝑘
(𝑋
𝑘
) − 𝐻

𝜇𝑘
(𝑋
𝑘
+ Δ𝑋
𝑘
)

𝐻
𝜇𝑘
(𝑋𝑘) − 𝑄

𝜇𝑘
(Δ𝑋𝑘)

. (11)

If 𝑟
𝑘
≥ 𝜌
1
, then the 𝑘th iteration is called successful,

and we set 𝑋𝑘+1 := 𝑋
𝑘
+ Δ𝑋

𝑘; otherwise, the 𝑘th
iteration is called unsuccessful, and we set 𝑋𝑘+1 :=

𝑋
𝑘.

(S3) If
󵄩󵄩󵄩󵄩󵄩
Φ
0
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
≤ max {𝜂𝛽

𝑘
, 𝜀
−1 󵄩󵄩󵄩󵄩󵄩

Φ
0
(𝑋
𝑘+1

) − Φ
𝜇𝑘
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
} ,

(12)

then set

𝛽
𝑘+1

:=
󵄩󵄩󵄩󵄩󵄩
Φ
0
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

(13)

and choose 𝜇
𝑘+1

such that

0 < 𝜇
𝑘+1

≤ min{(
𝜇

2Γ
0
𝜅
𝛽
2

𝑘+1
) ,

𝜇
𝑘

4
} ; (14)

otherwise, let 𝛽
𝑘+1

:= 𝛽
𝑘
and 𝜇

𝑘+1
:= 𝜇
𝑘
.

(S4) Update 𝑐
𝑘
as follows.

If 𝑟
𝑘
< 𝜌
1
, set 𝑐
𝑘+1

:= 𝜎
2
𝑐
𝑘
.

If 𝑟
𝑘
∈ [𝜌
1
, 𝜌
2
), set 𝑐

𝑘+1
:= mid(𝑐min, 𝑐𝑘, 𝑐max).

If 𝑟
𝑘
≥ 𝜌
2
, set 𝑐
𝑘+1

:= mid(𝑐min, 𝜎1𝑐𝑘, 𝑐max).

(S5) Set 𝑘 ← 𝑘 + 1, and go to (S1).

To verify that Algorithm 1 is well-defined, we need the
following properties of the smoothed Fischer-Burmeister
function (5).

Lemma2 (see [1]). Let (𝜇, 𝑋) ∈ 𝑅×𝑆𝑛×𝑛 andΦ
𝜇
(𝑋) be defined

by (5). Then

(i) if 𝜇 > 0, Φ
𝜇
(𝑋) is continuously differentiable at any

𝑋 ∈ 𝑆
𝑛×𝑛;

(ii) for any 𝜇
1
, 𝜇
2
> 0 and 𝑋 ∈ 𝑆

𝑛×𝑛, it follows that
󵄩󵄩󵄩󵄩󵄩
Φ
𝜇1
(𝑋) − Φ

𝜇2
(𝑋)

󵄩󵄩󵄩󵄩󵄩
≤ √2𝑛

󵄨󵄨󵄨󵄨𝜇1 − 𝜇
2

󵄨󵄨󵄨󵄨 . (15)

Lemma3. Let𝑋𝑘 be a given iterate and letΔ𝑋𝑘 be the solution
of the corresponding subproblem (10). Then

𝐻
𝜇𝑘
(𝑋
𝑘

) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘

) ≥
1

2
𝑐
𝑘
⟨Δ𝑋
𝑘

, Δ𝑋
𝑘

⟩ . (16)

Proof. Since 𝑋
𝑘

≥ 0, the symmetric matrix Δ𝑋 := 0 is
feasible for the subproblem (10). But Δ𝑋𝑘 is a solution of this
subproblem, so we obtain

1

2
𝑐
𝑘
⟨Δ𝑋
𝑘

, Δ𝑋
𝑘

⟩ + 𝑄
𝜇𝑘
(Δ𝑋
𝑘

) ≤ 𝑄
𝜇𝑘
(0) = 𝐻

𝜇𝑘
(𝑋
𝑘

) . (17)

This proves our statement.
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The above lemma ensures that the denominator in the
ratio 𝑟

𝑘
is always nonnegative. Note that this implies that

the sequence {𝐻
𝜇𝑘
(𝑋
𝑘
)} is monotonically nonincreasing. We

next show that this denominator is equal to zero if and only
if the termination criterion in step (S1) is satisfied. Hence,
step (S2) is visited only if the denominator is positive, so that
Algorithm 1 is well-defined.

Lemma 4. Let 𝑋𝑘 be a given iterate and Δ𝑋𝑘 the solution of
the corresponding subproblem.Then𝐻

𝜇𝑘
(𝑋
𝑘
) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘
) = 0

if and only if Δ𝑋𝑘 = 0.

Proof. First assume that Δ𝑋
𝑘

= 0. Then 𝐻
𝜇𝑘
(𝑋
𝑘
) −

𝑄
𝜇𝑘
(Δ𝑋
𝑘
) = 0 since the definition of 𝑄

𝜇𝑘
implies 𝑄

𝜇𝑘
(0) =

𝐻
𝜇𝑘
(𝑋
𝑘
). Conversely, let𝐻

𝜇𝑘
(𝑋
𝑘
) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘
) = 0. Lemma 3

then implies 0 = (1/2)𝑐
𝑘
⟨Δ𝑋
𝑘
, Δ𝑋
𝑘
⟩ = (1/2)‖Δ𝑋

𝑘
‖
2

and
hence Δ𝑋𝑘 = 0.

Next we have to justify our termination criterion in step
(S1). To this end, we will show that this criterion is satisfied
if and only if the current iterate 𝑋𝑘 is a stationary point of
𝐻
𝜇𝑘
(𝑋).
Before we arrive at this result, we first take a closer look

at subproblem. Let 𝑋𝑘 be a given iterate and let Δ𝑋𝑘 be the
unique solution of this subproblem. Since this subproblem
is a convex program with a strictly feasible set, this problem
is equivalent to its KKT conditions. In other words, Δ𝑋𝑘 is
a solution of subproblem if and only if there exist Lagrange
multipliers𝑈𝑘 ∈ 𝑆𝑛×𝑛 such that the following KKT conditions
hold:

𝑐
𝑘
Δ𝑋
𝑘

+ 𝐷𝑄
𝜇𝑘
(Δ𝑋
𝑘

) − 𝑈
𝑘

= 0,

𝑋
𝑘

+ Δ𝑋
𝑘

⪰ 0, 𝑈
𝑘

⪰ 0,

⟨𝑈
𝑘

, 𝑋
𝑘

+ Δ𝑋
𝑘

⟩ = 0.

(18)

Now, if Δ𝑋𝑘 = 0 is the unique solution of this subproblem,
then the system yields

𝐷𝑄
𝜇𝑘
(0) − 𝑈

𝑘

= 0,

𝑋
𝑘

⪰ 0, 𝑈
𝑘

⪰ 0,

⟨𝑈
𝑘

, 𝑋
𝑘

⟩ = 0.

(19)

However, these conditions are nothing, but the KKT condi-
tions for the following problem are

min
𝑋∈𝑆+

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘
(𝑋)

󵄩󵄩󵄩󵄩󵄩

2

. (20)

Summarizing these observations, we obtain the following
result.

Theorem 5. Let 𝜇
𝑘
= 0. If Δ𝑋𝑘 = 0 is the (unique) solution of

the subproblem for some 𝑐
𝑘
> 0, then 𝑋𝑘 is a stationary point

of the original problem. Conversely, if 𝑋𝑘 is a stationary point

of the original problem, then Δ𝑋𝑘 = 0 is the unique solution of
subproblem for every 𝑐

𝑘
> 0.

Proof. Thestatements follow immediately from the preceding
arguments.

3. Convergence Analysis

Throughout this section, we assume that Algorithm 1 gener-
ates an infinite sequence {𝑋𝑘}. Our aim is to establish a global
convergence result for Algorithm 1. More precisely, we will
show any accumulation point of {𝑋𝑘} is a stationary point of
the original problem.

Lemma 6. Let {𝑋𝑘} be a sequence generated by Algorithm 1,
and let 𝜇

𝑘
and {𝑋

𝑘
}
𝑘∈𝐾

be subsequences converging to 0
and some matrix 𝑋

∗, respectively, in such a way that
{𝑐
𝑘
‖Δ𝑋
𝑘
‖}
𝑘∈𝐾

→ 0. Then 𝑋
∗ is a stationary point of the

original problem.

Proof. First note that 𝑋∗ is symmetric positive semidefinite
and hence feasible for original problem. Furthermore, since
𝑐
𝑘
≥ 𝑐min > 0 for all 𝑘 ∈ 𝑁, the assumption {𝑐

𝑘
‖Δ𝑋
𝑘
‖}
𝑘∈𝐾

→

0 implies {‖Δ𝑋𝑘‖}
𝑘∈𝐾

→ 0. By continuity, we also have
𝐷𝐻
𝜇𝑘
(𝑋
𝑘
) → 𝐷𝐻

0
(𝑋
∗
) as 𝑘 → ∞, 𝑘 ∈ 𝐾. This together

with system (18) implies that

𝑈
𝑘

= 𝑐
𝑘
Δ𝑋
𝑘

+ 𝐷𝑄
𝜇𝑘
(Δ𝑋
𝑘

) ,

𝐷𝑄
0
(0) =: 𝑈

∗

(21)

as 𝑘 → ∞, 𝑘 ∈ 𝐾. Therefore, taking the limit 𝑘 → ∞ on
the subsequence𝐾 in the KKT condition (18), we obtain

𝐷𝑄
0
(0) − 𝑈

∗

= 0,

𝑋
∗

⪰ 0, 𝑈
∗

⪰ 0,

⟨𝑈
∗

, 𝑋
∗

⟩ = 0.

(22)

Hence we conclude that 𝑋∗ is a stationary point of the
original problem.

Another main step toward our global convergence result
is contained in the following technical lemma.

Lemma 7. Let {𝑋𝑘} be a sequence generated by Algorithm 1
and {𝑋𝑘}

𝑘∈𝐾
a subsequence converging to some matrix 𝑋∗. If

𝑋
∗ is not a stationary point, then one has lim sup

𝑘→∞,𝑘∈𝐾
𝑐
𝑘
<

∞.

Proof. Let 𝐾 := {𝑘 − 1 | 𝑘 ∈ 𝐾}. Then we have {𝑋𝑘+1}
𝑘∈𝐾

→

𝑋
∗. We will show that lim sup

𝑘→∞,𝑘∈𝐾
𝑐
𝑘+1

< ∞. Assume the
contrary. Then, if necessary, we may suppose without loss of
generality that

lim
𝑘→∞,𝑘∈𝐾

𝑐
𝑘+1

= ∞. (23)

The updating rule in step (S3) then implies that none of the
iterations 𝑘 ∈ 𝐾 with 𝑘 sufficiently large is successful since
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otherwise we would have 𝑐
𝑘+1

≤ 𝑐max for all these 𝑘 ∈ 𝐾.
Hence, we have

𝑟
𝑘
< 𝜌
1

(24)

and𝑋𝑘 = 𝑋
𝑘+1 for all 𝑘 ∈ 𝐾 large enough. Since {𝑋𝑘+1}

𝑘∈𝐾
→

𝑋
∗, this implies {𝑋𝑘}

𝑘∈𝐾
→ 𝑋

∗, too. Further, noticing that
𝑐
𝑘+1

= 𝜎
2
𝑐
𝑘
for all unsuccessful iterations, we also have

lim
𝑘→∞,𝑘∈𝐾

𝑐
𝑘
= ∞ (25)

because of (23). We now want to show that

𝑟
𝑘
󳨀→ 1 as 𝑘 󳨀→ ∞, 𝑘 ∈ 𝐾, (26)

which would then lead to the desired contradiction to (24).
To this end, we first note that

lim inf
𝑘→∞,𝑘∈𝐾

𝑐
𝑘

󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘󵄩󵄩󵄩󵄩󵄩

> 0. (27)

In fact, if 𝑐
𝑘
‖Δ𝑋
𝑘
‖ → 0 on a subsequence, we would deduce

from Lemma 6 that 𝑋∗ is a stationary point in contradiction
to our assumption. Hence there is a constant 𝛾 > 0 such that

𝑐
𝑘

󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘󵄩󵄩󵄩󵄩󵄩

≥ 𝛾, 𝑘 ∈ 𝐾. (28)

By Lemma 2, this implies

𝐻
𝜇𝑘
(𝑋
𝑘

) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘

) ≥
1

2
𝑐
𝑘
⟨Δ𝑋
𝑘

, Δ𝑋
𝑘

⟩ ≥
1

2
𝛾
󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘󵄩󵄩󵄩󵄩󵄩

(29)

for all 𝑘 ∈ 𝐾 sufficiently large.
We further note that {‖Δ𝑋𝑘‖}

𝑘∈𝐾
→ 0. Otherwise, it

would follow from (25) that 𝑐
𝑘
‖𝑋
𝑘
‖
2

→ ∞ on a suitable
subsequence. This, in turn, would imply that the optimal
value of the subproblem tends to infinity. However, this
cannot be true since the feasible matrix Δ𝑋𝑘 := 0 would give
a smaller objective value. Hence we have {‖Δ𝑋𝑘‖}

𝑘∈𝐾
→ 0.

Taking this into account and using {𝑋
𝑘
}
𝑘∈𝐾

→ 𝑋
∗

and the fact that 𝐹 is continuously differentiable, we obtain
through standard calculus arguments
󵄨󵄨󵄨󵄨󵄨
𝐻
𝜇𝑘
(𝑋
𝑘

) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘

)
󵄨󵄨󵄨󵄨󵄨
= 𝑜 (

󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘󵄩󵄩󵄩󵄩󵄩
) as 𝑘 󳨀→ ∞,

𝑘 ∈ 𝐾.

(30)

Summarizing these observations, we get

󵄨󵄨󵄨󵄨𝑟𝑘 − 1
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻
𝜇𝑘
(0) − 𝐻

𝜇𝑘
(𝑋
𝑘
+ Δ𝑋
𝑘
)

𝐻
𝜇𝑘
(0) − 𝑄

𝜇𝑘
(Δ𝑋𝑘)

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑄
𝜇𝑘
(Δ𝑋
𝑘
) − 𝐻

𝜇𝑘
(𝑋
𝑘
+ Δ𝑋
𝑘
)

𝐻
𝜇𝑘
(0) − 𝑄

𝜇𝑘
(Δ𝑋𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑜 (
󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘
󵄩󵄩󵄩󵄩󵄩
)

(1/2) 𝛾
󵄩󵄩󵄩󵄩Δ𝑋
𝑘
󵄩󵄩󵄩󵄩

󳨀→ 0

(31)

as 𝑘 → ∞, 𝑘 ∈ 𝐾. This contradiction to (24) completes the
proof.

As a direct consequence of this lemma, we obtain the
following result.

Lemma 8. Let {𝑋𝑘} be sequence generated by Algorithm 1.
Then there are infinitely many successful iterations.

Proof. If not, there would exist an index 𝑘
0
∈ 𝑁 with 𝑟

𝑘
< 𝜌
1

and𝑋𝑘 = 𝑋
𝑘0 for all 𝑘 ≥ 𝑘

0
. This implies 𝑐

𝑘
→ ∞ due to the

updating rule in (S3). However, since 𝑋𝑘0 is not a stationary
point and {𝑋𝑘} → 𝑋

𝑘0 , we get a contradiction to Lemma 6.

We are now in the position to prove themain convergence
result for Algorithm 1.

Theorem 9. Let {𝑋𝑘} be a sequence generated by Algorithm 1.
Then, any accumulation point of this sequence is a stationary
point of the original problem.

Proof. Let 𝑋∗ be an accumulation point and {𝑋
𝑘
}
𝑘∈𝐾

sub-
sequence converging to 𝑋

∗. Since 𝑋
𝑘

= 𝑋
𝑘+1 for all

unsuccessful iterations 𝑘 and since there are infinitely many
successful iterations by Lemma 7, we may assume without
loss of generality that all iterations 𝑘 ∈ 𝐾 are successful.

Assume that𝑋∗ is not a solution. Lemma 6 then implies

lim sup
𝑘→∞,𝑘∈𝐾

𝑐
𝑘
< ∞. (32)

Hence there is a constant 𝛾 > 0 such that

𝑐
𝑘
≥ 𝛾, 𝑘 ∈ 𝐾. (33)

Since each iteration 𝑘 ∈ 𝐾 is successful, we also have 𝑟
𝑙
≥ 𝜌
1
.

Consequently, we obtain from Lemma 2

𝐻
𝜇𝑘
(𝑋
𝑘

) − 𝐻
𝜇𝑘
(𝑋
𝑘

+ Δ𝑋
𝑘

) ≥ 𝜌
1
(𝐻
𝜇𝑘
(𝑋
𝑘

) − 𝑄
𝜇𝑘
(Δ𝑋
𝑘

))

≥
1

2
𝜌
1
𝑐
𝑘
⟨Δ𝑋
𝑘

, Δ𝑋
𝑘

⟩

≥
1

2
𝜌
1
𝑐min

󵄩󵄩󵄩󵄩󵄩
Δ𝑋
𝑘󵄩󵄩󵄩󵄩󵄩

2

(34)

for all 𝑘 ∈ 𝐾. Since {𝐻
𝜇𝑘
(𝑋
𝑘
)} ismonotonically nonincreasing

and bounded from below by, for example, 𝐻
0
(𝑋
∗
), we have

𝐻
𝜇𝑘
(𝑋
𝑘
) − 𝐻

𝑚𝑘
(𝑋
𝑘+1

) → 0 as 𝑘 → ∞. Therefore, we
obtain {Δ𝑋

𝑘
}
𝑘∈𝐾

→ 0 from (34). By (33), this also implies
{𝑐
𝑘
‖𝑋
𝑘
‖}
𝑘∈𝐾

→ 0. But then Lemma 6 shows that 𝑋∗ is a
solution in contradiction to our assumption. This completes
the proof.

In the following, we will give one stronger global conver-
gence result. Define the index set

ℵ := {0} ∪ {𝑘 |
󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

≤ max {𝜂𝛽
𝑘
, 𝜇
−1 󵄩󵄩󵄩󵄩󵄩

Φ (𝑋
𝑘+1

) − Φ
𝜀𝑘
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
}}

= {𝑘
0
= 0 < 𝑘

1
< 𝑘
2
< ⋅ ⋅ ⋅ } .

(35)
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Lemma 10. If 𝐹 is a 𝑃
0
function, then the sequence 𝑋

𝑘

generated by Algorithm 1 remains in the level set

𝐿
0
:= {𝑋 ∈ 𝑆 | 𝐻 (𝑋) ≤ (1 + 𝜀)

2

𝐻(𝑋
0

)} . (36)

Proof. Let 𝑘 be an arbitrary nonnegative integer, and let 𝑘
𝑗
be

the largest number in ℵ such that 𝑘
𝑗
≤ 𝑘, as ℵ is as defined

from (35). It is easy to deduce from step 3 of Algorithm 1 that

𝜇
𝑘
= 𝜇
𝑘𝑗
, 𝛽
𝑘
= 𝛽
𝑘𝑗
, as 𝑘

𝑗
≤ 𝑘 < 𝑘

𝑗+1
,

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘𝑗

(𝑋
𝑘

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
, as 𝑘

𝑗
≤ 𝑘 < 𝑘

𝑗+1
.

(37)

Set

𝑈
𝑗
:= {𝑋 ∈ 𝑆 |

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘𝑗

(𝑋
𝑘

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
} . (38)

As 𝑘 is an arbitrary integer and 𝑥
𝑘
∈ 𝑈
𝑗
, it follows that 𝑈

𝑗
⊆

𝐿
0
.
Next, by induction, we will prove

𝑈
𝑗
⊆ 𝐿
0
, ∀𝑗 ≥ 0. (39)

In view of Lemma 2, we deduce that ∀𝑋 ∈ 𝑈
𝑗
,

‖Φ (𝑋)‖ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘𝑗

(𝑋
𝑘

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝜅√𝜇𝑘𝑗

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝜇𝑘𝑗

(𝑋
𝑘𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+ 𝜅√𝜇𝑘𝑗

≤
󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘𝑗)

󵄩󵄩󵄩󵄩󵄩
+ 2𝜅√𝜇𝑘𝑗

≤ 𝛽
𝑘𝑗
+ 𝜅√𝜇𝑘𝑗

.

(40)

If 𝑗 = 0, then by (40) we have

‖Φ (𝑋)‖ ≤
󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
+ 2𝜅√𝜇

0

≤ (1 + 𝜀)
󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
, ∀𝑋 ∈ 𝑈

0
.

(41)

This proves 𝑈
0
∈ 𝐿
0
.

Suppose 𝑈
𝑗−1

⊆ 𝐿
0
for some 𝑗 > 0. Then, 𝑥

𝑘𝑗−1
∈ 𝐿
0
and

hence 𝛽
𝑘𝑗−1

≤ Γ
0
. Set

ℵ
1
:= {𝑘 ∈ ℵ | 𝜂𝛽

𝑘−1
≥ 𝜇
−1 󵄩󵄩󵄩󵄩󵄩

Φ (𝑋
𝑘

) − Φ
𝜇𝑘−1

(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
} ,

ℵ
2
:= {𝑘 ∈ ℵ | 𝜂𝛽

𝑘−1
< 𝜇
−1 󵄩󵄩󵄩󵄩󵄩

Φ (𝑋
𝑘

) − Φ
𝜇𝑘−1

(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
} .

(42)

It follows from step 3 of Algorithm 1 and Lemma 2 that

𝛽
𝑘𝑗
≤ 𝜂𝛽
𝑘𝑗−1

= 𝜂𝛽
𝑘𝑗−1

, if 𝑘
𝑗
∈ ℵ
1
, (43)

or

𝛽
𝑘𝑗
≤
𝜅

𝜇
√𝜇𝑘𝑗−1

=
𝜅

𝜇
√𝜇𝑘𝑗−1

≤
1

2𝐶
0

𝛽
2

𝑘𝑗−1
≤
1

2
𝛽
2

𝑘𝑗−1

,

if 𝑘
𝑗
∈ ℵ
2
.

(44)

This implies that

𝛽
𝑘𝑗
≤ 𝛿
3
𝛽
𝑘𝑗−1

, ∀𝑘
𝑗
∈ ℵ, (45)

where 𝛿
3
= max{1/2, 𝜂}. Moreover, we have

𝜇
𝑘𝑗
≤
1

4
𝜇
𝑘𝑗−1

=
1

4
𝜇
𝑘𝑗−1

, ∀𝑘
𝑗
∈ ℵ. (46)

From (45) and (46), we deduce that, for 𝑗 > 0,

𝛽
𝑘𝑗
≤ 𝛿
𝑗

3
𝛽
0
= 𝛿
𝑗

3

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
,

𝜇
𝑘𝑗
≤

1

4𝑗
𝜇
0
≤

𝜀
2

4𝑗+1(Γ
0
𝜅)
2

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩

4

≤
𝜀
2

4𝑗+1𝜅2

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩

2

.

(47)

Combining (47) with (40), we have

‖Φ (𝑋)‖ ≤ 𝛿
𝑗

3

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
+

𝜀

2𝑗

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩

≤ 𝛿
𝑗

3
(1 + 𝜀)

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
, ∀𝑋 ∈ 𝑈

𝑗
,

(48)

which implies 𝑈
𝑗
⊆ 𝐿
0
. Hence (39) is proved and Lemma 10

is valid.

It follows from Fischer [13] that if 𝐹 is a 𝑃
0
function

or, more generally, an 𝑅
0
-function, then the level set 𝐿

0
as

defined in Lemma 10 is compact. Lemma 3 shows that the
sequence {𝐻

𝜇𝑘
} is monotonically decreasing and converges.

Theorem 11. Assume that 𝐹 is a 𝑃
0
function. Let {𝑋𝑘} be a

sequence generated by Algorithm 1. If there exists at least an
accumulation point in the sequence {𝑋𝑘}, then the index set ℵ
defined by (35) is infinite:

lim
𝑘→∞

𝜇
𝑘
= 0, lim

𝑘→∞

Φ(𝑋
𝑘

) = 0, lim
𝑘→∞

Φ
𝜇𝑘
(𝑋
𝑘

) = 0.

(49)

Proof. We first prove that set ℵ is infinite. By contradiction,
assume thatℵ is finite. Let 𝑘 be the largest number inℵ.Then
for all 𝑘 ≥ 𝑘, 𝜇

𝑘
= 𝜇
𝑘
and 𝛽

𝑘
= 𝛽
𝑘
. Denote

𝜇 := 𝜇
𝑘
, 𝛽 := 𝛽

𝑘
, 𝜙 (𝑋) := Φ (𝑋) − Φ

𝜇
(𝑋) . (50)

Then ∀𝑘 > 𝑘,
󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
> max {𝜂𝛽, 𝜇−1 󵄩󵄩󵄩󵄩𝜙 (𝑋)

󵄩󵄩󵄩󵄩} ,
(51)

Φ(𝑋
𝑘

) = 𝜙 (𝑋
𝑘

) + Φ
𝜀
(𝑋
𝑘

) . (52)

From Theorem 9, it follows that there exists at least an
accumulation point𝑋 ∈ 𝐿

0
of {𝑋𝑘} such that

∇𝐻
𝜇
(𝑋) = 0. (53)

Next, assume that subsequence {𝑋
𝑘
}
𝑘∈ℵ̂

converges to 𝑋.
In view of (53), we have {Φ

𝜇
(𝑋
𝑘
)}
𝑘∈ℵ̂

→ Φ
𝜇
(𝑋) = 0 and

hence there exists 𝑘̂ ≥ 𝑘 such that, for all 𝑘 ∈ ℵ̂ with 𝑘 ≥ 𝑘̂,
󵄩󵄩󵄩󵄩󵄩
Φ
𝜇
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜇) 𝜂𝛽. (54)
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This together with (51) and (52) shows that, for all 𝑘 ∈ ℵ̂with
𝑘 ≥ 𝑘̂,

󵄩󵄩󵄩󵄩󵄩
Φ
𝜇
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝜀)

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜀) (
󵄩󵄩󵄩󵄩󵄩
Φ
𝜇
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
) ;

(55)

that is,

󵄩󵄩󵄩󵄩󵄩
Φ
𝜀
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
< (𝜀
−1

− 1)
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
, (56)

which means

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
Φ
𝜀
(𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝜙 (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩

< 𝜀
−1 󵄩󵄩󵄩󵄩󵄩

𝜙 (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
, as 𝑘 ∈ ℵ̂, 𝑘 ≥ 𝑘̂.

(57)

This contradicts (51). Hence the set ℵ is infinite.
Next, {𝜇

𝑘
} → 0 follows immediately from the updating

rule of 𝜇
𝑘
and the fact that the set ℵ is infinite. Moreover, by

the proof of Lemma 10, we deduce

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
𝑘

)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛿
𝑗

4
(1 + 𝜀)

󵄩󵄩󵄩󵄩󵄩
Φ (𝑋
0

)
󵄩󵄩󵄩󵄩󵄩
, as 𝑘

𝑗
≤ 𝑘 < 𝑘

𝑗+1
.

(58)

Because the set ℵ is infinite, it follows from Lemma 10 and
(58) that

lim
𝑘→∞

Φ(𝑋
𝑘

) = 0, lim
𝑘→∞

Φ
𝜇𝑘
(𝑋
𝑘

) = 0. (59)

This completes the proof.

As a consequence of the above theorem, we get the
following global convergence result.

Corollary 12. Assume that 𝐹 is a 𝑃
0
function. Let {𝑋𝑘} be a

sequence generated by Algorithm 1. Then every accumulation
point of the sequence {𝑋𝑘} is a solution of NCP(𝐹).

4. Numerical Experiments

4.1. The Reformulation for Subproblem. To test the numerical
performance of Algorithm 1, we implemented the method in
MATLAB (Version 7.0) using the SDPT3-Solver (Version 3.0)
for the corresponding subproblems. First, we will give the
reformulation of the subproblem. In order to solve nonlinear
semidefinite programs of the form (1) byAlgorithm 1, we have
to be able to deal with a subproblem given by

min
Δ𝑋∈𝑆

𝑛×𝑛

1

2
𝑐
𝑘
⟨Δ𝑋, Δ𝑋⟩ + 𝑄

𝜇𝑘
(Δ𝑋) s.t. 𝑋𝑘 + Δ𝑋 ≥ 0.

(60)

For this purpose, we would like to use the SDPT3-Solver
(version 3.0) from [14]. This software is designed to solve

linear semidefinite programs with cone constraints of the
form

min
𝑛𝑠

∑

𝑗=1

⟨𝐶
𝑠

𝑗
, 𝑋
𝑠

𝑗
⟩ +

𝑛𝑞

∑

𝑖=1

(𝑐
𝑞

𝑖
)
𝑇

𝑥
𝑞

𝑖
+ (𝑐
𝑙

) 𝑥
𝑙

s.t.
𝑛𝑠

∑

𝑗=1

(𝐴
𝑠

𝑗
)
𝑇

svec (𝑋𝑠
𝑗
) +

𝑛𝑞

∑

𝑖=1

(𝐴
𝑞

𝑖
)
𝑇

𝑥
𝑞

𝑖
+ (𝐴
𝑙

)
𝑇

𝑥
𝑙

= 𝑏,

𝑋
𝑠

𝑗
∈ 𝑆
𝑠𝑗×𝑠𝑗

+
, ∀𝑗, 𝑥

𝑞

𝑖
∈ 𝐾
𝑞𝑖

𝑞
∀𝑖, 𝑥
𝑙

∈ 𝑅
𝑛𝑙

+
,

(61)

where 𝑋𝑠
𝑗
, 𝑋𝑠
𝑗
are symmetric matrices of dimension 𝑠

𝑗
; 𝑐𝑞
𝑖
,

𝑥
𝑞

𝑖
are vectors in 𝑅𝑞𝑖 ; 𝑆𝑠𝑗×𝑠𝑗

+
denotes the 𝑠

𝑗
-dimension positive

semidefinite cone defined by 𝑆𝑠𝑗×𝑠𝑗
+

:= {𝑋 ∈ 𝑆
𝑠𝑗×𝑠𝑗 : 𝑋 ⪰ 0};

𝐷
𝑞𝑖

𝑞
denotes the 𝑞

𝑖
-dimensional second-order cone defined by

𝐾
𝑞𝑖

𝑞
:= {𝑥 = (𝑥

1
, 𝑥
𝑇

2:𝑞𝑖

)
𝑇

∈ 𝑅
𝑞𝑖 : 𝑥

1
≥ ‖𝑥
2:𝑞𝑖

‖}; 𝑐𝑙 and 𝑥
𝑙

are vectors in𝑅𝑛𝑙 ;𝐴𝑠
𝑗
are 𝑠
𝑗
×𝑚matrices with 𝑠

𝑗
= 𝑠
𝑗
(𝑠
𝑗
+1)/2;

𝐴
𝑞

𝑖
and𝐴𝑙 are 𝑞

𝑖
×𝑚 and 𝑙×𝑚matrices, respectively; and svec

is the operator defined by svec(𝑋) := (𝑋(1, 1), √2𝑋(1, 2),
𝑋(2, 2), √2𝑋(1, 3), √2𝑋(2, 3), 𝑋(3, 3), . . . )

𝑇

∈ 𝑅
𝑛(𝑛+1)/2 for

any symmetric matrix𝑋 ∈ 𝑆
𝑛×𝑛.

We now want to rewrite the problem (60) in the form
of (61). To this end, we need to make some reformulations,
which will be described step by step in the following.

First, we drop the constant from the objective function
without affecting the problem. Next, we introduce the auxil-
iary variable 𝑆 ∈ 𝑆𝑛×𝑛 and set𝑋𝑘+Δ𝑋 = 𝑆. BecauseΔ𝑋 needs
only to be symmetric and not to be positive semidefinite, we
setΔ𝑥 = svec(Δ𝑋) andwrite the problem in terms ofΔ𝑥 ∈ 𝑅

𝑛

with 𝑛 := 𝑛(𝑛 + 1)/2. Then problem (60) is equivalent to

min (
1

2
𝑐
𝑘
+
󵄩󵄩󵄩󵄩󵄩
svec (𝐷Φ

𝜇𝑘
(𝑋
𝑘

))
󵄩󵄩󵄩󵄩󵄩

2

) ‖Δ𝑥‖
2

+ 2svec(Φ
𝜇𝑘
(𝑋
𝑘

)𝐷Φ
𝜇𝑘
(𝑋
𝑘

))
𝑇

Δ𝑥

s.t. svec (𝑋𝑘) + Δ𝑥 = svec (𝑆) ,

Δ𝑥 ∈ 𝑅
𝑛

, 𝑠 ⪰ 0.

(62)

By introducing the second-order cone constraint ‖Δ𝑥‖𝑡, the
above problem can be further rewritten as

min (
1

2
𝑐
𝑘
+
󵄩󵄩󵄩󵄩󵄩
svec (𝐷Φ

𝑚𝑢𝑘
(𝑋
𝑘

))
󵄩󵄩󵄩󵄩󵄩

2

) 𝑡
2

+ 2svec(Φ
𝜇𝑘
(𝑋
𝑘

)𝐷Φ
𝜇𝑘
(𝑋
𝑘

))
𝑇

Δ𝑥

s.t. svec (𝑋𝑘) + Δ𝑥 = svec (𝑆) ,

‖Δ𝑥‖ ≤ 𝑡, Δ𝑥 ∈ 𝑅
𝑛

, 𝑆 ⪰ 0, 𝑡 ∈ 𝑅.

(63)

Unfortunately, the term 𝑡
2 is not linear as required in (61).

So we replace 𝑡
2 by the new variable 𝑠 ≥ 0 and add the
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constraint 𝑡2 ≤ 𝑠. But this constraint can be rewritten as the
semidefinite constraint

(
𝑠 𝑡

𝑡 1
) ⪰ 0. (64)

Introducing once again an auxiliary variable, problem (62)
and hence the original subproblem (60) are equivalent to

min (
1

2
𝑐
𝑘
+
󵄩󵄩󵄩󵄩󵄩
svec (𝐷Φ

𝜇𝑘
(𝑋
𝑘

))
󵄩󵄩󵄩󵄩󵄩

2

) 𝑠

+ 2svec(Φ
𝜇𝑘
(𝑋
𝑘

)𝐷Φ
𝜇𝑘
(𝑋
𝑘

))
𝑇

Δ𝑥

s.t. − svec (𝑋𝑘) = Δ𝑥 − svec (𝑆) , ‖Δ𝑥‖ ≤ 𝑡,

(
𝑠 𝑡

𝑡 1
) −𝑊 = 0,

Δ𝑥 ∈ 𝑅
𝑛

, 𝑊 ⪰ 0, 𝑆 ⪰ 0, 𝑡 ∈ 𝑅, 𝑠 ∈ 𝑅
+
.

(65)

We write the equality constraint

(
𝑠 𝑡

𝑡 1
) −𝑊 = 0, (66)

in the svec-notation. Then we get

min (
1

2
𝑐
𝑘
+
󵄩󵄩󵄩󵄩󵄩
svec (𝐷Φ

𝜇𝑘
(𝑋
𝑘

))
󵄩󵄩󵄩󵄩󵄩

2

) 𝑡

+ 2svec(Φ
𝜇𝑘
(𝑋
𝑘

)𝐷Φ
𝜇𝑘
(𝑋
𝑘

))
𝑇

Δ𝑥

s.t. − svec (𝑋𝑘) = Δ𝑥 − svec (𝑆) , ‖Δ𝑥‖ ≤ 𝑡,

(

𝑠

√𝑡

1

) − svec (𝑊) = 0,

Δ𝑥 ∈ 𝑅
𝑛

, 𝑊 ⪰ 0, 𝑆 ⪰ 0, 𝑡 ∈ 𝑅, 𝑠 ∈ 𝑅
+
.

(67)

We are now in a position to give the explicit correspon-
dence between the parameters, variables, and input data in
our last problem formulation (67) and those in the SDPT3
standard form. The problem parameters are given by

𝑛
𝑠
:= 2, 𝑛

𝑞
:= 1, 𝑠

1
:= 𝑛,

𝑠
2
:= 2, 𝑞

1
:= 1 + 𝑛, 𝑙 := 1 + 2𝑚.

(68)

The variables are given by

𝑋
𝑠

1
:= 𝑆 ∈ 𝑆

𝑛×𝑛

+
, 𝑋

𝑠

2
:= 𝑊 ∈ 𝑆

2×2

,

𝑥
𝑞

1
:= (𝑡, Δ𝑥

𝑇

)
𝑇

∈ 𝐾
1+𝑛

𝑞
,

𝑥
𝑙

:= (𝑠, 𝜉
𝑇

, 𝜔
𝑇

)
𝑇

∈ 𝑅
1+2𝑚

.

(69)

The input datum in the objective function is given by

𝐶
𝑠

1
:= 0 ∈ 𝑆

𝑛×𝑛

, 𝐶
𝑠

2
:= 0 ∈ 𝑆

2×2

,

𝑐
𝑞

1
:= (0, svec(𝐷𝑓 (𝑋

𝑘

))
𝑇

)

𝑇

∈ 𝑅
1+𝑛

,

𝑐
𝑙

:= (
1

2
𝑐
𝑘
, 𝛼
𝑘
𝑒, 0) ∈ 𝑅

1+2𝑚

(70)

with

𝑒 = (1, . . . , 1)
𝑇

∈ 𝑅
𝑚

. (71)

Finally, the matrices 𝐴𝑠
1
∈ 𝑅
𝑛×(𝑛+3+𝑚), 𝐴𝑠

2
∈ 𝑅
3×(𝑛+3+𝑚), 𝐴𝑞

1
∈

𝑅
(1+𝑛)×(𝑛+3+𝑚), and 𝐴𝑙 ∈ 𝑅

(1+𝑚+𝑚)×(𝑛+3+𝑚) and the vector 𝑏 ∈

𝑅
𝑛+3+𝑚 are given by

𝐴
𝑠

1
= (−𝐼 |0| 0) , 𝐴

𝑠

2
= (0 |−𝐼| 0) ,

𝐴
𝑞

1
= (

0

𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 √2 0

0 0 0

...
...

...
0 0 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 ⋅ ⋅ ⋅ 0

−svec (𝑊) ⋅ ⋅ ⋅ −svec (𝑤)
) ,

𝐴
𝑙

= (

0

0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 0 0

0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 ⋅ ⋅ ⋅ 0

𝐼

−𝐼

) ,

𝑏 = (−svec(𝑋𝑘)
𝑇 󵄨󵄨󵄨󵄨
0 0 −1

󵄨󵄨󵄨󵄨 𝑔(𝑋
𝑘

)
𝑇

)

𝑇

.

(72)

This is the desired reformulation.
It may be worth mentioning that problem (60) can also

be transformed as

min (
1

2
𝑐
𝑘
+
󵄩󵄩󵄩󵄩󵄩
svec (𝐷Φ

𝜇𝑘
(𝑋
𝑘

))
󵄩󵄩󵄩󵄩󵄩

2

) 𝑡

+ 2svec(Φ
𝜇𝑘
(𝑋
𝑘

)𝐷Φ
𝜇𝑘
(𝑋
𝑘

))
𝑇

Δ𝑥

s.t. − svec (𝑋𝑘) = Δ𝑥 − svec (𝑆) , ‖Δ𝑥‖ ≤ 𝑡,

(
𝑠 𝑡

𝑡 1
) −𝑊 = 0,

Δ𝑥 ∈ 𝑅
𝑛

, 𝑊 ⪰ 0, 𝑆 ⪰ 0, 𝑡 ∈ 𝑅, 𝑠 ∈ 𝑅
+
.

(73)

Since the constraint ‖Δ𝑥‖2 ≤ 𝑡 is equivalent to

(
𝑡 Δ𝑥

𝑇

Δ𝑥 𝐼
) , (74)

problem (73) can further be reformulated as a linear semidef-
inite program that involves a semidefinite cone constraint
instead of a second-order cone constraint. However, such
a semidefinite representation is much more expensive in
terms of memory requirement. Therefore, we adopted the
reformulation (73) in our numerical experiments.
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Table 1: Numerical results.

𝑛 𝑚
Algorithm 1 Algorithm 13

Average iteration Average CPU Average iteration Average CPU
5 2 5.4 0.03 15 0.04
10 5 13.54 2.22 20.57 3.88
10 10 12.88 2.25 19.27 4.00
15 5 15.97 1.02 55.92 10.23
15 10 20.74 1.05 34.27 15.17
20 5 30.11 10.22 100.68 25.55
20 10 37.35 11.05 157.39 30.11
25 5 41.99 24.54 217.22 44.67
25 10 47.02 30.22 348.04 61.22
25 15 45.11 27.66 477.93 110.84

4.2. Numerical Results. We present some numerical tests
using Algorithm 1. All the codes are written in MATLAB
7.10. The tests are conducted on a DELL computer with
Intel(R)Core(TM)i5-2400 processor (3.10GHz) and 4.00GB
of memory on Windows 7.

Consider the following nonlinear semidefinite comple-
mentarity problemwith𝐹(𝑋) := 𝑋𝑋−2𝑋+𝐼. It is obvious that
the solution set of SDCP(𝐹) is nonempty, since𝑋 = 𝐼 is its one
solution.The parameters in the algorithm can be presented as
follows: 𝜌

1
and 𝜌
2
can be randomly generated from [0.1, 0.5]

and [0.6, 1], respectively; 𝜎
1
and 𝜎

2
are randomly generated

from [0.5, 1] and [1.5, 2], respectively; 𝑐min and 𝑐max are ran-
domly generated from [0.01, 1] and [500, 1000], respectively;
𝜇 is randomly chosen from [10, 20]; 𝑐

0
is randomly generated

from [𝑐min, 𝑐max] and𝑋
0
:= 𝐴
𝑇
𝐴, where 𝐴 ∈ 𝑅

𝑚×𝑛 with every
entry being randomly generated from [0, 1]. The stopping
criterion is set as ‖𝑋𝑘‖ ≤ 10

−6 and 𝜇
𝑘
≤ 10
−6.

For the purpose of comparison,we also solve this problem
by the following descent algorithm based on the method
proposed in [15].

Algorithm 13 (decent direction method).

(S0) (Initialization) Choose 0 < 𝜌 < 1, 0 < 𝛼 < 1,𝑋0 ∈ 𝑆
+
,

Γ
0
:= (1 + 𝜇)‖Φ

0
(𝑋
0
)‖, 𝛽
0
:= ‖Φ

0
(𝑋
0
)‖, 𝜅 := √2𝑛,

𝜇
0
:= ((𝜀/(2Γ

0
𝜅))𝛽
2

0
)
2, and set 𝑘 := 0.

(S1) Find the solution Δ𝑋𝑘 ∈ 𝑆 of the subproblem

min
Δ𝑋∈𝑆

𝑛×𝑛

1

2
⟨Δ𝑋, Δ𝑋⟩ + 𝑄

𝜇𝑘
(Δ𝑋) s.t. 𝑋𝑘 + Δ𝑋 ⪰ 0.

(75)

If Δ𝑋𝑘 = 0, then STOP.
(S2) Compute 𝛼

𝑘
= max{1, 𝛼, 𝛼2, . . .} such that

𝐻
𝜇𝑘
(𝑋
𝑘

) ≥ 𝐻
𝜇𝑘
(𝑋
𝑘

+ 𝛼
𝑘
Δ𝑋
𝑘

) + 𝜌𝛼
𝑘
𝑄
𝜇𝑘
(Δ𝑋
𝑘

) . (76)

(S3) Let 𝑥𝑘+1 := 𝑋
𝑘
+ 𝛼
𝑘
Δ𝑋
𝑘. If

󵄩󵄩󵄩󵄩󵄩
Φ
0
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
≤ max {𝜂𝛽

𝑘
, 𝜀
−1 󵄩󵄩󵄩󵄩󵄩

Φ
0
(𝑋
𝑘+1

) − Φ
𝜇𝑘
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩
} ,

(77)

then set
𝛽
𝑘+1

:=
󵄩󵄩󵄩󵄩󵄩
Φ
0
(𝑋
𝑘+1

)
󵄩󵄩󵄩󵄩󵄩

(78)

and choose 𝜇
𝑘+1

such that

0 < 𝜇
𝑘+1

≤ min{(
𝜇

2Γ
0
𝜅
𝛽
2

𝑘+1
) ,

𝜇
𝑘

4
} ; (79)

otherwise, let 𝛽
𝑘+1

:= 𝛽
𝑘
and 𝜇

𝑘+1
:= 𝜇
𝑘
.

(S4) Set 𝑘 ← 𝑘 + 1, and go to (S1).

The above descent algorithm uses different NCP function
from the one used in [15]. The parameters in this algorithm
are set as follows:𝜌 can be randomly generated from [0.1, 0.5];
𝛼 := 0.5; the starting point 𝑋0 and the stopping criteria are
the same as Algorithm 1.

We now solve this problem 40 times by Algorithms 1
and 13, respectively, with the initial point𝑋0 being randomly
generated as above. Table 1 lists the numerical results for the
applications of Algorithms 1 and 13. The average number of
iterations and the average computational time (CPU time)
are reported in Table 1. The results generally show that our
method is efficient in solving this problem.

5. Conclusion

In this paper, we propose a trust-region method to solve
nonlinear semidefinite complementarity problem. The well-
posedness of the new method is proved and the global con-
vergence is also presented. The numerical comparisons with
the descent algorithm show the efficiency of the proposed
method. For further study, we will discuss the convergent rate
of the algorithm.
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