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Little seems to be known about evaluating the stochastic stability of stochastic differential equations (SDEs) driven by fractional
Brownianmotion (fBm) via stochastic Lyapunov technique.The objective of this paper is to work with stochastic stability criterions
for such systems. By defining a new derivative operator and constructing some suitable stochastic Lyapunov function, we establish
some sufficient conditions for two types of stability, that is, stability in probability and moment exponential stability of a class of
nonlinear SDEs driven by fBm.Wewill also give an example to illustrate our theory. Specifically, the obtained results open a possible
way to stochastic stabilization and destabilization problem associated with nonlinear SDEs driven by fBm.

1. Introduction

Fractional Brownian motion (fBm) is a family of Gaussian
stochastic processes that appears naturally in the modeling of
many situations. Kolmogorov [1] was the first to consider this
process and called it “Wiener Spirals.” Later, Hurst [2, 3] stud-
ied the long-term water flow characteristics of the Nile River
and the parameter 𝐻 then got the name “Hurst parameter.”
Mandelbrot andVanNess [4] established a stochastic integral
representation in terms of a standard Brownian motion.
Since the introduction of the above mentioned pioneering
work, fBm has played an increasingly important role in
many fields of application such as hydrology, economics, and
telecommunications (see [5] for a review).

According to the books [6, 7], the standard fBm
(𝐵
𝐻
(𝑡), 𝑡 ≥ 0) is defined as a self-similar centered Gaussian

process with covariance function

Cov (𝐵𝐻 (𝑡) , 𝐵𝐻 (𝑠)) = 1

2
(𝑡
2𝐻

+ 𝑠
2𝐻

− |𝑡 − 𝑠|
2𝐻
) , (1)

where Hurst parameter 0 < 𝐻 < 1. When 𝐻 = 1/2,

one recovers of course the usual Brownian motion, so this
is a natural one-parameter family of generalizations of the
“standard” Brownianmotion.When𝐻 ̸= 1/2, it was proved in
[8] that fBm is not semimartingale. Therefore, the beautiful
classical theory of stochastic analysis [9] is not applicable
to stochastic differential equations (SDEs) driven by fBm
with 𝐻 ̸= 1/2. It is a significant and challenging problem to
extend the results in the classical stochastic analysis to these
fBm ones. Over the last years some new techniques have
been developed in order to define stochastic integrals with
respect to fBm [10–21]. For example, stochastic integral of
deterministic functions with respect to fBm is called Wiener
integral, which was defined for the first time in [10]. The
stochastic integral of Stratonovich type for fBm was defined
in [11, 12]. However, the stochastic integral ∫𝑡

0
𝑓(𝑠)𝛿𝐵

𝐻
(𝑠),

introduced in [11, 12], does not satisfy in general the following
property: 𝐸∫

𝑡

0
𝑓(𝑠)𝛿𝐵

𝐻
(𝑠) = 0, which is important in the

modeling problem by stochastic differential equations with
fractional Gaussian noise as the driving random process.
Motivated by this situation, Duncan et al. [13] defined a new
stochastic integral of Itô type for fBm with Hurst parameter
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in the interval (1/2, 1). This stochastic integral is the limit
of Riemann sums defined by means of the Wick products
rather than ordinary products. In this paper, we adopt this
stochastic integral definition. Then Elliott and Van der Hoek
in [16] extended this fractional Itô calculus theory to all Hurst
parameter𝐻 ∈ (0, 1) and applied it to develop option pricing
in a fractional Black-Scholes market. This newly developed
theory of stochastic integration with respect to fBm, based on
white-noise theory and (Malliavin-type) differentiation, was
introduced in [17]. For other definitions of stochastic integrals
for fBmand their relations, we refer to the book [6] for further
details.

Recently, some sufficient and necessary conditions for
reducing the nonlinear stochastic systems driven by fBm to
the linear ones were constructed in our previous work [22],
which provide an effective approach to solve some linear and
nonlinear fBm-driven stochastic systems. Indeed, necessary
and sufficient conditions were established for stochastic
stability of the Black-Scholes model driven by fBm by means
of the Lyapunov exponents and the exact formof the solutions
[23]. Unfortunately, it is in general not possible to give explicit
expressions for the solutions to SDEs and numerical solution
is a cumbersome affair. It is therefore of great interest to study
qualitative properties of SDEs driven by fBm without solving
the equations. Therefore, the scope of this paper is to extend
the stochastic Lyapunov function technique to SDEs driven
by fBm without solving the considered equations.

We organize this paper as follows. In Section 2, we briefly
introduce some necessary notations and stochastic stability
concepts associated with SDEs driven by fBm. In Section 3,
we state the main results on stability of SDEs driven by
fBm via Lyapunov function technique. In Section 4, we apply
the stability criterions to the Ornstein-Uhlenbeck process
driven by fBm by constructing a time-dependent Lyapunov
function. The conclusions are drawn in Section 5.

2. Preliminaries

2.1. Notations. We consider the 𝑚-dimensional SDE driven
by fBm of the form

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵
𝐻
(𝑡) ,

𝑥 (𝑡
0
) = 𝑥
0
.

(2)

We will suppose that (2) satisfies the conditions for a unique
global solution as in [7, Section 3.3]. Denote the solution
by 𝑥(𝑡; 𝑡

0
, 𝑥
0
), which has continuous sample paths. Assume

furthermore that

𝑓 (0, 𝑡) = 0, 𝑔 (0, 𝑡) = 0, ∀𝑡 ≥ 𝑡
0
. (3)

Then 𝑥(𝑡) = 0 is the trivial solution of (2).
It is convenient herein for us to give a few necessary

notations. LetK denote the family of all continuous nonde-
creasing functions 𝜇 : R

+
→ R

+
such that 𝜇(0) = 0 and

𝜇(𝑟) > 0 if 𝑟 > 0. For ℎ > 0, let S
ℎ
= {𝑥 ∈ R𝑚 : |𝑥| < ℎ}.

A continuous function𝑉(𝑥, 𝑡) defined on S
ℎ
× [𝑡
0
,∞) is said

to be positive definite (in the sense of Lyapunov) if𝑉(0, 𝑡) ≡ 0

and, for some 𝜇 ∈ K,

𝑉 (𝑥, 𝑡) ≥ 𝜇 (|𝑥|) , ∀ (𝑥, 𝑡) ∈ S
ℎ
× [𝑡
0
,∞) . (4)

A function 𝑉 is said to be negative definite if −𝑉 is positive
definite. A continuous nonnegative function𝑉(𝑥, 𝑡) is said to
be decrescent (i.e., to have an arbitrarily small upper bound)
if, for some 𝜇 ∈ K,

𝑉 (𝑥, 𝑡) ≤ 𝜇 (|𝑥|) , ∀ (𝑥, 𝑡) ∈ S
ℎ
× [𝑡
0
,∞) . (5)

A function𝑉(𝑥, 𝑡) defined onR𝑛×[𝑡
0
,∞) is said to be radially

unbounded if

lim
|𝑥|→∞

inf
𝑡≥𝑡0

𝑉 (𝑥, 𝑡) = ∞. (6)

LetC2,1(S
ℎ
×[𝑡
0
,∞);R

+
) denote the family of all nonnegative

functions 𝑉(𝑥, 𝑡) defined on S
ℎ
× [𝑡
0
,∞) such that they are

continuously twice differentiable in 𝑥 and once in 𝑡.
Define a new derivative operator 𝐿𝐻 associated with (2)

by

𝐿
𝐻
=

𝜕

𝜕𝑡
+

𝑚

∑

𝑖=1

𝑓
𝑖 (𝑥 (𝑡) , 𝑡)

𝜕

𝜕𝑥
𝑖

+

𝑚

∑

𝑖,𝑗=1

𝑔
𝑖 (𝑥 (𝑡) , 𝑡) ∫

𝑡

0

𝜙 (V, 𝑠) 𝑔𝑗 (𝑥 (V) , V) 𝑑V
𝜕
2

𝜕𝑥
𝑖
𝜕𝑥
𝑗

,

(7)

where the nonlocal kernel function

𝜙 (𝑠, 𝑡) = 𝐻 (2𝐻 − 1) |𝑠 − 𝑡|
2𝐻−2

. (8)

If 𝐿𝐻 acts on a function 𝑉 ∈ C2,1(S
ℎ
× [𝑡
0
,∞);R

+
), then

𝐿
𝐻
𝑉 (𝑥, 𝑡) = 𝑉

𝑡 (𝑥, 𝑡) + 𝑉
𝑥 (𝑥, 𝑡) 𝑓 (𝑥 (𝑡) , 𝑡)

+ 𝑉
𝑥𝑥 (𝑥, 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡) ∫

𝑡

0

𝜙 (V, 𝑠) 𝑔 (𝑥 (V) , V) 𝑑V.

(9)

By fractional Itô formula [13], if 𝑥(𝑡) ∈ S
ℎ
, then

𝑑𝑉 (𝑥, 𝑡) = 𝐿
𝐻
𝑉 (𝑥, 𝑡) 𝑑𝑡 + 𝑉

𝑥 (𝑥, 𝑡) 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵
𝐻
(𝑡) .

(10)

Remark 1. Compared with the classical Itô (or Stratonovich)
SDEs [24], the significant difference is the presence of the
nonlocal kernel operator in the new differential operator 𝐿𝐻.

Remark 2. Since the kernel function 𝜙 is defined only for
1/2 < 𝐻 < 1, so the derivative operator 𝐿𝐻 makes no sense
when 0 < 𝐻 < 1/2. Thus we assume that 1/2 < 𝐻 < 1

throughout this paper.

2.2. Stochastic Stability Concepts. It turns out that there are at
least three different types of stochastic stability: stability in
probability, moment stability, and almost sure stability. We
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focus on the first two types in this paper since we already
studied the third one in our previous paper [23].

We now give the definitions of stability in probability and
the 𝑝th moment exponential stability, which are the same as
those in [24].

Definition 3. The trivial solution of (2) is said to be stochas-
tically stable or stable in probability if, for every pair of 𝜀 ∈

(0, 1) and 𝑟 > 0, there exists a 𝛿 = 𝛿(𝜀, 𝑟, 𝑡
0
) > 0, such that

P {
𝑥 (𝑡; 𝑡0, 𝑥0)

 < 𝑟, ∀𝑡 ≥ 𝑡
0
} ≥ 1 − 𝜀, (11)

whenever |𝑥
0
| < 𝛿. Otherwise, it is said to be stochastically

unstable.

Definition 4. The trivial solution of (2) is said to be stochas-
tically asymptotically stable if it is stochastically stable and,
moreover, for every 𝜀 ∈ (0, 1), there exists a 𝛿 = 𝛿(𝜀, 𝑡

0
) > 0,

such that

P { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} ≥ 1 − 𝜀, (12)

whenever |𝑥
0
| < 𝛿.

Definition 5. The trivial solution of (2) is said to be stochas-
tically asymptotically stable in the large if it is stochastically
stable and, moreover, for 𝑥

0
∈ R𝑚

P { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1. (13)

Definition 6. Assume that 𝑝 > 0. The trivial solution of (2) is
said to be 𝑝th moment exponentially stable if there is a pair
of positive constants 𝜆 and 𝐶 such that

E [
𝑥 (𝑡; 𝑡0, 𝑥0)



𝑝
] ≤ 𝐶

𝑥0


𝑝
𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (14)

for all 𝑥
0
∈ R𝑚.

3. Main Results

We now extend the stochastic Lyapunov function techniques
to the SDEs driven by fBm.

Theorem7. If there exists a positive-definite function𝑉(𝑥, 𝑡) ∈
C2,1(S

ℎ
× [𝑡
0
,∞);R

+
) such that

𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ 0 (15)

for all (𝑥, 𝑡) ∈ S
ℎ
× [𝑡
0
,∞), then the trivial solution of (2) is

stochastically stable.

Proof. By the definition of a positive-definite function, we
know that 𝑉(0, 𝑡) ≡ 0, and there is a function 𝜇 ∈ K, such
that

𝑉 (𝑥, 𝑡) ≥ 𝜇 (|𝑥|) , ∀ (𝑥, 𝑡) ∈ S
ℎ
× [𝑡
0
,∞) . (16)

Let 𝜀 ∈ (0, 1) and 𝑟 > 0be arbitrary.Without loss of generality,
we assume that 𝑟 < ℎ.

Indeed, by the continuity of 𝑉(𝑥, 𝑡) and the fact that
𝑉(0, 𝑡

0
) = 0, we can find a 𝛿 = 𝛿(𝜀, 𝑟, 𝑡

0
) > 0, such that

1

𝜀
sup
𝑥∈S𝛿

𝑉 (𝑥, 𝑡
0
) ≤ 𝜇 (𝑟) . (17)

It is not difficult to see that 𝛿 < 𝑟. Now fix the initial value
𝑥
0
∈ S
𝛿
arbitrarily and write 𝑥(𝑡; 𝑡

0
, 𝑥
0
) as 𝑥(𝑡) for simplicity.

Let 𝜏 be the first exit time of 𝑥(𝑡) from S
𝑟
; that is,

𝜏 = inf {𝑡 ≥ 𝑡
0
: 𝑥 (𝑡) ∉ S

𝑟
} . (18)

For 𝑡 ≥ 𝑡
0
, it follows that

𝑉 (𝑥 (𝜏 ∧ 𝑡) , 𝜏 ∧ 𝑡) = 𝑉 (𝑥
0
, 𝑡
0
) + ∫

𝜏∧𝑡

𝑡0

𝐿
𝐻
𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

+ ∫

𝜏∧𝑡

𝑡0

𝑉
𝑥 (𝑥 (𝑠) , 𝑠) 𝑔 (𝑥 (𝑠) , 𝑠) 𝑑𝐵

𝐻
(𝑠) .

(19)

Taking the expectation on both sides and utilizing the
condition 𝐿

𝐻
𝑉(𝑥, 𝑡) ≤ 0, we have

E [𝑉 (𝑥 (𝜏 ∧ 𝑡) , 𝜏 ∧ 𝑡)] ≤ 𝑉 (𝑥
0
, 𝑡
0
) . (20)

Note that

|𝑥 (𝜏 ∧ 𝑡)| = |𝑥 (𝜏)| = 𝑟, (21)

if 𝜏 ≤ 𝑡. Hence, by (16), we further get

E [𝑉 (𝑥 (𝜏 ∧ 𝑡) , 𝜏 ∧ 𝑡)] ≥ E [𝐼
{𝜏≤𝑡}

𝑉 (𝑥 (𝜏) , 𝜏)]

≥ 𝜇 (𝑟)P {𝜏 ≤ 𝑡} .

(22)

Together with (17), (20), and (22), we have

P {𝜏 ≤ 𝑡} ≤ 𝜀. (23)

Letting 𝑡 → ∞, we get

P {𝜏 < ∞} ≤ 𝜀. (24)

That is,

P {|𝑥 (𝑡)| < 𝑟, ∀𝑡 ≥ 𝑡
0
} = P {𝜏 = ∞}

= 1 − P {𝜏 < ∞} ≥ 1 − 𝜀.

(25)

Thus the proof is established.

Theorem 8. If there is a positive-definite, decrescent function
𝑉(𝑥, 𝑡) ∈ C2,1(S

ℎ
× [𝑡
0
,∞);R

+
) such that 𝐿

𝐻
𝑉(𝑥, 𝑡) is

negative definite, then the trivial solution of (2) is stochastically
asymptotically stable.

Proof. By the condition that 𝐿𝐻𝑉(𝑥, 𝑡) is negative definite,
there exists a function 𝜇 ∈ K, such that

−𝐿
𝐻
𝑉 (𝑥, 𝑡) ≥ 𝜇 (|𝑥|) , ∀ (𝑥, 𝑡) ∈ S

ℎ
× [𝑡
0
,∞) . (26)
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Then it follows from the definition ofK-class functional that

𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ 0. (27)

This, together with the positive-definite property of function
𝑉(𝑥, 𝑡), satisfies the required conditions in Theorem 7. It
means that the trivial solution is stochastically stable. So we
only need to show that, for any 𝜀 ∈ (0, 1), there is a 𝛿 =

𝛿(𝜀, 𝑡
0
) > 0 such that

P { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} ≥ 1 − 𝜀, (28)

whenever |𝑥
0
| < 𝛿. Note that the assumptions on function

𝑉(𝑥, 𝑡) mean that 𝑉(0, 𝑡) ≡ 0, and moreover, there are three
functions 𝜇

1
, 𝜇
2
, 𝜇
3
∈ K such that

𝜇
1 (|𝑥|) ≤ 𝑉 (𝑥, 𝑡) ≤ 𝜇

2 (𝑥, 𝑡) , 𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ −𝜇

3 (|𝑥|)

(29)

for all (𝑥, 𝑡) ∈ S
ℎ
× [𝑡
0
,∞).

Let 𝜀 ∈ (0, 1) be arbitrary, and by Theorem 7, there is a
𝛿 = 𝛿(𝜀, 𝑡

0
) > 0, such that

P{
𝑥 (𝑡; 𝑡0, 𝑥0)

 <
ℎ

2
} ≥ 1 −

𝜀

4
, ∀𝑥

0
∈ S
𝛿
. (30)

For any 𝑥
0
∈ S
𝛿
, write 𝑥(𝑡; 𝑡

0
, 𝑥
0
) = 𝑥(𝑡) simply. Let 0 < 𝛽 <

|𝑥
0
| be arbitrary and choose 0 < 𝛼 < 𝛽 sufficiently small for

𝜇
2 (𝛼)

𝜇
1
(𝛽)

≤
𝜀

4
. (31)

Define the stopping times

𝜏
𝛼
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≤ 𝛼} ,

𝜏
ℎ
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥

ℎ

2
} .

(32)

For any 𝑡 ≥ 𝑡
0
, it follows from (29) that

0 ≤ E [𝑉 (𝑥 (𝜏
𝛼
∧ 𝜏
ℎ
∧ 𝑡) , 𝜏

𝛼
∧ 𝜏
ℎ
∧ 𝑡)]

= 𝑉 (𝑥
0
, 𝑡
0
) + E [∫

𝜏𝛼∧𝜏ℎ∧𝑡

𝑡0

𝐿
𝐻
𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠]

≤ 𝑉 (𝑥
0
, 𝑡
0
) − 𝜇
3 (𝛼)E [𝜏

𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)] .

(33)

On the other hand, it yields

E [𝜏
𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)]

= E [𝜏
𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)] 𝐼
{𝜏𝛼∧𝜏ℎ≥𝑡}

+ (𝜏
𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)) 𝐼
{𝜏𝛼∧𝜏ℎ<𝑡}

≥ E [𝜏
𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)] 𝐼
{𝜏𝛼∧𝜏ℎ≥𝑡}

= (𝑡 − 𝑡
0
)P {𝜏
𝛼
∧ 𝜏
ℎ
≥ 𝑡} .

(34)

It then follows from (33) and (34) that

(𝑡 − 𝑡
0
)P {𝜏
𝛼
∧ 𝜏
ℎ
≥ 𝑡} ≤ E [𝜏

𝛼
∧ 𝜏
ℎ
∧ (𝑡 − 𝑡

0
)] ≤

𝑉 (𝑥
0
, 𝑡
0
)

𝜇
3 (𝛼)

.

(35)

Letting 𝑡 → ∞, we have

P {𝜏
𝛼
∧ 𝜏
ℎ
< ∞} = 1. (36)

On the other hand, it follows from (30) and (32) that

P {𝜏
ℎ
< ∞} ≤

𝜀

4
. (37)

Hence,

1 = P {𝜏
𝛼
∧ 𝜏
ℎ
< ∞} ≤ P {𝜏

𝛼
< ∞} + P {𝜏

ℎ
< ∞}

≤ P {𝜏
𝛼
< ∞} +

𝜀

4
,

(38)

which yields

P {𝜏
𝛼
< ∞} ≥ 1 −

𝜀

4
. (39)

Choose 𝜃 sufficiently large for

P {𝜏
𝛼
< 𝜃} ≥ 1 −

𝜀

2
. (40)

Then

P {𝜏
𝛼
< 𝜏
ℎ
∧ 𝜃} ≥ P {{𝜏

𝛼
< 𝜃} ∩ {𝜏

ℎ
= ∞}}

≥ P {𝜏
𝛼
< 𝜃} − P {𝜏

ℎ
< ∞} ≥ 1 −

3𝜀

4
.

(41)

Now, define two stopping times

𝜎 = {
𝜏
𝛼
, if 𝜏

𝛼
< 𝜏
ℎ
∧ 𝜃,

∞, otherwise,

𝜏
𝛽
= inf {𝑡 > 𝜎 : |𝑥 (𝑡)| ≥ 𝛽} .

(42)

For any 𝑡 ≥ 𝜃, it follows

E [𝑉 (𝑥 (𝜏
𝛽
∧ 𝑡) , 𝜏

𝛽
∧ 𝑡)] ≤ E [𝑉 (𝑥 (𝜎 ∧ 𝑡) , 𝜎 ∧ 𝑡)] .

(43)

Noting that

𝑉(𝑥 (𝜏
𝛽
∧ 𝑡) , 𝜏

𝛽
∧ 𝑡) = 𝑉 (𝑥 (𝜎 ∧ 𝑡) , 𝜎 ∧ 𝑡) = 𝑉 (𝑥 (𝑡) , 𝑡)

(44)

on 𝜔 ∈ {𝜏
𝛼
≥ 𝜏
ℎ
∧ 𝜃}, we get

E [𝐼
{𝜏𝛼<𝜏ℎ∧𝜃}

𝑉(𝑥 (𝜏
𝛽
∧ 𝑡) , 𝜏

𝛽
∧ 𝑡)]

≤ E [𝐼
{𝜏𝛼<𝜏ℎ∧𝜃}

𝑉 (𝑥 (𝜏
𝛼
) , 𝜏
𝛼
)] .

(45)

Utilizing (30) and the fact that {𝜏
𝛽
≤ 𝑡} ⊂ {𝜏

𝛼
< 𝜏
ℎ
∧ 𝜃} we

further have

𝜇
1
(𝛽)P {𝜏

𝛽
≤ 𝑡} ≤ 𝜇

2 (𝛼) . (46)
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Together with (31), we deduce that

P {𝜏
𝛽
≤ 𝑡} ≤

𝜀

4
. (47)

Letting 𝑡 → ∞, we have

P {𝜏
𝛽
≤ ∞} ≤

𝜀

4
. (48)

It follows from (41) that

P {𝜎 < ∞, 𝜏
𝛽
= ∞}

≥ P {𝜏
𝛼
< 𝜏
ℎ
∧ 𝜃} − P {𝜏

𝛽
< ∞} ≥ 1 − 𝜀.

(49)

This implies that

P {𝜔 : lim
𝑡→∞

sup |𝑥 (𝑡)| ≤ 𝛽} ≥ 1 − 𝜀. (50)

Since 𝛽 is arbitrary, we must have

P {𝜔 : lim
𝑡→∞

sup |𝑥 (𝑡)| = 0} ≥ 1 − 𝜀, (51)

as required. The proof is complete.

Theorem 9. If there is a positive-definite, decrescent, radially
unbounded function 𝑉(𝑥, 𝑡) ∈ C2,1(S

ℎ
× [𝑡
0
,∞);R

+
), such

that 𝐿𝐻𝑉(𝑥, 𝑡) is negative definite, then the trivial solution of
equation is stochastically asymptotically stable in the large.

Proof. By the proof of Theorem 8, the trivial solution of
equation is stochastically stable. So we only need to show that

P { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1, (52)

for all 𝑥
0
∈ R𝑚; fix any 𝑥

0
and write 𝑥(𝑡; 𝑡

0
, 𝑥
0
) = 𝑥(𝑡) again.

Let 𝜀 ∈ (0, 1) be arbitrary; since𝑉(𝑥, 𝑡) is radially unbounded,
we can find an ℎ > |𝑥

0
| sufficiently large for

lim
|𝑥|≥ℎ,𝑡≥𝑡0

𝑉 (𝑥, 𝑡) ≥
4𝑉 (𝑥

0
, 𝑡
0
)

𝜀
. (53)

Define the stopping time

𝜏
ℎ
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ ℎ} . (54)

For any 𝑡 ≥ 𝑡
0
, it follows that

E [𝑉 (𝑥 (𝜏
ℎ
∧ 𝑡) , 𝜏

ℎ
∧ 𝑡)] ≤ 𝑉 (𝑥

0
, 𝑡
0
) . (55)

But, it follows from (53) that

E [𝑉 (𝑥 (𝜏
ℎ
∧ 𝑡) , 𝜏

ℎ
∧ 𝑡)] ≥

4𝑉 (𝑥
0
, 𝑡
0
)

𝜀
P {𝜏
ℎ
≤ 𝑡} .

(56)

It then follows from (55) that

P {𝜏
ℎ
≤ 𝑡} ≤

𝜀

4
. (57)

Let 𝑡 → ∞; we have

P {𝜏
ℎ
< ∞} ≤

𝜀

4
. (58)

That is,

P {|𝑥 (𝑡)| < ℎ, ∀𝑡 ≥ 𝑡
0
} ≥ 1 −

𝜀

4
. (59)

From here, we can show in the same way as the proof of
Theorem 8 that

P { lim
𝑡→∞

𝑥 (𝑡) = 0} ≥ 1 − 𝜀. (60)

Since 𝜀 is arbitrary, the required equation (52) must hold and
thus the proof is complete.

Next we focus on the 𝑝th moment exponential stability
of (2) and always let 𝑝 > 0. Now we establish a sufficient
criterion for the 𝑝th moment exponential stability by using
a stochastic Lyapunov function.

Theorem 10. Assume that there exist a function 𝑉(𝑥, 𝑡) ∈

C2,1(S
ℎ
×[𝑡
0
,∞);R

+
) and positive constants 𝑐

1
, 𝑐
2
, 𝑐
3
, such that

(i) 𝑐
1|𝑥|
𝑝
≤ 𝑉 (𝑥, 𝑡) ≤ 𝑐

2|𝑥|
𝑝
,

(ii) 𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ −𝑐

3
𝑉 (𝑥, 𝑡) ,

(61)

for all (𝑥, 𝑡); then

E [
𝑥 (𝑡; 𝑡0, 𝑥0)



𝑝
] ≤

𝑐
2

𝑐
1

𝑥0


𝑝
𝑒
−𝑐3(𝑡−𝑡0), (62)

for all 𝑥
0
∈ 𝑅
𝑚 and 𝑡 ≥ 𝑡

0
. In other words, the trivial solution

of (2) is 𝑝th moment exponentially stable and 𝑝th moment
Lyapunov exponent should not be greater than −𝑐

3
.

Proof. Fix any 𝑥
0
∈ R𝑚 and write 𝑥(𝑡; 𝑡

0
, 𝑥
0
) = 𝑥(𝑡). For each

𝑛 ≥ |𝑥
0
|, we define the stopping time

𝜏
𝑛
= inf {𝑡 ≥ 𝑡

0
: |𝑥 (𝑡)| ≥ 𝑛} . (63)

Clearly, 𝜏
𝑛
→ ∞ as 𝑛 → ∞ almost surely.

By fractional Itô formula, we can derive that, for 𝑡 ≥ 𝑡
0
,

𝑒
𝑐3(𝑡∧𝜏𝑛−𝑡0)𝑉 ((𝑡 ∧ 𝜏

𝑛
) , 𝑡 ∧ 𝜏

𝑛
)

= 𝑉 (𝑥
0
, 𝑡
0
) + 𝑐
3
∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0)𝑉 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0)𝑉

𝑡 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0)𝑉

𝑥𝑥 (𝑥 (𝑠) , 𝑠) 𝑔 (𝑥 (𝑠) , 𝑠)

× ∫

𝑡

0

𝜙 (V, 𝑠) 𝑔 (𝑥 (V) , V) 𝑑V 𝑑𝑠

+ ∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0)𝑉

𝑥 (𝑥 (𝑠) , 𝑠) 𝑓 (𝑥 (𝑠) , 𝑠) 𝑑𝑠

+ ∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0)𝑉

𝑥 (𝑥 (𝑠) , 𝑠) 𝑔 (𝑥 (𝑠) , 𝑠) 𝑑𝑠.

(64)
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Taking expectation on both sides of (64) and using (9) give

E [𝑒
𝑐3(𝑡∧𝜏𝑛−𝑡0)𝑉 ((𝑡 ∧ 𝜏

𝑛
) , 𝑡 ∧ 𝜏

𝑛
)]

= 𝑉 (𝑥
0
, 𝑡
0
)

+ E [∫

𝑡∧𝜏𝑛

0

𝑒
𝑐3(𝑠−𝑡0) (𝑐

3
𝑉 (𝑥 (𝑠) , 𝑠) + 𝐿

𝐻
(𝑥 (𝑠) , 𝑠)) 𝑑𝑠] .

(65)

Using condition (ii) in (61), we then obtain that

E [𝑒
𝑐3(𝑡∧𝜏𝑛−𝑡0)𝑉 ((𝑡 ∧ 𝜏

𝑛
) , 𝑡 ∧ 𝜏

𝑛
)] ≤ 𝑉 (𝑥

0
, 𝑡
0
) . (66)

Combining (66) and condition (i) in (61) gives that

𝑐
1
𝑒
𝑐3(𝑡∧𝜏𝑛−𝑡0)E [

𝑥 (𝑡 ∧ 𝜏
𝑛
)


𝑝
] ≤ 𝑉 (𝑥

0
, 𝑡
0
) ≤ 𝑐
2

𝑥0


𝑝
.

(67)

Letting 𝑛 → ∞ yields that

𝑐
1
𝑒
𝑐3(𝑡−𝑡0)E [|𝑥 (𝑡)|

𝑝
] ≤ 𝑐
2

𝑥0


𝑝
, (68)

which implies

E [|𝑥 (𝑡)|
𝑝
] ≤

𝑐
2

𝑐
1

𝑥0


𝑝
𝑒
−𝑐3(𝑡−𝑡0) (69)

as desired. Therefore the proof is complete.

Remark 11. Note that Hölder inequality implies

(E [|𝑥|
𝑟
])
1/𝑟

≤ (E [|𝑥|
𝑝
])
1/𝑝 (70)

for 0 < 𝑟 < 𝑝.Then 𝑝th moment exponential stability implies
𝑟th moment exponential stability. In particular, when 𝑝 = 2,
it is usually said to be exponentially stable in square-mean
sense.

Remark 12. It should also be pointed out that when 𝐻 =

1/2, the statements in these theorems reduce to Itô SDEs
[24]; when 𝑔(𝑥, 𝑡) = 0, these statements reduce to the
corresponding deterministic ones.

Remark 13. It would be very hard to study the stochastic
stability of some SDEs driven by fBm via Lyapunov function
approach because of the nonlocal property of the kernel
function 𝜙(⋅, ⋅).

Remark 14. The greatest disadvantage of the stochastic Lya-
punov technique is that no universal method has been given
which enables you to find a Lyapunov function or determine
that no such function exists.

4. Two Examples

Through the above discussion, we have established some
stochastic-Lyapunov-function-based stability criterions for
the SDEs (2) driven by fBm. Nowwe apply the obtained crite-
rions to check the stochastic stability of Ornstein-Uhlenbeck
process driven by fBm and nonlinear radial Ornstein-
Uhlenbeck driven by fBm. To do this, the procedure is to
construct some suitable stochastic Lyapunov function and
verify the required properties of a newderivative operator𝐿𝐻.

4.1. Example 1. Precisely, the Ornstein-Uhlenbeck process
reads [25]

𝑑𝑥 (𝑡) = −𝜃𝑥 (𝑡) 𝑑𝑡 + 𝜎𝑑𝐵
𝐻
(𝑡) , (71)

where 𝐵𝐻(𝑡) is a standard fBm with Hurst parameter 1/2 <

𝐻 < 1 and 𝜃 > 0, 𝜎 are arbitrary constants. It is obvious that
(71) satisfies the conditions for a unique global solution as in
[7].

Proposition 15. Equation (71) is stochastically stable.

Proof. We construct the time-dependent stochastic Lyan-
punov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝜃𝑡) 𝑥4, (72)

for 𝜆 > 0 sufficiently large.
First we check the positive-definite property of function

(72). It is easy to observe that there are positive constants 𝑚
and𝑀 such that

𝑚 ≤ exp (−𝜆𝜃𝑡) ≤ 𝑀. (73)

Obviously, 𝑉(0, 𝑡) = 0 and there existsK-class function

𝜇
1 (𝑥) = 𝑚𝑥

4
, (74)

such that

𝑉 (𝑥, 𝑡) ≥ 𝜇
1 (|𝑥|) . (75)

Then we check the nonnegative property of the operator
𝐿
𝐻. In fact, it follows from (9) that

𝐿
𝐻
𝑉 (𝑥, 𝑡) = 𝑉

𝑡 (𝑥, 𝑡) + 𝑉
𝑥 (𝑥, 𝑡) (−𝜃𝑥)

+ 𝜎
2
𝑉
𝑥𝑥 (𝑥, 𝑡) ∫

𝑡

0

𝜙 (V, 𝑡) 𝑑V

= −𝜆𝜃 exp (−𝜆𝜃𝑡) 𝑥4 − 4𝜃 exp (−𝜆𝜃𝑡) 𝑥4

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝜃𝑡) 𝑥2

= − (𝜆 + 4) 𝜃 exp (−𝜆𝜃𝑡) 𝑥4

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝜃𝑡) 𝑥2.

(76)

Note the first term in the right hand side of (76) and choose
𝜆 sufficiently large such that the second term vanishes. Thus,

𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ 0. (77)

Therefore, we prove this proposition according toTheorem 7.

Proposition 16. Equation (71) is stochastically asymptotically
stable.

Proof. We construct the same stochastic Lyapunov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝜃𝑡) 𝑥4. (78)
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By the proof of Proposition 15, we know that function (72) is
positive definite.

Now we verify the decrescent property of (72). In fact, it
is easy to observe that 𝑉(𝑥, 𝑡) ≥ 0, and there exists aK-class
functional

𝜇
2 (𝑥) = 𝑀𝑥

4
, (79)

such that

𝑉 (𝑥, 𝑡) ≤ 𝜇
2 (|𝑥|) . (80)

Next we only need to check the nonnegative property
of operator 𝐿𝐻, that is, to check that −𝐿𝐻𝑉(𝑥, 𝑡) is positive
definite. In fact, it is easy to see that −𝐿𝐻𝑉(0, 𝑡) = 0, and there
existsK-class functional

𝜇
3 (𝑥) = (𝜆 + 4 − 𝜀

1
) 𝜃 exp (−𝜆𝜃𝑡) 𝑥4

− 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝜃𝑡) 𝑥2,

(81)

such that

−𝐿
𝐻
𝑉 (𝑥, 𝑡) ≥ 𝜇

3 (|𝑥|) , (82)

where 𝜀
1
> 0 is arbitrary.

Therefore, we prove this proposition according to
Theorem 8.

Proposition 17. Equation (71) is stochastically asymptotically
stable in the large.

Proof. We construct the same stochastic Lyapunov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝜃𝑡) 𝑥4. (83)

By the proofs of Propositions 15 and 16,we know that function
(72) is positive definite and decrescent, and the derivative
operator 𝐿𝐻 is negative definite.

So we only need to check that function (72) is radially
unbounded. In fact, it follows from the definition of radially
unbounded that

lim
|𝑥|→∞

inf
𝑡≥0

𝑉 (𝑥, 𝑡) = lim
|𝑥|→∞

𝑚𝑥
4
= ∞. (84)

Therefore, we prove this proposition according to
Theorem 9.

Proposition 18. Assume that 𝑝 > 0. Equation (71) is 𝑝th
moment exponentially stable and the 𝑝th moment Lyapunov
exponent should not be greater than−(𝜆+4−𝜀

2
)𝜃, where 𝜀

2
> 0

is an arbitrary constant.

Proof. We first consider 𝑝 ≥ 4. Let 𝑝 = 2(𝑞 + 1), where 𝑞 ≥ 1.
We consider the stochastic Lyapunov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝜃𝑡) 𝑥𝑝. (85)

Choose 𝑐
1
= 𝑚 and 𝑐

2
= 𝑀; then

𝑐
1
𝑥
𝑝
≤ 𝑉 (𝑥, 𝑡) ≤ 𝑐

2
𝑥
𝑝
, (86)

which implies that the condition (i) in (61) is satisfied.
On the other hand, by (76) there exists 𝜀

2
> 0 such that

𝐿
𝐻
𝑉 (𝑥, 𝑡) = − (𝜆 + 4) 𝜃 exp (−𝜆𝜃𝑡) 𝑥𝑝

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝜃𝑡) 𝑥2𝑞

≤ − (𝜆 + 4 − 𝜀
2
) 𝜃 exp (−𝜆𝜃𝑡) 𝑥𝑝

= − (𝜆 + 4 − 𝜀
2
) 𝜃𝑉 (𝑥, 𝑡) .

(87)

Let 𝑐
3
= (𝜆 + 4 − 𝜀

2
)𝜃; then condition (ii) in (61) is satisfied.

According to Theorem 10, (71) is 𝑝th moment exponen-
tially stable, where 𝑝 ≥ 4.

When 0 < 𝑝 < 4, by Remark 11, (71) is also 𝑝th moment
exponentially stable.

Therefore, (71) is also 𝑝th moment exponentially stable
for all𝑝 > 0, and the𝑝thmoment Lyapunov exponent should
not be greater than −(𝜆 + 1 − 𝜀

2
)𝜃.

4.2. Example 2. The nonlinear Ornstein-Uhlenbeck model
driven by an fBm is given by

𝑑𝑋 (𝑡) = (−𝜃𝑋
−1
(𝑡) − 𝑋 (𝑡)) + 𝜎𝐵

𝐻
(𝑡) , (88)

where 𝐵𝐻(𝑡) is a standard fBm with Hurst parameter 1/2 <

𝐻 < 1 and 𝜃 > 0, 𝜎 are arbitrary constants.

Proposition 19. Equation (88) is stochastically stable.

Proof. Weconstruct the time-dependent stochastic Lyapunov
function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝑡) 𝑥4, (89)

for 𝜆 > 0 sufficiently large.
First we check the positive-definite property of function

(89). It is easy to observe that there are positive constants 𝑚
and𝑀 such that

𝑚 ≤ exp (−𝜆𝑡) ≤ 𝑀. (90)

Obviously, 𝑉(0, 𝑡) = 0 and there existsK-class function

𝜇
1 (𝑥) = 𝑚𝑥

4
, (91)

such that
𝑉 (𝑥, 𝑡) ≥ 𝜇

1 (|𝑥|) . (92)

Then we check the nonnegative property of the operator
𝐿
𝐻. In fact, it follows from (9) that

𝐿
𝐻
𝑉 (𝑥, 𝑡) = 𝑉

𝑡 (𝑥, 𝑡) + 𝑉
𝑥 (𝑥, 𝑡) (−𝜃𝑥

−1
(𝑡) − 𝑥 (𝑡))

+ 𝜎
2
𝑉
𝑥𝑥 (𝑥, 𝑡) ∫

𝑡

0

𝜙 (V, 𝑡) 𝑑V

= −𝜆 exp (−𝜆𝑡) 𝑥4−4𝜃 exp (−𝜆𝑡) 𝑥2−4 exp (−𝜆𝑡) 𝑥4

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝑡) 𝑥2

= − (𝜆 + 4) exp (−𝜆𝜃𝑡) 𝑥4 − 4𝜃 exp (−𝜆𝑡) 𝑥2

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝑡) 𝑥2.

(93)
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Note the first two terms in the right hand side of (93) and
choose 𝜆 sufficiently large such that the third term vanishes.
Thus,

𝐿
𝐻
𝑉 (𝑥, 𝑡) ≤ 0. (94)

Therefore, we prove this proposition according toTheorem 7.

Proposition 20. Equation (88) is stochastically asymptotically
stable.

Proof. We construct the same stochastic Lyapunov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝑡) 𝑥4. (95)

By the proof of Proposition 19, we know that function (89) is
positive definite.

Now we verify the decrescent property of (89). In fact, it
is easy to observe that 𝑉(𝑥, 𝑡) ≥ 0, and there exists aK-class
functional

𝜇
2 (𝑥) = 𝑀𝑥

4
, (96)

such that

𝑉 (𝑥, 𝑡) ≤ 𝜇
2 (|𝑥|) . (97)

Next we only need to check the nonnegative property
of operator 𝐿𝐻, that is, to check that −𝐿𝐻𝑉(𝑥, 𝑡) is positive
definite. In fact, it is easy to see that −𝐿𝐻𝑉(0, 𝑡) = 0, and there
existsK-class functional

𝜇
3 (𝑥) = (𝜆 + 4 − 𝜀

3
) exp (−𝜆𝜃𝑡) 𝑥4

+ 4𝜃 exp (−𝜆𝑡) 𝑥2 − 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝑡) 𝑥2,

(98)

such that

−𝐿
𝐻
𝑉 (𝑥, 𝑡) ≥ 𝜇

3 (|𝑥|) , (99)

where 𝜀
1
> 0 is arbitrary.

Therefore, we prove this proposition according to
Theorem 8.

Proposition 21. Assume that 𝑝 > 0. Equation (88) is 𝑝th
moment exponentially stable and the 𝑝th moment Lyapunov
exponent should not be greater than −(𝜆+4−𝜀

4
), where 𝜀

4
> 0

is an arbitrary constant.

Proof. We first consider 𝑝 ≥ 4. Let 𝑝 = 2(𝑞 + 1), where 𝑞 ≥ 1.
We consider the stochastic Lyapunov function

𝑉 (𝑥, 𝑡) = exp (−𝜆𝜃𝑡) 𝑥𝑝. (100)

Choose 𝑐
1
= 𝑚 and 𝑐

2
= 𝑀; then

𝑐
1
𝑥
𝑝
≤ 𝑉 (𝑥, 𝑡) ≤ 𝑐

2
𝑥
𝑝
, (101)

which implies that the condition (i) in (61) is satisfied.

On the other hand, by (93) there exists 𝜀
2
> 0 such that

𝐿
𝐻
𝑉 (𝑥, 𝑡) = − (𝜆 + 4) exp (−𝜆𝜃𝑡) 𝑥𝑝 − 4𝜃 exp (−𝜆𝑡) 𝑥2𝑞

+ 12𝐻𝜎
2
𝑡
2𝐻−1 exp (−𝜆𝑡) 𝑥2𝑞

≤ − (𝜆 + 4 − 𝜀
4
) exp (−𝜆𝜃𝑡) 𝑥𝑝

= − (𝜆 + 4 − 𝜀
2
) 𝑉 (𝑥, 𝑡) .

(102)

Let 𝑐
3
= (𝜆+4−𝜀

4
), and then condition (ii) in (61) is satisfied.

According to Theorem 10, (88) is 𝑝th moment exponen-
tially stable, where 𝑝 ≥ 4.

When 0 < 𝑝 < 4, by Remark 11, (88) is also 𝑝th moment
exponentially stable.

Therefore, (88) is also 𝑝th moment exponentially stable
for all𝑝 > 0, and the𝑝thmoment Lyapunov exponent should
not be greater than −(𝜆 + 4 − 𝜀

2
).

Remark 22. The aim of the time-dependent term in our
constructed stochastic Lyapunov function is to eliminate the
effect of nonlocal kernel function.

5. Conclusion

In this paper, we have established the stochastic Lyapunov
techniques for SDEs driven by fBm. The obtained results are
very effective to verify the two important types of stability,
that is, stability in probability andmoment exponential stabil-
ity, for a given stochastic systems driven by fBm.Also, it opens
a possible way to stochastic stabilization and destabilization
problem associated with SDEs driven by fBm.
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