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The two-operator split commonfixed point problem (two-operator SCFP)with firmly nonexpansivemappings is investigated in this
paper. This problem covers the problems of split feasibility, convex feasibility, and equilibrium and can especially be used to model
significant image recovery problems such as the intensity-modulated radiation therapy, computed tomography, and the sensor
network. An iterative scheme is presented to approximate the minimum norm solution of the two-operator SCFP problem. The
performance of the presented algorithm is compared with that of the last algorithm for the two-operator SCFP and the advantage
of the presented algorithm is shown through the numerical result.

1. Introduction

Throughout this paper, H denotes a real Hilbert space with
inner product ⟨⋅, ⋅⟩ and its induced norm ‖ ⋅ ‖, 𝐼 the identity
mapping on H, N the set of all natural numbers, R the set
of all real numbers, and 𝑃

Ω
the metric projection onto set Ω.

𝑥 is the upper bound of sequence {𝑥
𝑛
}, while 𝑥 is the lower

bound. For a self-mapping 𝑇 onH, Fix(𝑇) denotes the set of
all fixed points of 𝑇.

It has been an interesting topic of finding zero points of
maximal monotone operators. A set-valued map 𝑀 : H →

2
H with domainD(𝑀) is called monotone if

⟨𝑥 − 𝑦, 𝑢 − V⟩ ≥ 0 (1)

for all 𝑥, 𝑦 ∈ D(𝑀) and for any 𝑢 ∈ 𝑀(𝑥) and V ∈ 𝑀(𝑦),
whereD(𝑀) is defined to be

D (𝑀) = {𝑥 ∈ H : 𝑀𝑥 ̸=⌀} . (2)

𝑀 is said to be maximal monotone if its graph {(𝑥, 𝑢) : 𝑥 ∈

H, 𝑢 ∈ 𝑀(𝑥)} is not properly contained in the graph of any
other monotone operator. For a positive real number 𝛼, we
denote by 𝐽

𝑀

𝛼
the resolvent of a monotone operator 𝑀; that

is, 𝐽𝑀
𝛼
(𝑥) = (𝐼 + 𝛼𝑀)

−1
(𝑥) for any 𝑥 ∈ H. A point V ∈ H

is called a zero point of a maximal monotone operator 𝑀 if
0 ∈ 𝑀(V). In the sequel, we will denote the set of all zero
points of𝐴 by𝑀−10, which is equal to Fix(𝐽𝑀

𝛼
) for any 𝛼 > 0.

A well-known method to solve this problem is the proximal
point algorithm which starts with any initial point 𝑥

1
∈ H

and then generates the sequence {𝑥
𝑛
} inH by

𝑥
𝑛+1

= 𝐽
𝐴

𝛼
𝑛

𝑥
𝑛
, 𝑛 ∈ N, (3)

where {𝛼
𝑛
} is a sequence of positive real numbers. This

algorithm was first introduced by Martinet [1] and then
generally studied by Rockafellar [2], who devised the iterative
sequence {𝑥

𝑛
} by

𝑥
𝑛+1

= 𝐽
𝐴

𝛼
𝑛

𝑥
𝑛
+ 𝑒
𝑛
, 𝑛 ∈ N, (4)

where {𝑒
𝑛
} is an error sequence inH. Rockafellar showed that

the sequence {𝑥
𝑛
} generated by (4) converges weakly to an

element of𝐴−10 provided that𝐴−10 ̸=⌀ and lim inf
𝑛→∞

𝛼
𝑛
>

0. Since then, many authors have conducted research on
modifying the sequence in (4) so that the strong convergence
is guaranteed; compare [3–12] and the references therein.

On the other hand, let 𝐶 and 𝑄 be nonempty closed con-
vex subsets of two Hilbert spaces H

1
and H

2
, respectively,
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and let 𝐴 : H
1

→ H
2
be a bounded linear mapping. The

split feasibility problem (SFP) is the problem of finding a
point with the property:

𝑥
∗
∈ 𝐶, 𝐴𝑥

∗
∈ 𝑄. (5)

The SFP was first introduced by Censor and Elfving [13] for
modeling inverse problems which arise from phase retrievals
and medical image reconstruction. Recently, it has been
found that the SFP can also be used to model the intensity-
modulated radiation therapy. The most popular algorithm
for the SFP is the 𝐶𝑄 algorithm introduced by Byrne [14,
15]. The sequence {𝑥

𝑛
} generated by the 𝐶𝑄 algorithm

converges weakly to a solution of SFP (5); compare [14–16].
Under the assumption that SFP (5) has a solution, there are
many algorithms designed to approximate a solution of SFP;
compare [16–23] and the references therein.

Later, Censor and Segal [24] extended the SFP to the split
common fixed point problem (SCFP) which is to find a point
𝑥
∗ with the property:

𝑥
∗
∈

𝑝

⋂
𝑖=1

Fix (𝑆
𝑖
) , 𝐴𝑥

∗
∈

𝑟

⋂
𝑗=1

Fix (𝑇
𝑗
) , (6)

where 𝑆
𝑖
, 𝑖 = 1, . . . , 𝑝, and 𝑇

𝑗
, 𝑗 = 1, . . . , 𝑟, are directed

operators in Hilbert spaces. Censor and Segal [24] gave an
algorithm for SCFP (6) in R𝑛 spaces. Then, Moudafi [25]
named SCFP (6) with 𝑝 = 1 the two-operator SCFP and gave
an algorithm which generates a sequence weakly converging
to the solution of the two-operator SCFP. Till very recently,
Cui et al. [26] provided a damped projection algorithm,
shown as below, to approach the solution of SCFP (6).

Assume that the solution set Ω of the SCFP is nonempty.
Start with any 𝑥

1
∈ H
1
and generate a sequence {𝑥

𝑛
} through

the iteration:
𝑥
𝑛+1

= (1 − 𝑏
𝑛
) 𝑥
𝑛

+ 𝑏
𝑛
𝑆
𝑛
[(1 − 𝑎

𝑛
) (𝑥
𝑛
− 𝛾
𝑛
𝐴
∗
(𝐼 − 𝑇

𝑛
) 𝐴𝑥
𝑛
)] ,

(7)

where {𝑎
𝑛
} ⊂ (0, 1), {𝑏

𝑛
} ⊂ [0, 1], and 𝛾

𝑛
⊂ (0,∞) satisfying

that
(i) lim

𝑛→∞
𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
> 0;

(iii) 0 < 𝛾 ≤ 𝛾
𝑛
≤ 𝛾 < 2/‖𝐴‖

2.

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

Ω
0.

Inspired by the work of [25, 26], this paper presents
another algorithm to find the minimum norm solution of
two-operator SCFP. We note that the two-operator SCFP
contains the SFP and the zero point problem of maximal
monotone operators. Let 𝑃

𝐶
and 𝑃

𝑄
be metric projections

onto 𝐶 and 𝑄, respectively. Putting 𝑆
1

= 𝑃
𝐶
and 𝑇

1
= 𝑃
𝑄
,

the two-operator SCFP (6) is reduced to SFP (5). Let 𝑀 and
𝑁 be two maximal monotone operators on H

1
and H

2
,

respectively. Replacing 𝐶 and 𝑄 with 𝑀
−1
0 = Fix(𝐽𝑀

𝛼
) and

𝑁
−1
0 = Fix(𝐽𝑁

𝛽
), respectively, in (6), the SFP becomes a two-

operator SCFP:

Find 𝑥
∗
∈ H
1
so that 𝑥∗ ∈ Fix (𝐽𝑀

𝛼
) , 𝐴𝑥

∗
∈ Fix (𝐽𝑁

𝛽
) .

(8)

Putting 𝐴 = 𝐼, the above two-operator SCFP is reduced to
the common zero point problem of two maximal monotone
operators𝑀 and𝑁:

Find 𝑥
∗
∈ H so that 𝑥∗ ∈ 𝑀

−1
0 ∩ 𝑁

−1
0. (9)

Let 𝑆 be 𝑆
1
in the SCFP (6), and let 𝑇 be 𝑇

1
. The target of

the two-operator SCFP (6) is to find a fixed point of directed
operator 𝑆. Since the definition of a directed operator is based
on its fixed point set, it may be difficult to show that 𝑆 is
a directed operator before the two-operator SCFP is solved.
Therefore, 𝑆 and𝑇 are only considered as firmly nonexpansive
mappings in our presented algorithm.Themain result in this
paper is as follows.

Let 𝑆 and𝑇 be two firmly nonexpansive self-mappings on
H
1
and H

2
, respectively. Assume that the solution set Ω of

the two-operator SCFP is nonempty. For any 𝑢 ∈ H
1
, start

with any 𝑥
1
∈ H
1
and define the sequence {𝑥

𝑛
} by

𝑦
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
,

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) [𝑏
𝑛
𝑥
𝑛
+ (1 − 𝑏

𝑛
) 𝑆𝑦
𝑛
] ,

(10)

where 𝛾 ∈ (0, 1/‖𝐴‖
2
) and {𝑎

𝑛
} and {𝑏

𝑛
} are sequences in (0, 1]

satisfying that

(i) lim
𝑛→∞

𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
(1 − 𝑏

𝑛
) > 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

Ω
𝑢.

The two-operator SCFP covers problems of split feasi-
bility, convex feasibility, and equilibrium as special cases.
The presented algorithm can be considered as a unified
methodology for solving the aforementioned problems. In
Section 4, we use the numerical result to prove that the
performance of the presented algorithm is more efficient and
more consistent than that of the recent damped projection
algorithm [26].

2. Preliminaries

In order to facilitate our investigation in this paper, we recall
some basic facts. A mapping 𝑆 : H → H is said to be

(i) nonexpansive if
𝑆𝑥 − 𝑆𝑦

 ≤
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ H; (11)

(ii) firmly nonexpansive if

𝑆𝑥 − 𝑆𝑦

2
≤ ⟨𝑥 − 𝑦, 𝑆𝑥 − 𝑆𝑦⟩ , ∀𝑥, 𝑦 ∈ H; (12)

(iii) directed if

⟨𝑇𝑥 − 𝑥, 𝑇𝑥 − 𝑞⟩ ≤ 0, for 𝑥 ∈ H, 𝑞 ∈ Fix (𝑇) . (13)

It is well-known that the fixed point set Fix(𝑆) of a nonexpan-
sive mapping 𝑆 is closed and convex; compare [27].

Let 𝐶 be a nonempty closed convex subset of H. The
metric projection 𝑃

𝐶
from H onto 𝐶 is the mapping that
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assigns each 𝑥 ∈ H the unique point 𝑃
𝐶
𝑥 in 𝐶 with the

property
𝑥 − 𝑃

𝐶
𝑥
 = min
𝑦∈𝐶

𝑦 − 𝑥
 . (14)

It is known that 𝑃
𝐶
is firmly nonexpansive and characterized

by the inequality, for any 𝑥 ∈ H,

⟨𝑥 − 𝑃
𝐶
𝑥, 𝑦 − 𝑃

𝐶
𝑥⟩ ≤ 0, ∀𝑦 ∈ 𝐶. (15)

There is a strongly convergent algorithm for a nonex-
pansive mapping 𝑆 with Fix(𝑆) ̸=⌀, which is related to the
iteration scheme in our main result; for any 𝑢 ∈ H, choose
arbitrarily a point 𝑥

1
∈ H and define a sequence {𝑥

𝑛
}

recursively by

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) 𝑆𝑥
𝑛
, 𝑛 ∈ N, (16)

where {𝑎
𝑛
} is sequence in [0, 1] satisfying

lim
𝑛→∞

𝑎
𝑛
= 0,

∞

∑
𝑛=1

𝑎
𝑛
= ∞,

∞

∑
𝑛=1

𝑎𝑛+1 − 𝑎
𝑛

 < ∞. (17)

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑃Fix(𝑆)𝑢; com-

pare [28, 29].
We need some lemmas that will be quoted in the sequel.

Lemma 1. For any 𝑥, 𝑦 ∈ H
1
and 𝜆 ∈ R, the following hold:

(a) ‖𝜆𝑥 + (1 − 𝜆)𝑦‖
2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)‖𝑦‖

2
− 𝜆(1 −

𝜆)‖𝑥 − 𝑦‖
2;

(b) ‖𝑥 + 𝑦‖
2
≤ ‖𝑥‖

2
+ 2⟨𝑦, 𝑥 + 𝑦⟩.

Lemma 2 (see [27], demiclosedness principle). Suppose that
𝐺 is a nonexpansive self-mapping onH and suppose that {𝑥

𝑛
}

is a sequence in H such that {𝑥
𝑛
} converges weakly to some

𝑧 ∈ H and lim
𝑛→∞

‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ = 0. Then, 𝐺𝑧 = 𝑧.

Lemma 3. Let 𝑀 be a maximal monotone operator on H.
Then

(a) 𝐽𝑀
𝛼

is single-valued and firmly nonexpansive;
(b) D(𝐽

𝐴

𝛼
) = H and Fix(𝐽𝐴

𝛼
) = 𝐴
−1
0.

Lemma 4 (see [12]). Suppose that {𝑧
𝑛
} is a sequence of

nonnegative real numbers satisfying

𝑧
𝑛+1

≤ (1 − 𝑎
𝑛
) 𝑧
𝑛
+ 𝑎
𝑛
V
𝑛
, 𝑛 ∈ N, (18)

where {𝑎
𝑛
} and {V

𝑛
} verify the following conditions:

(i) {𝑎
𝑛
} ⊆ [0, 1], ∑∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim sup
𝑛→∞

V
𝑛
≤ 0.

Then lim
𝑛→∞

𝑧
𝑛
= 0.

Lemma 5 (see [30]). Let {𝑧
𝑛
} be a sequence inR that does not

decrease at infinity in the sense that there exists a subsequence
{𝑧
𝑛
𝑖

} such that

𝑧
𝑛
𝑖

< 𝑧
𝑛
𝑖
+1
, ∀𝑖 ∈ N. (19)

For any 𝑘 ∈ N, define 𝑚
𝑘
= max{𝑗 ≤ 𝑘 : 𝑧

𝑗
< 𝑧
𝑗+1

}. Then
𝑚
𝑘
→ ∞ as 𝑘 → ∞ andmax{𝑧

𝑚
𝑘

, 𝑧
𝑘
} ≤ 𝑧
𝑚
𝑘
+1
, ∀𝑘 ∈ N.

3. Main Theorems

Throughout this section, 𝑆 and 𝑇 denote two firmly nonex-
pansive self-mappings on H

1
and H

2
, respectively, and 𝐴

denotes a bounded linear operator fromH
1
toH
2
.

Under the assumption that the solution set of two-
operator SCFP is nonempty, the following lemma says that
the two-operator SCFP is equivalent to the fixed point
problem for the operator 𝑆[𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴].

Lemma 6 (see [17]). Let Ω be the solution set of two-operator
SCFP (6); that is, Ω = Fix(𝑆) ∩ 𝐴

−1
(Fix(𝑇)). For any 𝛾 ∈

(0, 2/‖𝐴‖
2
), let 𝑈 = 𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴. Suppose that Ω ̸=⌀.

Then Fix(𝑆𝑈) = Fix(𝑆) ∩ Fix(𝑈) = Ω.

Theorem 7. Let 𝑆 and 𝑇 be two firmly nonexpansive self-
mappings onH

1
andH

2
, respectively. Assume that the solution

set Ω of the two-operator SCFP is nonempty. For any 𝑢 ∈ H
1
,

start with any 𝑥
1
∈ H
1
and define the sequence {𝑥

𝑛
} by

𝑦
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

𝑛

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) [𝑏
𝑛
𝑥
𝑛
+ (1 − 𝑏

𝑛
) 𝑆𝑦
𝑛
] ,

(20)

where 𝛾 ∈ (0, 1/‖𝐴‖
2
) and {𝑎

𝑛
} and {𝑏

𝑛
} are sequences in (0, 1]

satisfying that
(i) lim

𝑛→∞
𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
(1 − 𝑏

𝑛
) > 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

Ω
𝑢.

Proof. Putting 𝐺 = 𝑆[𝐼 − 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴], we see that 𝐺𝑥

𝑛
=

𝑆𝑦
𝑛
, ∀𝑛 ∈ N. By Lemmas 1 and 6, we have
𝑥𝑛+1 − 𝑝


2
=
𝑎𝑛 (𝑢 − 𝑝) + (1 − 𝑎

𝑛
)

×[𝑏
𝑛
(𝑥
𝑛
− 𝑝) + (1 − 𝑏

𝑛
)(𝐺𝑥
𝑛
− 𝑝)]


2

≤ 𝑎
𝑛

𝑢 − 𝑝

2
+ (1 − 𝑎

𝑛
)

× [𝑏
𝑛

𝑥𝑛 − 𝑝

2
+ (1 − 𝑏

𝑛
)
𝑆𝑦𝑛 − 𝑝


2

−𝑏
𝑛
(1 − 𝑏

𝑛
)
𝑥𝑛 − 𝐺𝑥

𝑛


2
]

≤ 𝑎
𝑛

𝑢 − 𝑝

2
+ (1 − 𝑎

𝑛
)

× [𝑏
𝑛

𝑥𝑛 − 𝑝

2
+ (1 − 𝑏

𝑛
)
𝑦𝑛 − 𝑝


2

−𝑏
𝑛
(1 − 𝑏

𝑛
)
𝑥𝑛 − 𝐺𝑥

𝑛


2
] .

(21)

In addition,
𝑦𝑛 − 𝑝


2
=
𝑥𝑛 − 𝑝 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑛


2

=
𝑥𝑛 − 𝑝


2
− 2𝛾 ⟨𝑥

𝑛
− 𝑝,𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
⟩

+ 𝛾
2𝐴
∗
(𝐼 − 𝑇)𝐴𝑥

𝑛


2

≤
𝑥𝑛 − 𝑝


2
− 2𝛾 ⟨𝑥

𝑛
− 𝑝,𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
⟩

+ 𝛾
2
‖𝐴‖
2(𝐼 − 𝑇)𝐴𝑥

𝑛


2
.

(22)
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Furthermore, since 𝑇 is nonexpansive and 𝐴𝑝 ∈ Fix(𝑇), one
has

𝑇𝐴𝑥
𝑛
− 𝐴𝑝


2
=
(𝐴𝑥
𝑛
− 𝐴𝑝) − (𝐼 − 𝑇)𝐴𝑥

𝑛


2

=
𝐴𝑥
𝑛
− 𝐴𝑝


2
− 2 ⟨𝐴𝑥

𝑛
− 𝐴𝑝, (𝐼 − 𝑇)𝐴𝑥

𝑛
⟩

+
(𝐼 − 𝑇)𝐴𝑥

𝑛


2

=
𝐴𝑥
𝑛
− 𝐴𝑝


2
− 2 ⟨𝑥

𝑛
− 𝑝, 𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
⟩

+
(𝐼 − 𝑇)𝐴𝑥

𝑛


2

≤
𝐴𝑥
𝑛
− 𝐴𝑝


2
,

(23)

from which it follows that

−2 ⟨𝑥
𝑛
− 𝑝, 𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑛
⟩ ≤ −

(𝐼 − 𝑇)𝐴𝑥
𝑛


2
. (24)

Therefore, it follows from (21), (22), and (24) that

𝑥𝑛+1 − 𝑝

2
≤ 𝑎
𝑛

𝑢 − 𝑝

2
+ (1 − 𝑎

𝑛
)

× [
𝑥𝑛 − 𝑝


2
− (1 − 𝑏

𝑛
) 𝛾 (1 − 𝛾‖𝐴‖

2
)

×
(𝐼 − 𝑇)𝐴𝑥

𝑛


2
−𝑏
𝑛
(1 − 𝑏

𝑛
)
𝐺𝑥𝑛 − 𝑥

𝑛


2
]

≤ 𝑎
𝑛

𝑢 − 𝑝

2
+ (1 − 𝑎

𝑛
)
𝑥𝑛 − 𝑝


2
.

(25)

Hence, by induction, we see that

𝑥𝑛+1 − 𝑝

2
≤ max {𝑢 − 𝑝


2
,
𝑥1 − 𝑝


2
} . (26)

This shows that {𝑥
𝑛
} is bounded. Now, by Lemma 1 and (22),

we have

𝑥𝑛+1 − 𝑝

2
=
𝑎𝑛 (𝑢 − 𝑝) + (1 − 𝑎

𝑛
)

× [𝑏
𝑛
(𝑥
𝑛
− 𝑝) + (1 − 𝑏

𝑛
)(𝐺𝑥
𝑛
− 𝑝)]


2

≤ (1 − 𝑎
𝑛
)

×
𝑏𝑛(𝑥𝑛 − 𝑝) + (1 − 𝑏

𝑛
)(𝐺𝑥
𝑛
− 𝑝)


2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

= (1 − 𝑎
𝑛
) [𝑏
𝑛

𝑥𝑛 − 𝑝

2
+ (1 − 𝑏

𝑛
)
𝑆𝑦𝑛 − 𝑝


2

−𝑏
𝑛
(1 − 𝑏

𝑛
)
𝐺𝑥𝑛 − 𝑥

𝑛


2
]

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ (1 − 𝑎
𝑛
) [𝑏
𝑛

𝑥𝑛 − 𝑝

2
+ (1 − 𝑏

𝑛
)
𝑦𝑛 − 𝑝


2

−𝑏
𝑛
(1 − 𝑏

𝑛
)
𝐺𝑥𝑛 − 𝑥

𝑛


2
]

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ (1 − 𝑎
𝑛
) [

𝑥𝑛 − 𝑝

2
− (1 − 𝑏

𝑛
) 𝛾 (1 − 𝛾‖𝐴‖

2
)

×
(𝐼 − 𝑇)𝐴𝑥

𝑛


2
− 𝑏
𝑛
(1 − 𝑏

𝑛
)

×
𝐺𝑥𝑛 − 𝑥

𝑛


2
]

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

≤ (1 − 𝑎
𝑛
) [

𝑥𝑛 − 𝑝

2
− 𝑏
𝑛
(1 − 𝑏

𝑛
)
𝐺𝑥𝑛 − 𝑥

𝑛


2
]

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ .

(27)

We now carry on with the proof by considering the following
two cases: (I) {‖𝑥

𝑛
−𝑝‖} is eventually decreasing and (II) {‖𝑥

𝑛
−

𝑝‖} is not eventually decreasing.

Case I. Suppose that {‖𝑥
𝑛
− 𝑝‖} is eventually decreasing; that

is, there is 𝑛
0
∈ N such that {‖𝑥

𝑛
− 𝑝‖}
𝑛≥𝑛
0

is decreasing. In
this case, lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists in R. From inequality (27),

we have

(1 − 𝑎
𝑛
) 𝑏
𝑛
(1 − 𝑏

𝑛
)
𝐺𝑥𝑛 − 𝑥

𝑛


2
≤ (1 − 𝑎

𝑛
)
𝑥𝑛 − 𝑝


2

+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩

−
𝑥𝑛+1 − 𝑝


2
,

(28)

which together with the boundedness of {𝑥
𝑛
} and conditions

(i) and (ii) implies

lim
𝑛→∞

𝐺𝑥𝑛 − 𝑥
𝑛

 = 0. (29)

Since {𝑥
𝑛
} is bounded, it has a subsequence {𝑥

𝑛
𝑘

} such that
{𝑥
𝑛
𝑘

} converges weakly to some 𝑧 ∈ H and

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑥
𝑛+1

− 𝑝⟩ = lim
𝑘→∞

⟨𝑢 − 𝑝, 𝑥
𝑛
𝑘

− 𝑝⟩

= ⟨𝑢 − 𝑝, 𝑧 − 𝑝⟩ ≤ 0,

(30)

where the last inequality follows from (15) since 𝑧 ∈ Ω by
Proposition 8 of [17], (29), and Lemmas 2 and 6. Moreover,
from (27), we have

𝑥𝑛+1 − 𝑝

2
≤ (1 − 𝑎

𝑛
)
𝑥𝑛 − 𝑝


2
+ 2𝑎
𝑛
⟨𝑢 − 𝑝, 𝑥

𝑛+1
− 𝑝⟩ .

(31)
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Accordingly, applying Lemma 4 to inequality (31), we
conclude that

lim
𝑛→∞

𝑥
𝑛
= 𝑝. (32)

Case II. Suppose that {‖𝑥
𝑛
−𝑝‖} is not eventually decreasing. In

this case, by Lemma 5, there exists a nondecreasing sequence
{𝑚
𝑘
} in N such that𝑚

𝑘
→ ∞ and

max {𝑥𝑚𝑘 − 𝑝

,
𝑥𝑘 − 𝑝

} ≤

𝑥
𝑚
𝑘
+1

− 𝑝

, ∀𝑘 ∈ N. (33)

Then it follows from (27) and (33) that


𝑥
𝑚
𝑘

− 𝑝


2

≤

𝑥
𝑚
𝑘
+1

− 𝑝


2

≤ (1 − 𝑎
𝑚
𝑘

) [

𝑥
𝑚
𝑘

− 𝑝


2

−𝑏
𝑚
𝑘

(1 − 𝑏
𝑚
𝑘

)

𝐺𝑥
𝑚
𝑘

− 𝑥
𝑚
𝑘



2

]

+ 2𝑎
𝑚
𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚
𝑘
+1

− 𝑝⟩ .

(34)

Therefore,

0 ≤ (1 − 𝑎
𝑚
𝑘

) 𝑏
𝑚
𝑘

(1 − 𝑏
𝑚
𝑘

)

𝐺𝑥
𝑚
𝑘

− 𝑥
𝑚
𝑘



2

≤ −𝑎
𝑚
𝑘


𝑥
𝑚
𝑘

− 𝑝


2

+ 2𝑎
𝑚
𝑘

⟨𝑢 − 𝑝, 𝑥
𝑚
𝑘
+1

− 𝑝⟩ ,

(35)

which implies that

lim
𝑘→∞


𝑥
𝑚
𝑘

− 𝐺𝑥
𝑚
𝑘


= 0, (36)

and then it follows that

lim sup
𝑘→∞

⟨𝑢 − 𝑝, 𝑥
𝑚
𝑘
+1

− 𝑝⟩ ≤ 0. (37)

From (35), we obtain


𝑥
𝑚
𝑘

− 𝑝


2

≤ 2 ⟨𝑢 − 𝑝, 𝑥
𝑚
𝑘
+1

− 𝑝⟩ , (38)

and thus, letting 𝑘 → ∞, we obtain

lim
𝑘→∞


𝑥
𝑚
𝑘

− 𝑝

= 0. (39)

Also, since

𝑥
𝑚
𝑘
+1

− 𝑥
𝑚
𝑘


≤ 𝑎
𝑚
𝑘


𝑢 − 𝑥
𝑚
𝑘



+ (1 − 𝑎
𝑚
𝑘

) (1 − 𝑏
𝑚
𝑘

)

𝐺𝑥
𝑚
𝑘

− 𝑥
𝑚
𝑘


,

(40)

which together with (36) and conditions (i) and (ii) implies
that lim

𝑘→∞
‖𝑥
𝑚
𝑘
+1

− 𝑥
𝑚
𝑘

‖ = 0,

lim
𝑘→∞


𝑥
𝑚
𝑘
+1

− 𝑝

= 0 (41)

by virtue of (39). Consequently, we conclude that
lim
𝑘→∞

‖𝑥
𝑘
− 𝑝‖ = 0 via (33) and (41). This completes

the proof.

This theorem says that the sequence {𝑥
𝑛
} converges

strongly to a point of Ω which is nearest to 𝑢. In particular,
if 𝑢 is taken to be 0, then the limit point 𝑝 of the sequence
{𝑥
𝑛
} is the unique minimum solution of two-operator SCFP

(6).

Corollary 8. Let 𝐶 and 𝑄 be nonempty closed convex subsets
of two Hilbert spacesH

1
andH

2
, respectively. Assume that the

solution set Ω of the SFP is nonempty. For any 𝑢 ∈ H
1
, start

with any 𝑥
1
∈ H
1
and define a sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑃

𝑄
) 𝐴𝑥
𝑛

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) [𝑏
𝑛
𝑥
𝑛
+ (1 − 𝑏

𝑛
) 𝑃
𝐶
𝑦
𝑛
] ,

(42)

where 𝛾 ∈ (0, 1/‖𝐴‖
2
) and {𝑎

𝑛
} and {𝑏

𝑛
} are sequences in (0, 1]

satisfying that

(i) lim
𝑛→∞

𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
(1 − 𝑏

𝑛
) > 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

Ω
𝑢.

Proof. Putting 𝑆 = 𝑃
𝐶
and 𝑇 = 𝑃

𝑄
in (20), the conclusion

follows fromTheorem 7.

Corollary 9. Suppose that 𝑀 and 𝑁 are two maximal
monotone operators onH

1
andH

2
, respectively. Assume that

the solution setΩ of problem

𝐹𝑖𝑛𝑑 𝑥
∗
∈ H
1
𝑠𝑜 𝑡ℎ𝑎𝑡 𝑥

∗
∈ 𝑀
−1
0, 𝐴𝑥

∗
∈ 𝑁
−1
0 (43)

is nonempty. Let 𝛼, 𝛽 ∈ (0,∞). For any 𝑢 ∈ H
1
, start with any

𝑥
1
∈ H
1
and define a sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝑥
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝐽

𝑁

𝛽
)𝐴𝑥
𝑛
,

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) [𝑏
𝑛
𝑥
𝑛
+ (1 − 𝑏

𝑛
) 𝐽
𝑀

𝛼
𝑦
𝑛
] ,

(44)

where 𝛾 ∈ (0, 1/‖𝐴‖
2
) and {𝑎

𝑛
} and {𝑏

𝑛
} are sequences in (0, 1]

satisfying that

(i) lim
𝑛→∞

𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
(1 − 𝑏

𝑛
) > 0.

Then the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

Ω
𝑢.

Proof. By Lemma 3, a resolvent of a maximal monotone
operator is firmly nonexpansive. Hence, we may put 𝑆 = 𝐽

𝑀

𝛼

and 𝑇 = 𝐽
𝑁

𝛽
in (20) to get the conclusion which follows from

Theorem 7.

Corollary 10. Let 𝑀 be a maximal monotone operator onH
with 𝑀

−1
0 ̸=⌀, and let 𝛼, 𝛽 ∈ (0,∞). For any 𝑢 ∈ H

1
, start

with any 𝑥
1
∈ H
1
and define a sequence {𝑥

𝑛
} iteratively by

𝑦
𝑛
= 𝑥
𝑛
− 𝛾 (𝐼 − 𝐽

𝑀

𝛽
) 𝑥
𝑛

𝑥
𝑛+1

= 𝑎
𝑛
𝑢 + (1 − 𝑎

𝑛
) [𝑏
𝑛
𝑥
𝑛
+ (1 − 𝑏

𝑛
) 𝐽
𝑀

𝛼
𝑦
𝑛
] ,

(45)

where 𝛾 ∈ (0, 1) and {𝑎
𝑛
} and {𝑏

𝑛
} are sequences in (0, 1]

satisfying that
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Table 1: Numerical results for Example 11.

𝑥
1

The damped projection method in [26] The presented method
CPU (sec.) 𝑛 𝑥

𝑛
CPU (sec.) 𝑛 𝑥

𝑛

(0, 0)⊤ 67.4971 157248 (0.2929, 0.2929)⊤ 34.8173 91018 (0.2929, 0.2929)⊤

(1, 1)⊤ 125.352 328067 (0.2929, 0.2929)⊤ 35.0441 91018 (0.2929, 0.2929)⊤

(10, 10)⊤ 411.5836 1052792 (0.2929, 0.2929)⊤ 38.6464 91018 (0.2929, 0.2929)⊤

Table 2: Numerical results for Example 12.

𝑥
1

The damped projection method in [26] The presented method
CPU (sec.) 𝑛 𝑥

𝑛
CPU (sec.) 𝑛 𝑥

𝑛

(0, 0)⊤ 31.3902 84818 (0.2929, 0.2929)⊤ 35.5024 91018 (0.2929, 0.2929)⊤

(1, 1)⊤ 142.6763 362480 (0.2929, 0.2929)⊤ 37.0838 91018 (0.2929, 0.2929)⊤

(10, 10)⊤ 448.3774 1042364 (0.2928, 0.2930)⊤ 33.8532 91031 (0.2929, 0.2929)⊤

(i) lim
𝑛→∞

𝑎
𝑛
= 0 and ∑

∞

𝑛=1
𝑎
𝑛
= ∞;

(ii) lim inf
𝑛→∞

𝑏
𝑛
(1 − 𝑏

𝑛
) > 0.

Then, the sequence {𝑥
𝑛
} converges strongly to 𝑝 = 𝑃

𝑀
−1
0
(𝑢).

Proof. Putting H
1

= H
2

= H, 𝐴 = 𝐼, 𝑀 = 𝑁, and 𝑆 =

𝐽
𝑀

𝛼
, 𝑇 = 𝐽

𝑀

𝛽
in Corollary 9, the result follows immediately.

4. Numerical Results

There are four examples in this section provided to demon-
strate our presented algorithm. The first three examples are
the SFP, while the fourth example is the common zero
point problem of two maximal monotone operators. The
performance of the presented algorithm to solve the three
examples of SFP is compared with that of the recent damped
projection method [26]. The result shows that the presented
algorithm is more efficient and more consistent than the
damped algorithm. In the first three examples, we assign the
parameters in both algorithms to be 𝑢 = (0, 0)

⊤, 𝑎
𝑛
= 1/(𝑛 +

1), 𝑏
𝑛
= 0.5, and 𝛾

𝑛
= 𝛾 = 0.01. Let ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ ≤ 10

−10 be
their stop criterion. All codes were written in Matlab R2011a
and ran on laptopASUSZenbookUX31Ewith i7-2677MCPU.

Example 11. Let 𝐶 = {(𝑥, 𝑦)
⊤
| (𝑥 − 1)

2
+ (𝑦 − 1)

2
≤ 1}, 𝑄 =

{(𝑥, 𝑦, 𝑧)
⊤
| (𝑥 − 1)

2
+ (𝑦 − 1)

2
+ (𝑧 − 1)

2
≤ 9}, and

𝐴 = [

[

1 2

3 4

5 6

]

]

. (46)

The metric projections for 𝐶 and 𝑄 are

𝑃
𝐶
(𝑥, 𝑦)
⊤

=

{{{

{{{

{

(𝑥, 𝑦)
⊤
, if (𝑥, 𝑦)⊤ ∈ 𝐶;

(𝑥 − 1, 𝑦 − 1)
⊤

√(𝑥 − 1)
2
+ (𝑦 − 1)

2

+ (1, 1)
⊤
, if (𝑥, 𝑦)⊤ ∉ 𝐶,

𝑃
𝑄
(𝑥, 𝑦, 𝑧)

⊤

=

{{{{{

{{{{{

{

(𝑥, 𝑦, 𝑧)
⊤
, if (𝑥, 𝑦, 𝑧)⊤ ∈ 𝑄;

3(𝑥 − 1, 𝑦 − 1, 𝑧 − 1)
⊤

√(𝑥 − 1)
2
+ (𝑦 − 1)

2
+ (𝑧 − 1)

2

+(1, 1, 1)
⊤
, if (𝑥, 𝑦, 𝑧)⊤ ∉ 𝑄.

(47)

Then, we can use both the presented algorithm and the
damped projection algorithm to approach a point such that

𝑥
∗
∈ Fix (𝑃

𝐶
) , 𝐴𝑥

∗
∈ Fix (𝑃

𝑄
) . (48)

FromTable 1, we observe that the presented algorithm ismore
efficient than the damped projection algorithm.

Example 12. Let all conditions be the same with those in
Example 11 except to

𝐴 = [

[

2 −1

4 2

2 0

]

]

. (49)

The result for solving Example 12 is shown in Table 2. We
observe that the presented algorithm is still more efficient
than the damped algorithm. From the columns for the
runtime (CPU) and the approximate solution (𝑥

𝑛
), the result

of the presented algorithm is consistent although it starts
from different initial points.

Example 13. In this example, we use 𝐴 in Example 11 but
change its𝐶 and𝑄. Let𝐶 = {(𝑥, 𝑦)

⊤
| (𝑥 − 1)

2
+(𝑦 − 3)

2
≤ 9}

and 𝑄 = {(𝑥, 𝑦, 𝑧)
⊤

| (𝑥 − 6)
2
+ (𝑦 − 15)

2
+ (𝑧 − 22)

2
≤ 9}.

The metric projections for 𝐶 and 𝑄 are

𝑃
𝐶
(𝑥, 𝑦)

⊤

=

{{{

{{{

{

(𝑥, 𝑦)
⊤
, if (𝑥, 𝑦)⊤ ∈ 𝐶;

3(𝑥 − 1, 𝑦 − 3)
⊤

√(𝑥 − 1)
2
+ (𝑦 − 3)

2

+ (1, 3)
⊤
, if (𝑥, 𝑦)⊤ ∉ 𝐶,
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Table 3: Numerical results for Example 13.

𝑥
1

The damped projection method in [26] The presented method
CPU (sec.) 𝑛 𝑥

𝑛
CPU (sec.) 𝑛 𝑥

𝑛

(0, 0)⊤ 382.487 933580 (1.5845, 2.0122)⊤ 100.475 247651 (1.5844, 2.0123)⊤

(1, 1)⊤ 581.5485 1438799 (1.5846, 2.0121)⊤ 101.4875 247960 (1.5844, 2.0123)⊤

(10, 10)⊤ >1000 100.0661 252832 (1.5844, 2.0123)⊤

Table 4: Numerical results for Example 13 with 𝑢 = (3, 3)⊤.

𝑥
1

The presented method
CPU (sec.) 𝑛 𝑥

𝑛

(0, 0)⊤ 64.0093 159081 (2.3455, 2.1812)⊤

(1, 1)⊤ 66.2390 159477 (2.3455, 2.1812)⊤

(10, 10)⊤ 66.0244 172465 (2.3455, 2.1812)⊤

𝑃
𝑄
(𝑥, 𝑦, 𝑧)

⊤

=

{{{{{

{{{{{

{

(𝑥, 𝑦, 𝑧)
⊤
, if (𝑥, 𝑦, 𝑧)⊤ ∈ 𝑄;

3(𝑥 − 6, 𝑦 − 15, 𝑧 − 22)
⊤

√(𝑥 − 6)
2
+ (𝑦 − 15)

2
+ (𝑧 − 22)

2

+(6, 15, 22)
⊤
, if (𝑥, 𝑦, 𝑧)⊤ ∉ 𝑄.

(50)

The result is shown in Table 3. We also observe that the
presented algorithm is more efficient and more consistent
than the damped projection algorithm.

The presented algorithm contains an arbitrary point 𝑢

and that is an advantage of the algorithm. Knowing any
information about the solution of two-operator SCFP of
interest, we can choose a better 𝑢 to enhance the performance
of the presented algorithm. For instance, let 𝑢 = (3, 3)

⊤ which
is different with 𝑢 = (0, 0)

⊤ related to the result in Table 3.
From Table 4, we observe that the runtime of the presented
algorithm is reduced by one-third.

Example 14. Minimizing a convex function is called a convex
minimization problem. This example shows that the pre-
sented algorithm can be used to search the common optimal
solutions of two convex minimization problems. Let 𝑓 and
𝑔 be two functions from R2 to R and define 𝑓(𝑥

1
, 𝑥
2
) =

𝑥
2

1
+ 𝑥
2

2
+ 1 − 2𝑥

1
𝑥
2
− 2𝑥
1
+ 2𝑥
2
and 𝑔(𝑥

1
, 𝑥
2
) = 𝑥

2

1
+ 𝑥
2

2
+

1+2𝑥
1
𝑥
2
−2𝑥
1
−2𝑥
2
. We know that both 𝑓 and 𝑔 are convex

functions. Now, we would like to search a common minimal
point of the two convex functions.

Let 𝜕𝑓/𝜕𝑥
𝑖
denote the partial derivative of function𝑓with

respect to 𝑥
𝑖
. Define two operators𝑀 and𝑁 fromR2 toR by

𝑀 =
[
[
[

[

𝜕𝑓

𝜕𝑥
1

𝜕𝑓

𝜕𝑥
2

]
]
]

]

= [
2 −2

−2 2
] [

𝑥
1

𝑥
2

] + [
−2

2
] ,

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Figure 1: The behavior of our presented algorithm to search the
commonminimal point of two convex minimization problems.The
star sign marks the stop point, 𝑥, of the algorithm.

𝑁 =
[
[
[

[

𝜕𝑔

𝜕𝑥
1

𝜕𝑔

𝜕𝑥
2

]
]
]

]

= [
2 2

2 2
] [

𝑥
1

𝑥
2

] + [
−2

−2
] .

(51)

Since 𝑓 and 𝑔 are convex functions, 𝑀 and 𝑁 are maximal
monotone operators and any one of their common zero
points is the common minimal point of 𝑓 and 𝑔. The
resolvents of𝑀 and𝑁 are

𝐽
𝑀

𝛼
[
𝑥
1

𝑥
2

] = [
2 + 𝛼 −2

−2 2 + 𝛼
]

−1

([
𝑥
1

𝑥
2

] − 𝛼 [
−2

2
]) ,

𝐽
𝑁

𝛼
[
𝑥
1

𝑥
2

] = [
2 + 𝛼 2

2 2 + 𝛼
]

−1

([
𝑥
1

𝑥
2

] + 𝛼 [
2

2
]) .

(52)

According to Corollary 9, our presented algorithm can be
used to search a common zero point of 𝑀 and 𝑁. Let 𝛼 = 1,
𝑢 = (1, 1)

⊤, 𝑎
𝑛

= 1/(𝑛 + 1), 𝑏
𝑛

= 0.5, and 𝛾 = 0.5 in the
algorithm, and let ‖𝑥

𝑛+1
− 𝑥
𝑛
‖ ≤ 10

−6 be the stop criterion.
We ran the algorithm and started from point 𝑥

1
= (0, 0)

⊤.
The algorithm stopped at point 𝑥 = (1.0006, 0.0019)

⊤ after
1, 988 iterations. We know that𝑀𝑥 ≈ 0 and𝑁𝑥 ≈ 0. Finally,
we use Figure 1 to show the behavior of sequence {𝑥

𝑛
} which

converges to the common minimal point of 𝑓 and 𝑔.
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[4] O. A. Boikanyo and G. Moroşanu, “Four parameter proximal
point algorithms,”Nonlinear Analysis.Theory,Methods &Appli-
cations, vol. 74, no. 2, pp. 544–555, 2011.
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