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This paper is devoted to the stochastic optimal control problems for systems governed by forward-backward stochastic Volterra
integral equations (FBSVIEs, for short) with state constraints. Using Ekeland’s variational principle, we obtain one kind of
variational inequalities. Then, by dual method, we derive a stochastic maximum principle which gives the necessary conditions

for the optimal controls.

1. Introduction

As we know, with the exception of the applications in biology,
physics, and so forth, Volterra integral equations often appear
in some mathematical economic problems, for example, the
relationships between capital and investment which include
memory effects (in [1], the present stock of capital depends
on the history of investment strategies over a period of time).
And the simplest way to describe such memory effects is
through Volterra integral operators. Based on the importance
of Volterra integral equations, we will study a stochastic
optimal control problem about a class of nonlinear stochastic
equations—forward-backward stochastic Volterra integral
equations (FBSVIEs, for short). First we review the back-
grounds of these two kinds of Volterra integral equations:
forward stochastic Volterra integral equations (FSVIEs, for
short) and backward stochastic Volterra integral equations
(BSVIEs, for short).

Let B(-) be a standard d-dimensional Brownian motion
defined on a complete filtered probability space (Q, #, F, P),
where F = {#,},,, is its natural filtration generated by B(-)
and augmented by all the P-null sets in &. Consider the
following FSVIE:

Xt =¢t)+ th(t, s, X (s))ds
. o
+J o(t,s, X(s)dB,, tel0,T].
0

The readers may refer to [2-13] and the references cited
therein for the general results on FSVIEs. When studying the
stochastic optimal control problems of FSVIEs, we need one
kind of adjoint equations in order to derive a stochastic max-
imum principle. This new adjoint equation is actually a linear
BSVIE. This motivates the investigation of the theory and
applications of BSVIEs.

The following BSVIE was firstly introduced by Yong [14]:

T

Y(#)=yw(t)+ L gt,s,Y(s),Z(s,t)ds

) @
—J Z(t,s)dB,, te[0,T],

where g : A“XR™ x R™?x ) — R™andy : [0,T]xQ —
R™ are given maps with A° = {(t,s) € [0,T]* | t < s}. For
each t € [0,T], y(t) is & p-measurable (Lin [15] studied (2)
when () = ). It is obvious that BSVIE is a natural gener-
alization of backward stochastic differential equation (BSDE,
for short). Comparing with BSDEs, BSVIE still has its own
features as listed in Yong [14, 16]. One of the advantages is to
study time-inconsistent phenomenon. As shown in Laibson
[17] and Strotz [18], in the real world, time-inconsistent
preference usually exists. At this point, one needs BSVIEs to
generalize the so-called stochastic differential utility in [19]
and dynamic risk measures (see [20-23]). Other applications
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are in the nonexponential discounting problems (see Ekeland
and Lazrak [24] and Ekeland and Pirvu [25]) and time-
inconsistent optimal control problem (see Yong [26, 27]).
In [26, 27], Yong solved a time-inconsistent optimal control
problem by introducing a family of N-person noncooperative
differential games and got an equilibrium control which was
represented via a forward ordinary differential equation with
a backward Riccati-Volterra integral equation.

As stated in Yong [28], y(t) in BSVIE (2) could represent
the total (nominal) wealth of certain portfolio which might
be a combination of certain contingent claims (e.g., European
style, which is mature at time T, is usually only F -
measurable) and some current cash flows, positions of stocks,
mutual funds, bonds, and so on, at time ¢. So, in general,
the position process y/(-) is not necessarily F-adapted, but a
stochastic process is merely# -measurable. And Yong gave
an example to make this point more clear in [28]. Focusing on
this kind of position process ¥(-), a class of convex/coherent
dynamic risk measures was introduced by Yong in [28] to
measure the risk dynamically. Hence, one kind of control
problems appears: how to minimize the risk or how to
maximize the utility. Wang and Shi [29] obtained a maximum
principle for FBSVIEs without state constraints. In this paper,
we study one kind of optimal control problems in which the
state equations are governed by the following FBSVIEs:

Xt =f@)+ Jotb(t,s,X(s),u(s))ds

+ jta(t,s,X(s),u(s))st, te[0,T],
0
; ()
Y(t) = w(t)+j gt,s,X(s),Y(s),Z(s,t),u(s))ds

t

- sz (t,s) dB,.

t

By choosing admissible controls (¢, ), we will maximize the
following objective functional:

J(y,u) =E “()T LT L(ts, X (s),Y(s),

Z (s,t),u(s))dsdt

T
+ J Jtll (t,s, X (s),u(s))dsdt

0 Jo

T
+ [ aoydrsnoemy

0

T
+ j k(Y(s))ds] .
0
(4)
Our formulation has the following new features.
(i) A strong assumption that g(t,-,-,-,-,-) in (3) is F,-

measurable is given in [29]. By applying the duality
principle introduced in Yong [28], we overcome
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this restriction and assume a natural condition that
g8, ) is F-measurable.

(ii) w in (3) is the terminal state of the BSVIE. In our
formulation v is also regarded as a control and our
control is a pair (4,y). In mathematical finance,
such kind of controls often appears as “consumption-
investment plan” (see [30]). For the recent progress
of studying this kind of control, we refer the reader
to [31-34]. We also impose constraints on the state
process Y(-) and y.

(iii) We consider the double integral in the cost functional
(4) in theory. Some further studies on the applications
are still under consideration.

In order to solve this optimal control problem, we adopt
the terminal perturbation method, which was introduced in
[31-33, 35-41]. Recently, the dual approach is applied to utility
optimization problem with volatility ambiguity (see [42, 43]).
The basic idea is to perturb the terminal state y and u directly.
By applying Ekeland’s variational principle to tackle the state
constraints, we derive a stochastic maximum principle which
characterizes the optimal control. It is worthy to point out
that in place of Itd’s formula, we need two duality principles
established by Yong in [16, 28] to obtain the above results.

This paper is organized as follows. First, we recall some
elements of the theory of BSVIEs in Section 2. In Section 3,
we formulate the stochastic optimization problem and prove
a stochastic maximum principle. In Section 4, we give two
examples. The first example is associated with the model we
studied. The last example is about the “terminal” control y(-).

2. Preliminaries

Let B(-) be a d-dimensional Brownian motion defined on a
complete filtered probability space (Q, &, F, P), where F =
{F,},50 is natural filtration generated by B(-) and augmented
by all the P-null sets in &; that is,

Fo=0{B,r<t}vAp te[0,T], (5)

where /' is the set of all P-null sets.

2.1. Notations. Here we keep on the definitions and notations
for the spaces introduced in Yong [16].
Forany 0 < R < § < T, we denote
A[R,S]={(t:s) € [R,S]*|R<s<t<S},
A°[R,S] = {(t,s) € [R,S] | R<t <s< S} (6)

= [R,S]*\ A[R,S].
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Forany A, B € R™ define the inner product (A, B) :
tr[ABT] and

. 2
A1 =3 Ja)
i1
. )
= ZZaiZj, VA= (a),...,ay) = (aij) e R™,

i=1j=1
Let S € [0, T]; define the following spaces:

O L% (0.T) = {p : [0,TIxQ — R™ | ¢()is

A([0,T]) ® F¢g-measurable and E fOT lp(t)|Pdt < oo}

(ii) LE(0,T) == {9 : [0, T] x @ — R™ | ¢() is F-adapted
and E [, lp(t)|Pdt < oo}

(iti) LP(0, T; L2(0,T)) = {Z 0,7 x Q —
R™4 | for almost all + € [0,T],Z(t,-) €
/2
L20,1), [ B[] 12(t,5)Pds) dt < oo}

(iv) LP(0, T;R") = f{o [0,T] x QO — R" |
€sSSUP e SUPc(o.1) PS> @) < 0O}

(v) L=([0, T LF (0, T; R™™)) =
{Z(t> ) € L?FO(O) T) RHXH) |
€sSSUP,,c SUPyeo,1] SUPse(o,1) Z(F> S, w) < 00}

(vi) FP[S,T] == LE(S, T) x LP(S, T; L1(S, T)).

2.2. Backward Stochastic Volterra Integral Equations. For the
reader’s convenience, we present some results of BSVIEs
which we will use later.

Consider the following integral equation:

T
Y(t) = 1//(t)+J gt,s,Y(s),Z(s,t)ds

t

T
—j Z(t,s)dB, te[0,T],

t

2
where y(-) € Lf’7T 0,T).
We assume the following.

(H) Let g : Q x A°[0,T] x R™ x R™4 — R™
be F ® B(A° x R™ x R™4)-measurable such that
s — gl(t,s, y,{) is F-progressively measurable for all

(t, y,¢) € [0,T] x R™ x R™* and

2

T /(T
EJ <J |g(t,s,0,0)|ds> dt < oo. %)
o \Jt

Moreover, Y(t,s) € A°[0,T], (y,{) and (7,2) €
R™ x RMXd,

|9 (t:5.3.0) = g (£.5.7:0))|

< L(t,s)(|y—7| + 'C—ZD, a.s.,

(10)

where L : A°[0,T] — R is a deterministic function
such that

T
sup J L(t,s)*™ds < 0o, for some £ >0.  (11)
tefo,] Jt

The following M-solution of BSVIEs was introduced by
Yong [16].

Definition 1. Let S € [0,T). A pair (Y(-), Z(--)) € #*[S,T]
is called an adapted M-solution of BSVIE (8) on [S, T] if (8)

holds in the usual Itd sense for almost all ¢t € [S,T] and, in
addition, the following equation holds:

Y(t)=E[Y(t)| Fg]+ LtZ(t,s) dB,, ae., te€[ST].
(12)

For the proof of the following well-posedness results, the
readers are referred to Yong [16].

Lemma 2. Let (H) hold. Then for any y(-) € LZgT(O, T),
BSVIE (8) admits a unique adapted M-solution (Y (-), Z(-,-)) €
%[0, T) on [0,T]. Moreover the following estimate holds:
VS € [0,T],

Y,z ')ll;{z[S,T]

=E {LT [Y (t)|*dt + ”Z'Z (t,s)|*ds dt}

T ) T T 2
sCE“S ol | <L |g0(t,s)|ds> dt}.

(13)

Letg : Qx[0,T] % [0,T] x R™ x R™ — R™ also satisfy
(H) and () € L%, (0,T) and (Y(-), Z(,-)) € Z°[0,T] is the
adapted M-solution of (8) with g and y(-) replaced by g and
w(-), respectively: then for all S € [0, T],

T — 2
E{L v () - Y o[ de
+ ”T|Z (t,s) - Z (¢, s)|2dsdt}
S

T 2

gaz{j v (-7 @ dr
S
T T

+L (L 19(65Y (5).Z(s,1)

2
-g(t,s,Y(s),Z(s, t))| ds> dt} .
(14)

Yong proved the following two duality principles for
linear SVIE and linear BSVIE in [16, 28], respectively. And
they play a key role in deriving the maximum principle.



Lemma 3. Let A() € L™([0,TLL0, T;R) (i =
o d), () € L2(0, T; R, and w(t) € L*((0, T)x () Rd)
Let E( ) eL? £(0,T; Rd) be the solution of the following FSVIE:

T
E) =)+ L Ao (t5)E (s) ds
(15)
t d
+J Y A;(t,5)E(s)dB;(s), te[0,T].
0 =1

Let (Y(-), Z(-,-)) € #*[0,T] be the adapted M-solution to the
following BSVIE:

Y (t) =y ()
+jT

T
—J Z(t,s)dB,, te[0,T].
t

i=1

d
Ag(s DY (5)+ D A0 Z; (s, t):| ds 16)

Then the following relation holds:

T T
E[ Gowma-£| po.yoyd @)
0 0

Lemma 4. Let A,(-) € LO([0,T];LL(0, T;RPY) (i =

d), () € L2(0, T;RY), and w(t) € L*((0, T)x Qs RY).
Suppose that (Y(:), Z(-,-)) € H2(0,T) is the solution of the
following linear BSVIE:

Y(0) =y
+jT

T
- j Z(t,5)dB,,
t

d
Ag(t,s) Y (5) + Y Ai(t:9) Z; (s,0) | ds
i=1

€[0,T],
(18)

and suppose that X(-) is the solution of the following FSVIE:
T

X(t) = <p(t)+J Aq (s, ) X (s)ds
0

t d
+ L X (s) ;E [A;(s,t) | F,]dB,(s), tel[0,T].
(19)

Then the following relation holds:

T T
EJ <X(t),1;/(t)>dt=EJ (p(1),Y (1)) dt. (20)
0 0

For the proofs of Lemmas 3 and 4, the readers are referred
to Theorem 5.1 in [16] and Theorem 3.1 in [28], respectively.
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3. Stochastic Optimization Problem

3.1. One Kind of Stochastic Optimization Problems. Let K, K
be nonempty convex subsets of R"; set

UL0,T] = {u: [0,T]xQ — R™ [u() € L (0,T),

u(s) e K,s€[0,T],a.e., a.s.} ,

= {y(),u0) 1y el O.T), y(t) €K,

te[0,T],ae,as,u()eU[0,T]}.
(21)

For any given control pair (y(:),u(:)) € %, we consider
the following controlled integral equation:

X(t)=f(t)+Ltb(t,s,X(s),u(s))ds

+Jt0(t,s,X(s),u(s))st, te[0,T],
0

, (22)
Y(t)=1//(t)+J g(t,s,X(s),Y(s),Z(s,t),u(s))ds

T
- J Z (t,s)dB,,
t

where f(-) € L%F(O, Tyandb: QO x A[0,T] xR" x K — R™,
0: QxA[0,TIxR™xK — R™% and g : Q x A°[0,T] x
R™ x R" x R™4 x K — R™.

For each (y(:),u(-)) € %, define the following objective
functional:

Ty (),u()) = E UOT flz (65X (5),Y (s),

Z (s,t),u(s))dsdt

T rt
+L Lz (65X (), u(s)dsdt

T
+J q(y (®)dt + h(X(T))

0

+ LTk (v (t))dt] ,

where I, : A[0,T] xR" x K — R, 1, : A[0,T] x R™ x
R™"xR™4x K - R,andq:R™ - R, h:R"™ - R,
k:R" - R.

We assume the following.

(A b, 0, 9,11, 1, g, h, k are continuous in their argu-
ment and continuously differentiable in the variables
(x> b2 C) u);

(A,) the derivatives of b, o, g, hin (x,y,{,u) are
bounded;

(A,) the derivatives of I, I, in (x, y,{, u) are bounded

by C(1 + |x| + || + |¢| + |ul), and the derivatives of g,
h, k in x are bounded by C(1 + |x|);
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(Ay) g(t,s,x, ¥, 0,u) is Fr@B(A[0, TI x R™ x R™ x
R™* x K)-measurable such that s — g(t, s, x, y,{, ),
s — g;(t, s, x, v,{,u) are F-progressively measurable
forall (¢, x, ¥,{,u) € [0, T]xR™ xR™ x R™4%K,i=
x,¥,¢,u,and E IOT(_LT lg(t,s,0,0,0, 0)|ds)*dt < co.

Under the assumptions (A, ), (A,), and (A,), for any given
u(-) € UJ[0,T], the FSVIE in (22) has a unique solution
X*() € L%F(O, T). For any given y(:) € L;T(O, T), the BSVIE

has a unique M-solution (YY*(-), Z¥"(-,-)) € %*[0,T]
associated with (y/(-), u(:)). Hence, there exists a unique triple
(X*(), Y¥H(-), Z¥"(-,-)) satisfying (22).

Now we formulate the optimization problem:

Maximize ] (v (-),u ("))
(W(),u() e,

subject to

T (24)
J EYY" (s)ds = a,
0

EYY"(t)=p(t), ae,

where p [0,T] — R™ is continuous and satisfies
T T
|, pt)dt = a, |, 1p(®)*dt < co.

3.2. Variational Equation. For (wl(-),ul(-)),(1//2(-),u2(-)) €
U, we define a metric in % by

d((v' ),u' ), (v’ (). 0))

T
= (E L |1//1 () -y* (s)|2d5 (25)

1/2

+E ! u' ()= u? (s) st
J, !
0

It is obvious that (%, d(-,-)) is a complete metric space.

Let (y*(-),u"(-)) be an optimal control pair to problem
(24) and let (X*(:),Y* (), Z"(,-)) be the corresponding state
processes of (22). For any (y(-),u(-)) € %,0 < p < 1, using
the convexity of %, we have

(V/p () ,uP ())
=((1-py" O+py(),(1-p)u” () +pu()
=W O+ply -y O)u" O +p)—u" ()
c.

(26)

We denote (X?(-), Y?(-), ZP(-,-)) by the solution of the corre-
sponding FBSVIE (22) with (y(-), u(-)) = (W* (), u?(")).

5
Consider the following FBSVIE:
t t
SX(t) = J b, (t,s)u(s)ds + J o, (t,5) i (s) dB,
0 0
t
+J b (t,5) 6X (s) ds
0
t
+ J o, (t,5)6X (s)dB,, te€l0,T],
0
Y (1) = (1) (27)

T
+ L [g,’i (t,5)0X (s) + g,, (£,5) Y (s)

+g; (t,5)8Z (s,1) + g, (t,5) T (s)] ds

T
- J 57 (t,5) dB,
t

where y/(s) = y(s) — y*(s), u(s) = u(s) —u*(s), fi(t,s) =
fiet, s, X5(s), Y™ (s), Z%(s, 1), u"(s)), and k = x,y,(,u, f =
b,0, g, respectively. This equation is called the variational
equation.

From Lemma 2 and (A,), (A,), (A), it is easy to check
that the variational equation (27) has a unique solution
(8X(-),8Y(),8Z(-,-)) € L3(0,T) x %[0, T].

Now we define

XP()y=p ' [XP () - X" ()] -0X (1),
YP@)y=p ' [YP(t)-Y" (1)] -8Y (1), (28)

ZP (t,s) = p ' [ZP (t,s) = Z" (t,5)] — OZ (t,5).
To simplify the proof, we use the following notations:

Pt s) = f(t,s, XF (s),YF (s), ZF (s, 1) ,uF (s)),

)= f(t,sX (s),Y (s),Z" (s,8),u” (s)),

(29)

where f = b, 0, g, respectively. Similar to the arguments in
[29, 32], we have the following lemma.

Lemma 5. Assume that (A,), (A,), and (A,) hold. One has
T _
limEJ |XP(0)] dt =0,
=0 Jo
T _ 2
limEJ |77 (6)| dt =0, (30)
p—0 Jo
T
0

limE“ |Z8(t,5)[ dsdt = 0.
p—0



Proof. (1) We prove the first equality. By the FSVIEs in (22)
and (27), we have

P (1) = r LioP (s - b  (ts) - pb? (1,5)6X (5)
op
- pby (t,s)u(s)] ds
+ L ’ [of (t,5) — 0" (t,5) — po, (t,5) 06X (s)
- po, (t,s)ii(s)] dB,

- jt [Af; (t,s) XP (s) + DP (t, s)] ds
0

+ J(: [Ag (t,s) XP (s) + D¥ (t, 5)] dB,,

31

where
1

AP (t,s):= | b (t,s,L(p,As),M(p,As))dA,

e

0

Ab(t,s)=| o.(t.s,L(p,As),M(p,As))dA,

e —

b, (t.s,L(p,A,s),M(p,A,s))dA,

s

Bl (t,5) := .

1

B (1,s) ;:J o, (5, L(p,hys), M (p,As))d,

0
D! (t,s) = [AF (t,5) - b} (t,5)] X (5)
+ [BY (t,5) b (t,9)] A (s),
DY (t,5) = [AL (t,5) - 0}, (£,5)] X (s)
+[BY (t,5) - 0} (t:9)] @ (5),

L(p:As) = X" () + A (X () = X" (9)),

M(p,As):=u"(s)+A(uf (s) —u” (s)).
(32)

Therefore, we have
T

E j e—rt
0

T
ce
0

X2(r)[ dt

et LT (|A§’ 9| + |4 s)|2) |X? ()| dsdt
T T 5 5
+CEJ e-”J (107 o) + |08 ) ) dsae
0

T
< gEJ e | XP (t)|2dt
rJo

+ CE”Te_” <|Df (t, s)'2 + 'Df (t, s)'2> dsdt.
° 33)
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By choosing a proper r such that C/r < 1, we have

T p 2
EJ X7 (1) dt
o (34)
< CE” T (10 (¢, 9)[" + D2 1, 9)[ ) ds .
0

Applying Lebesgue’s dominated convergence theorem, we
have

T
limEU DP9 dsde =0, i=12 (35
p—0 0
So,
T — 2
limEJ |Xf’ (t)| dt=0. (36)
r—0 Jo

(2) By the BSVIEs in (22) and (27), we have
T
= 1 * *
72 (1) = j S1o° (€9~ 3" (.9~ pg} (.5)5X (9
t

- pg; (t,5)8Y (s) - pg; (t,5)8Z (s,t)

- pg. (t,s)t(s)] ds

T
—j ZP (t,s)dB,, te[0,T].
t

(37)
Let
N(pAs):=Y" () +A(YP(s) - Y" (),
P(p,Mt,s):=Z" (s,t) + A(ZP (s,t) = Z" (s, 1)),
1
Cl(t,s) = L 9. (t,s,L(p,A,s),N(p,A,s),
P(p,At,s),M(p,A,s))dA,
1
Ch(t,s) = L gy (t:5,L(p.As), N (p,A,s),
P(p, M t,s),M(p,As))dA,
1
P —
Ch (t,s) = L g (t:s,L(p,A,s),N(p,As), (38)

P(p, M t,s),M(p,As))dA,

Cl (t,5) := Ll 9. (t:5L(p,A,s5), N (p,A5),
P(p, M t,s),M(p,As))dA,
D (t,s) = [CY (t,5) - g5 (t,5)] X (s)
+[CF(6,9) - g, (1,9)] Y (5)
+[C (69 - g (9] 8Z (s,1)

+ [Cf (t,s) - g, (&, s)] i (s).
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Thus,

T
7 (1) = L [CF (t,5) RP (5) + CL (¢,5) PP (s)
+CY (t,5) ZP (s,) + DP (t,9)|ds  (39)

T
—J 7P (t,s)dB,, tel0,T].

t

In Lemma 2, we take ¢ = 0, g, (t,s) = CL(t, 5)XP(s)+ DP(t, s).
Then

2
22[0,T]

(72 ), 27 &, 9))|

_e[[ | ©[ ds + "z t,5)| ds dt
0 0

2 (40)
<CE LT (LT |CF (t,5) XP ()| ds)

+<J;T |D? (t, s)| ds)2:| dt.

Applying Lebesgue’s dominated convergence theorem, we
have

2

T
J |D” (¢, s)|ds> dt — 0. (41)

t

T
limEJ <
r—0 Jo

Using the obtained first result, we can get the desired results.
O

3.3. Variational Inequality. In this subsection, using Ekeland’s
variational principle (see [44]), we get the variational inequal-

ity.

Lemma 6 (Ekeland’s variational principle). Let (V,d(-,-)) be
a complete metric space and let F(-) : V. — R be a proper
lower semicontinuous function bounded from below. Suppose
that, for some € > 0, there exists u € V satisfying F(u) <
inf .y, F(v) + €. Then there exists u, € V such that

(i) F(u,) < F(u),
(ii) d(u,u,) <,

(iii) F(v) + Ved(v,u,) = F(u,), forallv e V.

Given the optimal control pair (v*(),u*(-) € %,
introduce a mapping F,(-) :  — R by

F (v (),u()

s

2

T T
J EY (t)dt —a +J |EY (t) - p (0)[*dt
0 0

" {max (0, LT EK(Y" (5)) ds

2

- JTEk (Y (s))ds + 8>}
0

+ {max (0, Eh (X" (T)) - Eh (X (T)) + &)}

T
+ {max (0, L Eq(y™ (t))dt

42
, (42)

- JTEq (v (@) dt+ s>}

T pt
" «[max (0, j J EI (t, ) dsdt

- LT J: El, (t,s)dsdt + s>}

T T
N {max (0, j J EL (t,s)dsdt
t
1/2

_ LT J;TEZZ (t,s)dsdt + 8)}2} ,

where I7(t,s) = Li(t,s, X" (s),Y"(s), Z" (s, 1), u"(s)), li(t,s) =
Li(t,s, X(s),Y(s), Z(s, ), u(s)), i = 1,2, ¢ is an arbitrary
positive constant and [;, g, h, k satisfy (A;), (A,), and (A;).

2

Remark 7. Under (A,)-(A,), from the well-posedness of
BSVIEs (Lemma 2) as well as the proof of Lemma 5, we know
that F,(:,-) is a continuous function on %.

Theorem 8. Let (" (-),u”(:)) € U be the optimal control pair.
Under the assumptions (A,)-(A,), there exists a deterministic

function hy(-) € R™, hy € R™, hy, hy, hy, by, hy € R, by, hy,
hy, by <0, [hol +hgC + 1Ay + 1A+ 1y |+ hs| + [hy| # 0 such
that the following variational inequality holds:

JTE (o (8) + Ty, O () dit
0

T
+h | g (v @) 7 0)dr

+hE (h, (X™(T)),0X(T))

T
why | Bk (V' (9).0Y (9) ds



T rt
“h, L j E(I'. (t,5),0X (s)) ds dt

0

+hy JT jt E(, (69", 3" (9)) dsd

0 Jo

+

T (T
h4j j E(LL(t,s),6X (s)) dsdt
¢ X

0

+

T T
m[ | B, 0,07 9) dsdr

0 Jt

+

T (T
me| | B 9.0z 60) dsr

0 Jt

T (T
+h4J J E(L,(t.s),@" (s)) dsdt > 0,
0 Jt (43)

wherel; (t,s),i= 1,2,k = x, y, {, u, is the derivative of I’ (t, s)
with respect to k, respectively.

Proof. It is easy to check that the following properties hold:
(i) F.(y" (), u" () = V5e,
(ii) F.(w(-),u(-)) > 0, for all (y(-), u(-)) € %,
(iii) F.(y" (), u* () < infy e Fo( (), u() + V5e.

Then, from Lemma 6 (Ekeland’s variational principle), we can
find (y°(-), u"(*)) € %, such that one has the following:

(i) F(y*()u"()) < F(y™ (), u" (),
(ii) d((y O, u (), (Y™ (), u™ () < Ve,

(iii) Fo(y(),u()) + \Voed((y(), u(), (), u5()) =
F,(y*(), (")), for all (y(), u(")) € %.

For each (y(:),u(-)) € %, we define

FO,20)=WO-y" O,u()-u" (), T O),a ()
=WO-vO,u()-u();
(44)

then (y5(),u5() = (W°() + pPr(),u() + pi() € U.

Indeed, (y*(),u’()) € %, (F°() + Y*(L0°C) + u'() =

(¥(-), u()) € ; then

(w5 ) == (W () + p#* (), u () + pit ()
=((1-p)yO+p@ O+ (), (1-p)u ()

+p (0 () +u’())) € %
(45)

Let (X5(), Y, (), Z () (resp., (X°(), Y*(-), Z°(+,))) be the
solution of BSVIE (22) with (y(),u(:)) = (w;(‘),u;(‘))
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(resp., (w(-),u()) = (¥*(-), u°(:))). From Ekeland’s variational
principle, it follows that

F, (5 (),u, () + \Vaed (v ()55 ()5 (v (), 5 ()
—F, (" (),u" () >0.
(46)

We consider the following variational equation:

SXE(t) = J(: b (t,s)u" (s)ds + JZ o. (t,s)u (s) dB,

t ¢
+ J b (t,5) 6X (s)ds + J ot (t,s) 6X° (s) dB,,
0 0

te[0,T],

T
SY* () = ¥ (t) + Jt (45 (8,5) X (s) + g, (£,5)8Y* (s)

+ gy (t,5) 8Z° (s, 1)

+ g, (t,5) (u(s) — ' () | ds

T
_ J 87 (,5)dB,
t (47)

where fi(t,s) = fi.(t, s, X*(s), Y(5), Z°(s, 1), u* (), k = x, y,
(,u, f =b, 0, g, respectively.
Similarly to Lemma 5, we have

T|XE () — X5 (b) 2
LimEJ L T sX* ()| dt=0,
pr—0 Jo
(48)
TIYS() - YE() :
limEJ P T svEw)| dt =0,
p—0 Jo
which leads to the following expansions:
EX; (t) — EX® (t) = pESX" (t) + o (p),
EY; (t) — EY® (t) = pESY® () + o(p),
(49)

T . 5 T . 2
J [EY(0) - p(o)| it - J |EY*(¢) - p(t) [t
0 0

T
= L 2p (EY® (t) — p (), ESY* (t)) dt + o (p).



Abstract and Applied Analysis

T
From (A,), we have _ L Eq(y* (1)) dt + s> +o(p)

T T
Eq(y, (®)dt - | Eq(y"(1)dt T T
Jo ( P ) J :_ZPHO Eq(y" (1) dt - L Eq(y® (1)) dt +¢

“p | Ba (v ©).9° @)t +0(p). . ]
<[ Bt )7 0)diro(p),
ER (X5 (T)) - ER(X* (T))

2
h(X*(T) - Eh (X (T
= pE(h, (X*(T)),8X" (T)) +o(p)., [Bn (X" (D) - E (Xp( ) +e]

T T — [ER (X" (T) - ER(X* (T))) + €]
Ek(Y;(t))dt— | Ek(Y®(t))dt
L (¥, ©) L ) = 2 (ER(X*(T)) - Eh (X}, (T)), Eh (X" (T))
T
= pL (Ek, (Y®(s)),0Y" (s))ds +o(p), ~Eh (X*(T)) +g> +o(p)

T t T t = -2p[Eh(X* (T)) - Eh(X*(T)) + €]
j j I (1,5) dsdt—J j EE (t,s)dsdt (50)
o Jo o Jo x E(h, (X°(T)),6X°(T)) +o(p),

=p LT K E ({11, (t,5),6X" (s)) UOT Bk (Y (5)) ds - J-OT o (Y; (S)) . 8]2

+(15, (£,9), 8" (s))) dsdt + 0 (p), 2

T T
T (T Tt —[J Ek(Y*(s))ds—J Ek(Ys(s))ds+s]
I j Elfe(t,s)dsdt-j JElg (t,s) ds dt 0 0
0 Jt 0 Jo

i =-2 <JTEk (Y*(s))ds
= pL L E ({15, (£,5),8X" (s)) ’

T T
(15, (6,9, 87 (9)) - [ By @) ds, | BR(r @) s
ORI

+ (15, (t,s),u° (s)))dsdt + o (p).

Furthermore, the following expansions hold: _ap [ JT ” (Y* (s)) s JT Bk (Ys (s)) ds + s]
5 5 0 0

- LT Ek(Y*(s))ds + £> +o(p)

T T
J EY; t)dt —a| - J EY:(t)dt — a)
0 0

T
X L E(k, (Y* (5)), 6Y* (s))ds + o (p),

T T T
_ £ _ 3 _ 3 ¢ ¢ 2
_2<L Bt -a Jo Yy (0t Jo = (t)dt> (JTJ EI (t,s)dsdt - jTJ EIP (1,5) dsdt+s>
0 Jo 0 Jo
+o(p)

:2p[jOTEY€(t)dt—a] JOTE5Y€(t)dt+o(P), <J LtEl ts)dsdt—JTJ'tEl‘lE (t,s)dsdt+e>

2

2

T T t .
“0 Eq(y* (t))dt - L Eq (v (t))dt+8] = 2< L EL (t,5)ds dt

T T 2 T rt . T t )
_ |:JO Eq (1//* (t)) dt — J;) Eq (1//8 (t)) dt +€] - J;) -[0 El{7 (t,S) det, J;) JO Ell (t,S) dsdt

:2<JOTq(v/s (1)) dt - LT J;Elf (t,s)dsdt+8> +o(p)

T

T T
_ L q (v/; (t)) dt, Jo Eq(y™ (t))dt =-2p [ J El} (t,s)dsdt

0 Jo

-
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T ot
—J J'Elf(t,s)dsdt+s]
o Jo
T (t
x [Jo L E((l}, (t,5),06X" (s))

+(I5, (t,5), 6" (s5))) dsdt] +o(p),

T (T T (T
<J J El;(t,s)dsdt—J j Elé’s(t,s)dsdt+s>
0 Jt 0 Jt
T /T T (T
—<J J El;(t,s)dsdt—J j Elg(t,s)dsdt+s>
0 Jt 0 Jt

T (T
- 2<J J EE (t,s)dsdt
0 Jt

T (T T (T
—I J EI* (t,s)dsdt,J I EL (t,5) dsdt
0 Jt 0 Jt

2

2

T T
J. J EL (t, s)dsdt+s>+o(p)
0 Jt

T (T T (T
:—Zp“ j ELL (&, s)dsdt—J j Ezg(t,s)dsdt+s]
t 0 t

0

“ JTE L (t,5),8X° (s)) + <l (t:5),0Y° (s))
0 Jt

+ (5, (t,5),0Z° (s, 1))

+(I, (t,s),U° (s))) ds dt] +o(p).
(51)

For the given ¢, we consider the following cases.

Case 1. There exists r > 0 such that, for any p € (0,7),
T N T
L Eq(w (t))dt—L Eq(l//; (t))dt+e > 0,
Eh (X" (T)) - Eh (X} (T)) +&> 0,
T T
Ek (V" d—JEkYE dste>0,
L (V" @) ds— | Bk (Y;(5))ds+e (52)
T (t T t
J IEZ;" (t,s)dsdt—J- J'Elfs(t,s)dsdt+s>0,
0 Jo 0 Jo
T (T T (T
j J EL (t,s)dsdt—J. J I (t,s)dsdt + & > 0.
0 Jt 0 Jt
Then

o Fe (5 ()51 () = Fo (" (), ()
p=0 P
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1

= lim
P=OF, (v (), ()) + F, (v (), ()

B (v 0051,00) = B (v 00,6 ()
p

" F 1//‘9() ue ()

F.(y*(),u5 ()
x {<LTEY (t)dt - ,JTESY“ (t)dt>

T
+j (EY* (t) - p (t), ESY® (t))dt
0
T
UO Eq(y" (t))dt—J Eq(y* (t))dt+8]

T
<[ B v 0).9 @) d

0
~ [ER (X" (T)) - ER (X* (T)) + ]
% E (h, (X* (T)),6X° (I))

_ “oT Ek (Y™ (s))ds — JOT Ek(Y®(s))ds+¢

T
x j E(k, (Y° (5)), 8Y° (5))ds
0

T rt
- U J EL (t,s)dsdt
0 Jo

T (t
—J J Elj (t,s)dsdt + ¢
o Jo

y HOT Lt E((E, (t,5),6X° (s))

+ (I3, (t,5),u° (s))) ds dt]

T (T
- U J EL (t,s)dsdt
0 Jt

T (T
- J j EE (t,5) dsdt+s]
0 Jt

T (T
x “0 L E((E, (t,5),6X° (s))
+ <l;y (t,5),8Y% (s))

+ (I, (t,5),0Z° (s,1))

+(l5,, (t,5),U° (s))) ds dt] ]» )
(53)
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Set

o jOTEYS(t)dt—a
©F (v (),ue ()]
—1 1

B oY
‘ F (ye (), u ()

EY®(t) - p(t)

W)= ——2 P
W= 5 (0w )

T T
XH Eq(y” (t))dt—j Eq(y* (t))dt +e
0 0
<0,

1 1

W= - -
‘ F, (v (), uf ()
x [ER (X" (T)) - ER (X (T)) + €] < 0,

W = U S
‘ F, (y* (), u* (1))

X [Jj Ek (Y™ (s))ds — LT Ek(Y® (s))ds + s]

<0,

A -
‘ Fs (1//8 () ,uf ())

T (t T t
x“ JElf (t,s)dsdt—J‘ jElj(t,s)dsst]
0 Jo 0 Jo

<0,

1
. S
‘ F, (y* (), u ()

T (T T (T
x“ J El;(t,s)dsdt—J J Ezg(r,s)dsdHS]
0 Jt 0 Jt

< 0.
(54)

Then it follows from (46) that

LT E (R (1) + hn8Y° (1)) dit

—1 T N
+h, L E(q, (v* (1), 9" (t))dt

+ h,Eh, (X5 (T)), 0X° ()

T
% J E(k, (Y* (5)),0Y* (s))ds
0
T (t
s UO L E((E, (t,5),6X° (s))

+(I7, (t,5),U° (s))) ds dt

11
T (T
4 € €
+h, [L J't E((Ly (£,5),6X° ()
+ (15, (£,5),8Y* (5))
+ <l;z (t, S) 5 (‘)\Z‘s (S) t)> (55)

+(5,, (t,5),U° (s))) ds dt]

1/2

T T
> - \/gs[EJ [9° ()| dt + EJ |a* (t)lzdt]
0

0

Case 2. There exists a positive sequence {p,}, which satisfies
P, — 0such that

T T
L Eq(v" (1)) dt - L Eq (v, (1) dt +e<0,

ER (X" (T)) - Eh (X}, (T)) +€<0,

T T
|, Be(r @) ds— | Br(¥; @) ds+e <o
T (t T (t
J. J El} (t,s)dsdt—J J. EIP* (t,s)dsdt +e <0,
0 Jo 0 Jo

T T T T
J‘ J EL; (t,s)dsdt — J J. Elé’"s (t,s)dsdt +£ <0.
0 Jt o Jt
(56)

From the definition of F,, for enough large ,

vs, ©-p©f

(v, 015, 0) = |

1/2 (57)

T
ANCACE p(t)|2dt}

Since F.(-) is continuous, we know that F,(y*(-),u"(:)) =
T £ 2 T £ i
{If, BYS@)dt—al + [ IEY*(t) - p(r)dt)}

Now
o e (v, ()1 () = E (v ()0 ()
n— 00 Pl’l

= lim !
"EOF, (v (),us, () + F (v (), ()
B2 (v, 0ou, O0) = F2 (v )0 ()
P (58)

1
CF (v (), uf ()

T T
x{<J EYS(t)dt—a,J E6Y‘E(t)dt>
0 0

T
+ J (EY® () - p(t), BOY* (t))dt} .
0
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Similar to Case 1, it follows from (46) that

LT E (b, + h (£),6Y* () ) dt

1/2 (59)

> —\/@[E JOT |9° () dt + E LT |a* (t)|2dt] ,

where i, = ( jOT EY*(t)dt — a)/(F.(y*(-),u())), h2(t) =

(EY*(t) ~ pO)/(Ey* () u* (D), b, = B = 12 = b} = K = .
Similarly, we can prove that (55) still holds for the other
thirty cases.
In summary, for given &, we have the following:

(i) (55) holds,
(ii) i, <0, <0, <0, h* <0, <0,
12
(i) K21+, 1RO de+ |+ B2+ R+ = 1.

Hence there is a subsequence (Egn, hgﬂ(-),ﬁ;, hin, hﬁn, hgﬂ, hfn)
of (g, K(), o b 12, B2, 1Y), such that B, — T, O () —
ho(Lhy — Byl = BB o B - bk - by,
Since iy, h!, 12, 12, h* < 0, we have fa, Iy, hy, by, hy < 0.
Because of d((y*(-), u*()), (¥ (), u*(:))) < V/5¢, we have
W), u() = (W (),u" (")) in Z. Therefore, from the well-

posedness of FBSVIEs, it is easy to check 6X*(:) — 8X(:),
0Y?(-) — 8Y(:),ase — 0.Furthermore,ase — 0,

|E(h, (X°(T)),8X"(T)) — ECh, (X" (T)),6X ()|
= |E (h, (X*(T)),6X" (T) - 6X (T)) (60)
+ E(h, (X*(T)) - h, (X" (T)),6X (T))| — 0.

Indeed, together with the Schwarz inequality, using the
boundedness of h,, we can get that the limit of the first
part goes to 0; from the continuity h,, we get that the
second part also goes to 0. Similarly, as ¢ — 0, we

have [, Bq (y* (), #°0)dt — [ Elq,(y" ). 9(®)dt,
(k,(Y(0)), 8Y°(0)) — (k,(Y"(0)),6Y(0)), and

T rt
j J E(E_(t,s),0X" (s)) dsdt
0 Jo

T rt
—>J j E(, (1,5),0X (s))ds d,
0 Jo
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T t
j J E(I3, (t,s),u" (s)) dsdt
0 Jo
T rt
_>J J E(, (t,s), 0" (s))ds dt,
0 Jo
T (T
j J E(E, (ts),6X (s)) dsdt
0 Jt

T (T
—>J J E(IL, (t,5),6X (s))ds dt,
0 Jt

T T . .
L L E(E, (t,5),0Y° (5)) dsat
(61)

T (T .
- L L E(L, (t,5),0Y (9))dsdt,
T (T
j J E(E, (t.5),87° (s.)) dsdt
0 Jt
T (T
_>J J E(L, (t,5),0Z (s, ))ds d,
0 Jt
T (T
J J E(L5, (t,s),u (s)) dsdt
0 Jt

T (T
_>J J E(L, (t,s), 3" ())ds dt.
0 Jt

Letting ¢ — 0 in (55), the result holds. The proof is
completed. O

3.4. Maximal Principle. We introduce the adjoint equation as
follows:

T
m(t) = A(t) + J [b; (s,)'m(s) + o (s,) (s, t)] ds
T
- J n(t,s)dB,,
p@®)=B()+ L ;1) p(s)ds

t
+J E[gi(st)" | #]p(s)dB, te[0,T],
0
(62)
where

A(t) = hb(T,0) h, (X* (1)) + hyo (T, ) 7 (1)
+ r g0 p(s)ds, (63)
0

B(t) = hy (t) + by + ok, (Y" (1)),

and b (X*(T)) = Eh (X" (T)) + |, 7(s)dB,.
By the duality principles, we get the following theorem.

Theorem 9. Assume that (A;)-(A,) hold and I, I, =
0. Let (y"(-),u”(-)) be the optimal control pair; let
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(X*(-),Y*(-), Z"(-,-)) be the corresponding optimal trajectory.
Then there exists a deterministic function hy(-) € R™,
hy € R™, hy, hy, hy < 0 such that V(y(-), u(-)) € %,
(p®+ma. (v ),y O -v" )
T
+ L (9069 p ), u(s) —u* (s)) ds
+hy (b (T, )" E [, (X™ ()]
+o, (T, 7 (8),u () —u* (1)) (64)
T
+ J <b;lk (s,)'m (s)
t

+o, (1) n(st),u(t)—u" (t))ds
20, ae.,as,

where (m(:), n(,-), p(-)) is the solution of the adjoint equation
(62).

Proof. From the duality principles (Lemmas 3 and 4), we have
the following relations:

T
EI (A(t),8X (1)) dt
0
T T
=EL <m(t),L b, (t,s)i(s)ds
T
+J o, (t,s)ﬁ(s)st>dt
0
T /T
- EJ J m(s)Tb" (s, 1)@ (1) ds dt
0 Jt
T T *\1 —~ d d
+EL Jt ;ni(s,t) (o)) (s,t)a(t)dsdt,
T
EL (B(t),8Y (1)) dt
T
=EL <p(t),¢(t)

T
t] 10 90X 0 + g () a (o) ds ) .
(65)

Combined with the variational inequality (Theorem 8), we
get

0< JTE@O +hy (), 6Y (1)) dt
0

_ T
+h L E{q.(y" (1)), ¢ ) dt

+hE (h, (X" (T)),0X(T))

13

T
+hy L E{k, (Y" (5)),0Y (5)) ds
T
L E (hy + hy (), 8Y (1)) dt
_ (T
+h | g (v @) 70)dr
+ I E (b (X*(T)), 80X (T))
T
wh | B (i, (Y (9,87 (9) ds

T (T
+EJ J m(s) by (s,t) @ (t) ds dt
0 Jt
R T/ _#\i .
+EJ0 J; i:Zlni(S’t) (au) (S,t)u(t) ds dt

T
- EJ (A(t),0X (t)) dt

0

T
vE| <p(t),¢(t>

0
T
+ J (g (£,5)6X (s) + g, (£,9) U (s)] ds> dt
T
—EJ (B(t),8Y (1) dt
0
T
L E (hy+ hy (£),0Y (6)) dt
T
+hy L E{q, (v" (1), (t))dt
T
+hE <hx (X* (7)), j b (T.s) i (s) ds
0
T
+ J o, (T,s)(s) st>
0
T
+h,E <hx (X*(T)), j bl (T,s) 8X (s) ds
0
T
+ J o, (T,5)6X (s) st>
0
T
+h, L E(k,(Y"(5)),8Y (s)) ds

T (T
+EJ I m(s)" b (s,t) @ (t) dsdt
0 Jt

T o1 d |
+EJ0 L ;”i(s’t)T(ffZ) (s, )7 (£) ds dt
T

—E| A@),ox @) dt
0
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T
2] (p0.50
T
+ J (95 (£,5) 80X (s) + g,, (t,5) T ()] ds> dt
t

T
—EJ (B(t),08Y (1)) dt
0
T —
=E JO (p) + . (v (1), (1)) dt

T (T ; T R
+EL L (gu(t:9) p(1),0(s)) dsdt

T
+h1EJ

0

<b:f (T, E [, (X* (T))]

d .
+ (o0) (T, 1), (£), 0 (t)> dt

i=1

+E LT LT <b; (s,)Tm (s)

d .
+ Z(GS)I(S, t)Tn,» (s,t),1 (t)> dsdt.

i=1

(66)

Since the above holds for all (y(:), u(-)) € %, we obtain
{p(® +ha, (v ®).y®) -y ©)
T T
; L (69" p(®),uls) —u” () ds
+hy (B (T, E [ (X* (D))]
+o, (T, (), u(t) —u* ()
T
+ J by (s,)"m(s)

+0, (s, 1) n (s, ), u(t) - u" () ds 20,

a.e.,as.
(67)

O

When [}, [, # 0, the associated adjoint equation is

T
m(t) = A(t) + J [b:(s,) m(s) + op(s, ) n(s, )] ds
T
- J n(t,s)dB,,

T
p(t)=B()+ L g, 1) p(s)ds

Abstract and Applied Analysis

- JO E[gi ()" | F ] p(s)dB, te[0,T],

(68)
where
A(t) = o (T,0) 7 (t) + hyb) (T,t) hy (X* (1))
T T
+ L gu(s, ) p(s)ds
T T
v [ miiodse | n s (69)

_ T
B() = hy (8) + Ty + ok, (Y* (6)) + J Bkl (s, t) ds
0
t
v | ni s
0

and 1, (X*(T)) = Eh (X" (T)) + [ n(s)dB,.
Similarly, we have the following maximum principle.

Theorem 10. Assume that (A,)-(A,) hold. Let (y*(-),u" ("))
be the optimal control pair; let (X* (), Y*(-), Z*(-,-)) be the cor-
responding optimal trajectory. Then there exists a deterministic
function hy(-) € R™, hy € R™, hy, hy, hy, hs, hy < 0 such that
Yy (), u() € U,

{(p®O+ha, (¥ ®),y®) -y (®)
T T
+ L (9069 p®),u(s) —u* (s)) ds
+hy (B (TOTE [h (X7 ()]
+o (T, (1), u(t) —u* (b))

T
+ J (s ) m(s) + o (s, ) n(s,t),ut) —u" (1)) ds
t
T
+hy L (I, (ts),u(s) —u" (s)) ds

T
+hy L (I, (ts),u(s)—u" (s))ds >0, ae.,a.s,
(70)

where (m(-), n(-,-), p(-)) is the solution of the adjoint equation
(68).

Remark 11. When the terminal condition y(-) is replaced by
¥(-)+¢@(X(T)) in (3), the above methods can still go through.
4. Examples

First we will give an example associated with the model
studied above.
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Example 1. Consider the following controlled system (m =
d=1):

t
X(@) = J tu (s) dB,,
0
1
Y(t)=1//(t)+j (t-1Du(s)ds (71)
- JIZ(t,s)st, teo,1],
with the control domain
7= {O.u)vo ety o,

u() € L1 (0,1),y(t) € [0,1], (72)

1
u(t) € ——,1],a.e.,a.s.}
® € |-
and the objective function

Ty (),u() = E{X1)’ +Y (0)}. (73)

We will minimize the objective function under the con-
straints (y(:),u(-)) € %. After substituting X(1), Y(0) into
the objective function, we get

J(w(),u()=E “01 u(s)’ds + v (0) - Jl u(s) ds] .

0
(74)
From (74), we obtain the optimal control:
" (s) = 0, s=0,
v ~ |values in [0,1], se€ (0,1],
(75)

u*(s) = %, se[0,1].
So, min(w(‘),u(.))ew Jy (), u(-)) = =(1/4).

At last, we give an example to show the form of the
optimal terminal y(:).

Example 2. For convenience, we suppose thatm = d = 1,and
we consider a simple BSVIE as follows:

1

Y#)=w(t)+ J [AY (s) + BZ (s,t)] ds
o (76)
—J Z(ts)dB, telo,1],

A, B € R. We will maximize the objective function J(y/(-)) =

(1/2)E[ jol y(s)*ds], subject to w(-) € L%, (0,1), y(t) € [0,1],
EYY(t) = p(t),t € [0,1], a.e., as.

From Section 3.4, we know that the adjoint process p(-)
satisfies

T
p(t)=hy(t) +(A+B)h, + J Ap (s)ds
’ (77)
t
+J Bp(s)dB,, tel0,1].
0
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Applying Theorem 9, we have that, if y*(-) is optimal to
J(w(-)), there exists a deterministic function h(:), and h; <0,
|y (-)| + |k, ] # 0 such that, for any y(-),

(p@+hy™ @)y @®) -y ®) 20, tel01],as.
(78)

Similar to the example in Ji and Zhou [33], letting Q, :=
{(w,t) € Ax[0,1] | ¥"(t,w) = 0}, Q, := {(w, 1) € A% [0,1] |
y*(t, w) = 1}, we obtain that y*(-) satisfies

pt)+hy ()20, (wt)€Q,as.

p) +hy* (1) <0, (wt)€Qy, as. (79)

pM)+hy" (1)=0, (0,1) Q-0 -Q,, as.
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