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Let X be an (N, d)-anisotropic Gaussian random field. Under some general conditions on X, we establish a relationship between
a class of continuous functions satisfying the Lipschitz condition and a class of polar functions of X. We prove upper and lower
bounds for the intersection probability for a nonpolar function and X in terms of Hausdorff measure and capacity, respectively.
We also determine the Hausdorff and packing dimensions of the times set for a nonpolar function intersecting X. The class of
Gaussian random fields that satisfy our conditions includes not only fractional Brownian motion and the Brownian sheet, but also
such anisotropic fields as fractional Brownian sheets, solutions to stochastic heat equation driven by space-time white noise, and
the operator-scaling Gaussian random field with stationary increments.

1. Introduction

Gaussian random fields have been extensively studied in
probability theory and applied in a wide range of scientific
areas including physics, engineering, hydrology, biology,
economics, and finance. Two of themost important Gaussian
random fields are, respectively, the Brownian sheet and
fractional Brownian motion.

On the other hand, many data sets from various areas
such as image processing, hydrology, geostatistics, and spatial
statistics have anisotropic nature in the sense that they have
different geometric and probabilistic characteristics along
different directions. Hence fractional Brownian motion,
which is isotropic in the sense that the distribution of its
increments depends only on the Euclidean distance of the
time interval, is not adequate formodelling such phenomena.
Many people have proposed to apply anisotropic Gaussian
random fields as more realistic models; see [1, 2] and the
references therein for more information.

Typical examples of anisotropic Gaussian random fields
are fractional Brownian sheets and the solution to the
stochastic heat equation. It has been known that the sam-
ple path properties such as fractal dimensions of these
anisotropic Gaussian random fields can be very different

from those of isotropic ones such as Levy’s fractional Brow-
nian motion; see, for example, [3–7]. Recently, Xiao [2]
systematically studied the analytic and geometric proper-
ties of anisotropic Gaussian random fields under certain
general conditions. Biermé et al. [1] studied the hitting
probabilities and the Hausdorff dimension of the inverse of
anisotropic Gaussian random fields under some conditions.
Their main goal is to characterize the anisotropic nature
of the Gaussian random fields by a multiparameter index
𝐻 = (𝐻

1
, . . . , 𝐻

𝑁
) ∈ (0, 1)

𝑁. This index is often related
to the operator-self-similarity or multi-self-similarity of the
Gaussian random field under study. In this paper, we further
discuss the polar functions of anisotropic Gaussian random
fields.

We will continue to use the same setting as in Biermé et
al. [1]. Let𝐻 = (𝐻

1
, . . . , 𝐻

𝑁
) ∈ (0, 1)

𝑁 be a fixed vector and,
for 𝑎, 𝑏 ∈ R𝑁 with 𝑎

𝑗
< 𝑏

𝑗
(𝑗 = 1, . . . , 𝑁), let 𝐼 = [𝑎, 𝑏] :=

∏
𝑁

𝑗=1
[𝑎

𝑗
, 𝑏

𝑗
] ⊆ R𝑁 denote a compact interval (or a rectangle).

For example, we may take 𝐼 = [𝜖
0
, 1]

𝑁, where 𝜖
0
∈ (0, 1) is a

fixed constant.
Let 𝑋(𝑡) = (𝑋

1
(𝑡), . . . , 𝑋

𝑑
(𝑡)), 𝑡 ∈ R𝑁, be a Gaussian

randomfield on a probability space (Ω,F,P)withmean zero
and whose components 𝑋

𝑘
, 𝑘 = 1, . . . , 𝑑, are independent.
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Suppose that for each 𝑘 = 1, . . . , 𝑑, 𝑋
𝑘
satisfies the following

general conditions.

(C1) There exist positive and finite constants 𝑐
1.1
, 𝑐

1.2
, and

𝑐
1.3

such that E[𝑋
𝑘
(𝑡)]

2
≥ 𝑐

1.1
for all 𝑡 ∈ 𝐼 and

𝑐
1.2

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
≤ E[𝑋

𝑘
(𝑠) − 𝑋

𝑘
(𝑡)]

2

≤ 𝑐
1.3

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
,

∀𝑠, 𝑡 ∈ 𝐼.

(1)

(C2) There exists a positive and finite constant 𝑐
1.4

such
that, for all 𝑠, 𝑡 ∈ 𝐼,

Var (𝑋
𝑘
(𝑡) | 𝑋

𝑘
(𝑠)) ≥ 𝑐

1.4

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
. (2)

Here Var(𝑋
𝑘
(𝑡)|𝑋

𝑘
(𝑠)) denotes the conditional variance

of 𝑋
𝑘
(𝑡) given 𝑋

𝑘
(𝑠). We will call 𝑋 an (𝑁, 𝑑)-Gaussian

random field. Xiao [2] and Biermé et al. [1] gave some
remarks on the above conditions. We point out that the class
of Gaussian random fields that satisfy conditions (C1) and
(C2) is large. It includes not only the well-known fractional
Brownian motion and the Brownian sheet, but also such
anisotropic random fields as fractional Brownian sheets (cf.
[3, 4, 7]), solutions to stochastic heat equation driven by
space-time white noise (cf. [5, 6, 8–10]), and many more.

In the following, we present some notations about several
classes of functions satisfying certain conditions. The rela-
tionship between them will be studied in Section 3.

Let C = {𝑓 : 𝑓 is a continuous function on R𝑁 with
values in R𝑑

}. As usual, a function𝑓 ∈ C is said to be a polar
function for the random field𝑋(𝑡) if

P {∃ 𝑡 ∈ R
𝑁 such that 𝑋(𝑡) = 𝑓 (𝑡)} = 0. (3)

Let P denote the collection of the continuous functions
satisfying (3).

Let 𝐾 = (𝐾
1
, . . . , 𝐾

𝑁
) ∈ (0, 1)

𝑁 be a fixed vector,
and letL(𝐾) denote the collection of all Hölder continuous
functions of any order less than 𝐾

ℓ
along the ℓth direction

in time; that is, there exists a finite and positive constant 𝑐
1.5
,

depending only on 𝐼 and 𝐾
ℓ
(0 ≤ ℓ ≤ 𝑁), such that for all

0 < 𝛿
ℓ
< 𝐾

ℓ
(0 ≤ ℓ ≤ 𝑁), 𝑠, 𝑡 ∈ 𝐼, and 𝑓 ∈ C,

󵄨󵄨󵄨󵄨𝑓 (𝑠) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑐1.5

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐾ℓ−𝛿ℓ
. (4)

Moreover, let Q(𝐾) denote the collection of all functions
satisfying the following condition: there exist finite and
positive constants 𝑐

1.6
and 𝑐

1.7
, depending only on 𝐼 and

𝐾
ℓ
(0 ≤ ℓ ≤ 𝑁), such that for all 𝑠, 𝑡 ∈ 𝐼 and 𝑓 ∈ C,

𝑐
1.6

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐾ℓ
≤
󵄨󵄨󵄨󵄨𝑓 (𝑠) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑐1.7

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐾ℓ
. (5)

Note that if 𝐾 = (𝛼, . . . , 𝛼), then the functions in L(𝐾)
are called Hölder continuous of any order less than 𝛼, and
the functions in Q(𝐾) are called quasi-spiral with order 𝛼;
see Kahane [11]. Hence L(𝐾) and Q(𝐾) can be regarded as
a nature generalization of Hölder continuous function and
quasi-spiral, respectively.

In the studies of randomfields, it is interesting to consider
the following questions.

(i) Given a nonrandom continuous function 𝑓 ∈ C,
when is it nonpolar for 𝑋 in the sense that P{∃𝑡 ∈
R𝑁 such that 𝑋(𝑡) = 𝑓(𝑡)} > 0? When is it polar
for 𝑋 in the sense that P{∃𝑡 ∈ R𝑁 such that 𝑋(𝑡) =
𝑓(𝑡)} = 0?

(ii) Given a nonrandom Borel set 𝐸 ∈ R𝑁, what
is the probability for the random set {∃𝑡 ∈

𝐼 such that 𝑋(𝑡) = 𝑓(𝑡)}? What is the Hausdorff and
packing dimensions of the set {𝑡 ∈ R𝑁

: 𝑋(𝑡) =

𝑓(𝑡)} if𝑓 is nonpolar 𝑓 or 𝑋?

The above questions are some important questions in
fractal theory of random fields and the related results have
only been known for a few types of random fields. For
example, Graversen [12] studied the characteristics of the
polar functions for the two dimensional Brownian motions.
Le Gall [13] made a further discussion for the d-dimensional
Brownian motion and proposed an open problem about the
existence of its no-polar continuous function satisfying the
Hölder condition. Some of these results have been extended
partially to fractional Brownianmotionwith stationary incre-
ments by Xiao [14], to the Brownian sheet with independent
increments by Chen [15], and recently to the fractional
Brownian sheets with anisotropy by Chen [4].

In all these papers, the isotropic properties of the Brow-
nian sheet and fractional Brownian motion have played
crucial roles. Since, in general, the anisotropic random fields
have neither the isotropic properties nor the properties
of independent increment and stationary increments due
to their general dependence structure, it is more difficult
to investigate fine properties of their sample paths. The
main objective of this paper is to further investigate the
characteristics of the polar functions and the intersection
probabilities for 𝑋 satisfying conditions (C1) and (C2) by
using the approach of Biermé et al. in [1] and Xiao in [2].
Our main results, in some cases, strengthen the results in
the aforementioned works, and their proofs are different
from the proofs for the Brownian sheet and the fractional
Brownian motion. Of particular significance, we determine
the exact Hausdorff and packing dimensions of the times
set for a nonpolar function intersecting 𝑋. However, for the
intersection probability, we can only establish an inequality
in terms of Hausdorff measure and capacity, respectively; see
Theorem 16. It is still an open problem to prove the best upper
bound in terms of capacity. We should also point out that,
compared with the isotropic case, the anisotropic nature of𝑋
induces far richer fractal structure into the properties of the
nonpolar functions for𝑋.

The rest of the paper is organized as follows. In Section 2,
we derive a few preliminary estimates and lemmas for𝑋 that
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will be useful to our arguments. In Section 3, we obtain the
relationship between the class of continuous functions satis-
fying Lipschitz condition and the class of polar functions of
𝑋. We also give upper and lower bounds for the probabilities
for a nonpolar function intersecting 𝑋 and determine the
Hausdorff and packing dimensions of the times points for a
nonpolar function intersecting𝑋. A question proposed by Le
Gall [13] about the existence of no-polar, continuous Hölder
functions for the Brownian motion is also solved. Finally
in Section 4, we show that our main results in Section 3
can be applied to solutions to stochastic partial differential
equations.

Throughout this paper we will use 𝑐 to denote unspecified
positive and finite constant whose precise values are not
important and may be different in each appearance. More
specific constants in Section 𝑖 are numbered as 𝑐

𝑖.1
, 𝑐
𝑖.2
, . . ..

2. Some Preliminary Estimates

Because of the complex dependence structure for the
anisotropic Gaussian random fields, the proofs of the main
results in Sections 3 and 4 are quite involved. Therefore, we
split the proofs into several lemmas to be used in Sections 3
and 4.

Let 𝐸 be a compact set in R𝑁. Cov(𝑋
𝑘
(𝑠), 𝑋

𝑘
(𝑡)) denotes

the covariance matrix of the random vector (𝑋
𝑘
(𝑠), 𝑋

𝑘
(𝑡)).

Then, for all 𝑠, 𝑡 ∈ 𝐸,

detCov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡))

= E [𝑋
2

𝑘
(𝑠)]E [𝑋

2

𝑘
(𝑡)] − [E (𝑋

𝑘
(𝑠)𝑋

𝑘
(𝑡))]

2

,

(6)

where 𝑘 = 1, . . . , 𝑑.
We need to estimate upper and lower bounds of the

covariance determinant in (6). For the sake of completeness,
we provide a simple proof by using the expression for the
characteristic functions and the density functions ofGaussian
random fields.

Lemma 1. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) and let 𝐸 be a
compact set onR𝑁. Then there exist positive constants 𝑐

2.1
and

𝑐
2.2
, such that for all 𝑠 = (𝑠

1
, . . . , 𝑠

𝑁
), 𝑡 = (𝑡

1
, . . . , 𝑡

𝑁
) ∈ 𝐸,

𝑐
2.1

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
≤ det Cov (𝑋

𝑘
(𝑠) , 𝑋

𝑘
(𝑡))

≤ 𝑐
2.2

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
,

1 ≤ 𝑘 ≤ 𝑑.

(7)

Proof. Since 𝐸 is a compact set in R𝑁, then there exists a
positive constant 𝑐, such that 𝐸 ⊂ [−𝑐, 𝑐]𝑁. In order to prove
(7), it suffices to show that (7) holds for all 𝑠, 𝑡 ∈ 𝐸 with 𝑠 ̸= 𝑡.
We claim that for all, 𝑠, 𝑡 ∈ 𝐸 with 𝑠 ̸= 𝑡,

detCov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) = Var (𝑋

𝑘
(𝑡))Var (𝑋

𝑘
(𝑠) | 𝑋

𝑘
(𝑡)) .

(8)

If detCov(𝑋
𝑘
(𝑠), 𝑋

𝑘
(𝑡)) > 0, then by using the expression

for the characteristic functions and the density functions of
Gaussian random fields, it turns out that

2𝜋

detCov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡))

= ∫
R2

E exp (−𝑖 (𝑢𝑋
𝑘
(𝑠) + V𝑋

𝑘
(𝑡))) 𝑑𝑢 𝑑V.

(9)

By applying the fact that the conditional distribution of𝑋
𝑘
(𝑠)

given 𝑋
𝑘
(𝑡) is still Gaussian with mean E(𝑋

𝑘
(𝑠) | 𝑋

𝑘
(𝑡)) and

variance Var(𝑋
𝑘
(𝑠) | 𝑋

𝑘
(𝑡)), one can evaluate the integral in

the right-hand side of (9) and thus deduce that (8) holds.
If detCov(𝑋

𝑘
(𝑠), 𝑋

𝑘
(𝑡)) = 0, then we can deduce that the

related coefficient of𝑋(𝑠) and𝑋(𝑡) is equal to 0, so there exists
𝜆 ∈ R such that𝑋(𝑠) = 𝜆𝑋(𝑡) a.s., and, in particular, a simply
estimation implies that (8) still holds in this case.

We now prove the upper bound in (7). Note that
(𝑋

𝑘
(𝑠), 𝑋

𝑘
(𝑡)) is a mean zero Gaussian vector. Since 𝑡 󳨃→

Var(𝑋
𝑘
(𝑡)) is a positive continuous function on 𝐸, then there

exists a positive constant 𝑐
2.3

such that, for all 𝑡 ∈ 𝐸,

𝑐
1.1
≤ Var (𝑋

𝑘
(𝑡)) ≤ 𝑐

2.3
. (10)

This, together with (1), (2), and (8), implies that the upper
bound in (7) holds. The lower bound in (7) follows from (2),
(8), and (10). This completes the proof of Lemma 1.

Similar to the argument of Testard in [16], we will provide
a proof of the following lemma.

Lemma 2. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) and let 𝐸 be a
compact set onR𝑁. Then there exist positive constants 𝑐

2.4
and

𝑐
2.5
, such that, for all 𝑠, 𝑡 ∈ 𝐸, we have

𝑐
2.4
(𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡))

2

≤ E[𝑓
𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡)]

2

≤ 𝑐
2.5
(𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡))

2

,

(11)

where 𝑓 ∈ C, 𝑘 = 1, . . . , 𝑑.

Proof. Since 𝐸 is a compact set on R𝑁, then there exists a
positive constant 𝑐, such that 𝐸 ⊂ [−𝑐, 𝑐]

𝑁. As usual, the
proof is divided into proving the lower and upper bounds
separately. We first prove the lower bound in (11). By (1) and
(7), we have

detCov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) = E [𝑋

2

𝑘
(𝑠)]E [𝑋

2

𝑘
(𝑡)]

− [E (𝑋
𝑘
(𝑠)𝑋

𝑘
(𝑡))]

2

≥ 𝑐
2.1

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ

≥
𝑐
2.1

𝑐
1.3

E[𝑋
𝑘
(𝑠) − 𝑋

𝑘
(𝑡)]

2

.

(12)

By taking 𝑐
2.4
= min{𝑐

1.1
, 𝑐
2.1
/𝑐

1.3
}, then for all 𝑠, 𝑡 ∈ 𝐸,

E [𝑋
2

𝑘
(𝑠)] − 𝑐

2.4
≥ 0, E [𝑋

2

𝑘
(𝑡)] − 𝑐

2.4
≥ 0. (13)
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It follows from (12) and (13) that

󵄨󵄨󵄨󵄨E [𝑋𝑘
(𝑠)𝑋

𝑘
(𝑡)] − 𝑐

2.4

󵄨󵄨󵄨󵄨

≤ (E [𝑋
2

𝑘
(𝑠)] − 𝑐

2.4
)
1/2

(E [𝑋
2

𝑘
(𝑡)] − 𝑐

2.4
)
1/2

.

(14)

Note that

E[𝑓
𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡)]

2

− 𝑐
2.4
(𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡))

2

= 𝑓
2

𝑘
(𝑡) (E [𝑋

2

𝑘
(𝑠)] − 𝑐

2.4
) + 𝑓

2

𝑘
(𝑠) (E [𝑋

2

𝑘
(𝑡)] − 𝑐

2.4
)

− 2𝑓
𝑘
(𝑠) 𝑓

𝑘
(𝑡) (E [𝑋

𝑘
(𝑠)𝑋

𝑘
(𝑡)] − 𝑐

2.4
) .

(15)

Then inequalities (14) and (15) imply

E[𝑓
𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡)]

2

− 𝑐
2.4
(𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡))

2

≥ 𝑓
2

𝑘
(𝑡) (E [𝑋

2

𝑘
(𝑠)] − 𝑐

2.4
) + 𝑓

2

𝑘
(𝑠) (E [𝑋

2

𝑘
(𝑡)] − 𝑐

2.4
)

− 2
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨 (E [𝑋

2

𝑘
(𝑠)] − 𝑐

2.4
)
1/2

× (E [𝑋
2

𝑘
(𝑡)] − 𝑐

2.4
)
1/2

= [
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)

󵄨󵄨󵄨󵄨 (E [𝑋
2

𝑘
(𝑠)] − 𝑐

2.4
)
1/2

−
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠)

󵄨󵄨󵄨󵄨 (E [𝑋
2

𝑘
(𝑡)] − 𝑐

2.4
)
1/2

]

2

≥ 0.

(16)

Now we prove the upper bound in (11). By using (1) and (7)
and repeating the procedure in (12), we can derive

E [𝑋
2

𝑘
(𝑠)]E [𝑋

2

𝑘
(𝑡)] − [E (𝑋

𝑘
(𝑠)𝑋

𝑘
(𝑡))]

2

≤
𝑐
2.2

𝑐
1.2

E[𝑋
𝑘
(𝑠) − 𝑋

𝑘
(𝑡)]

2

.

(17)

By taking 𝑐
2.5
= max{𝑐

2.3
, 𝑐
2.2
/𝑐

1.2
}, then for all 𝑠, 𝑡 ∈ 𝐸,

𝑐
2.5
− E [𝑋

2

𝑘
(𝑠)] ≥ 0, 𝑐

2.5
− E [𝑋

2

𝑘
(𝑡)] ≥ 0. (18)

It follows from (17) and (18) that

󵄨󵄨󵄨󵄨𝑐2.5 − E [𝑋𝑘
(𝑠)𝑋

𝑘
(𝑡)]
󵄨󵄨󵄨󵄨

≥ (𝑐
2.5
− E [𝑋

2

𝑘
(𝑠)])

1/2

(𝑐
2.5
− E [𝑋

2

𝑘
(𝑡)])

1/2

.

(19)

Combining (15), (18), and (19), we obtain

E[𝑓
𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡)]

2

− 𝑐
2.5
(𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡))

2

≤ −𝑓
2

𝑘
(𝑡) (𝑐

2.5
− E [𝑋

2

𝑘
(𝑠)]) − 𝑓

2

𝑘
(𝑠) (𝑐

2.5
− E [𝑋

2

𝑘
(𝑡)])

+ 2
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠)

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨 (𝑐2.5 − E [𝑋

2

𝑘
(𝑠)])

1/2

× (𝑐
2.5
− E [𝑋

2

𝑘
(𝑡)])

1/2

= − [
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)

󵄨󵄨󵄨󵄨 (E [𝑋
2

𝑘
(𝑠)] − 𝑐

2.4
)
1/2

−
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠)

󵄨󵄨󵄨󵄨 (E [𝑋
2

𝑘
(𝑡)] − 𝑐

2.4
)
1/2

]

2

≤ 0.

(20)

By inequalities (16) and (20), we finish the proof of Lemma 2.

Let 𝜌 be a metric on R𝑁 defined by

𝜌 (𝑠, 𝑡) =

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
, ∀𝑠, 𝑡 ∈ R

𝑁
. (21)

In the following, we will provide a slightly more general
result in the proof of Proposition 4.4 by modifying the
argument [8].

Lemma 3. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2). Then there
exist positive constants 𝑐

2.6
and 𝛿, such that, for all 𝑟 ∈ (0, 𝛿),

𝑠 ∈ 𝐸, and all 𝑓 ∈L(𝐾),

P{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑟} ≤ 𝑐2.6𝑟

𝑑
, (22)

where 𝐵
𝜌
(𝑠, 𝑟) denotes the ball of radius 𝑟 centered at 𝑠 in the

metric 𝜌 defined by (21).

Proof. Using the Gaussian regressions, we have

E (𝑋
𝑘
(𝑡) | 𝑋

𝑘
(𝑠)) =

E [𝑋
𝑘
(𝑠)𝑋

𝑘
(𝑡)]

E[𝑋
𝑘
(𝑠)]

2
𝑋

𝑘
(𝑠)

=̂ 𝑘 (𝑠, 𝑡) 𝑋
𝑘
(𝑠) .

(23)

Note that, for all 𝑡 ∈ 𝐸, theGaussian randomvariables𝑋
𝑘
(𝑡)−

𝑘(𝑠, 𝑡)𝑋
𝑘
(𝑠) (𝑠 ∈ 𝐸) and 𝑋

𝑘
(𝑠) are independent. By using the

triangle inequality, we can deduce that, for all 1 ≤ 𝑘 ≤ 𝑑,

{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑋𝑘
(𝑡) − 𝑓

𝑘
(𝑡)
󵄨󵄨󵄨󵄨 ≥ 𝑟}

⊇ { inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨 ≥ 2𝑟}
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∩ {2𝑍
𝑘
(𝑠, 𝑥, 𝑟)

≤ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨} ,

(24)

where 𝑍
𝑘
(𝑠, 𝑟) = sup

𝑡∈𝐵𝜌(𝑠,𝑟)
|(𝑋

𝑘
(𝑡) − 𝑓

𝑘
(𝑡)) − 𝑘(𝑠, 𝑡)(𝑋

𝑘
(𝑠) −

𝑓
𝑘
(𝑠))|. Then

P{ inf
𝑦∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑋𝑘
(𝑡) − 𝑓

𝑘
(𝑡)
󵄨󵄨󵄨󵄨 < 𝑟}

≤ P{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨 < 2𝑟}

+ P{2𝑍
𝑘
(𝑠, 𝑟) > inf

𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨} .

(25)

By the Cauchy-Schwarz inequality, (1), and (23), we have

|1 − 𝑘 (𝑠, 𝑡)| =

󵄨󵄨󵄨󵄨E [𝑋𝑘
(𝑠) (𝑋

𝑘
(𝑠) − 𝑋

𝑘
(𝑡))]

󵄨󵄨󵄨󵄨

E[𝑋
𝑘
(𝑠)]

2

≤ (
𝑐
1.3

𝑐
1.1

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2𝐻ℓ
)

1/2

.

(26)

Therefore, there exists a positive constant 𝛿 such that, for all
𝑟 ∈ (0, 𝛿) and 𝑡 ∈ 𝐵

𝜌
(𝑠, 𝑟), we can deduce that 1/2 ≤ 𝑘(𝑠, 𝑡) ≤

3/2. Recall that, for the unimodality of the centered Gaussian
process 𝑘(𝑠, 𝑡)𝑋

𝑘
(𝑠), we have

P{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨 < 2𝑟}

≤ P {
󵄨󵄨󵄨󵄨𝑋𝑘

(𝑠) − 𝑓
𝑘
(𝑠)
󵄨󵄨󵄨󵄨 < 4𝑟}

≤ P {
󵄨󵄨󵄨󵄨𝑋𝑘

(𝑠)
󵄨󵄨󵄨󵄨 < 4𝑟} ≤ 𝑐2.7𝑟.

(27)

Note that𝑍
𝑘
(𝑠, 𝑟) and 𝑘(𝑠, 𝑡)𝑋

𝑘
(𝑠) are independent. It follows

from (27) that

P{2𝑍
𝑘
(𝑠, 𝑟) > inf

𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘
(𝑠) − 𝑓

𝑘
(𝑠))
󵄨󵄨󵄨󵄨}

= ∫

∞

0

P {
󵄨󵄨󵄨󵄨𝑘 (𝑠, 𝑡) (𝑋𝑘

(𝑠) − 𝑓
𝑘
(𝑠))
󵄨󵄨󵄨󵄨 < 4𝑦 | 𝑍𝑘

(𝑠, 𝑟) = 𝑦}

× P {𝑍
𝑘
(𝑠, 𝑟) ∈ 𝑑𝑦}

= 𝑐
2.7
∫

∞

0

𝑦P {𝑍
𝑘
(𝑠, 𝑟) ∈ 𝑑𝑦}

≤ 𝑐
2.7
E [𝑍

𝑘
(𝑠, 𝑟)] .

(28)

In order to estimate E[𝑍
𝑘
(𝑠, 𝑟)], we denote that the Gaussian

process 𝑌
𝑘
(𝑡) = 𝑋

𝑘
(𝑡) − 𝑓

𝑘
(𝑡) − 𝑘(𝑠, 𝑡)(𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)) (𝑡 ∈

𝐵
𝜌
(𝑠, 𝑟)) and note that 𝑌

𝑘
(𝑠) = 0 and the canonical metric

𝑑 (𝑡, 𝑡
󸀠
) =̂ [E(𝑌

𝑘
(𝑡) − 𝑌

𝑘
(𝑡

󸀠
))

2

]

1/2

, ∀𝑡, 𝑡
󸀠
∈ 𝐵

𝜌
(𝑠, 𝑟) .

(29)
Therefore, by the Hölder inequality and the Cauchy-Schwarz
inequality, we have

𝑑
2
(𝑡, 𝑡

󸀠
) ≤ 𝑐

2.8
(E (𝑋

𝑘
(𝑡) − 𝑋

𝑘
(𝑡

󸀠
))

2

+ (𝑓
𝑘
(𝑡) − 𝑓

𝑘
(𝑡

󸀠
))

2

+ (𝑘 (𝑠, 𝑡) − 𝑘 (𝑠, 𝑡
󸀠
))

2

× (E [𝑋
2

𝑘
(𝑠)] + 𝑓

2

𝑘
(𝑠))) ,

(𝑘 (𝑠, 𝑡) − 𝑘 (𝑠, 𝑡
󸀠
))

2

=

[E [𝑋
𝑘
(𝑠) (𝑋

𝑘
(𝑡) − 𝑋

𝑘
(𝑡

󸀠
))]]

2

[E[𝑋
𝑘
(𝑠)]

2

]
2

≤
𝑐
1.3

𝑐
1.1

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨󵄨
𝑡
ℓ
− 𝑡

󸀠

ℓ

󵄨󵄨󵄨󵄨󵄨

2𝐻ℓ
.

(30)
By using (1), (10), (30), and the fact that 𝑓 ∈ Q(𝐾), we have

𝑑 (𝑡, 𝑡
󸀠
) ≤ 𝑐

2.9

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨󵄨
𝑡
ℓ
− 𝑡

󸀠

ℓ

󵄨󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ

= 𝑐
2.9
𝜌 (𝑡, 𝑡

󸀠
) ≤ 𝑐

2.9
𝑟,

∀𝑡, 𝑡
󸀠
∈ 𝐵

𝜌
(𝑠, 𝑟) .

(31)

Then
𝐷 =̂ sup

𝑡,𝑡
󸀠
∈𝐵𝜌(𝑠,𝑟)

𝑑 (𝑡, 𝑡
󸀠
) ≤ 𝑐

2.9
𝑟,

𝑁
𝑑
(𝐵

𝜌
(𝑠, 𝑟) , 𝜀) ≤ 𝑐

2.10
(
𝑟

𝜀
)

𝑄

,

(32)

where𝑁
𝑑
(𝐵

𝜌
(𝑠, 𝑟), 𝜀) is the metric entropy number of 𝐵

𝜌
(𝑠, 𝑟)

and𝑄 = ∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)). It follows fromDudley’s theorem

of Kahane [11] that

E [𝑍
𝑘
(𝑠, 𝑟)] ≤ 𝑐

2.11
∫

𝐷

0

√log𝑁
𝑑
(𝐵

𝜌
(𝑠, 𝑟) , 𝜀)𝑑𝜀 ≤ 𝑐

2.12
𝑟.

(33)
Combining (25), (27), (28), and (33) and using the coordinate
processes independence of𝑋, we have

P{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 < 𝑟}

≤

𝑑

∏

𝑘=1

P{ inf
𝑡∈𝐵𝜌(𝑠,𝑟)

󵄨󵄨󵄨󵄨𝑋𝑘
(𝑡) − 𝑓

𝑘
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑟}

≤ 𝑐
2.6
𝑟
𝑑
.

(34)

This finishes the proof of Lemma 3.
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Lemma 4. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) and let 𝐸 be
a compact set onR𝑁. Then there exists a positive constant 𝑐

2.13

such that, for all 𝑓 ∈ Q(𝐾), 𝜀 > 0 and 𝑠, 𝑡 ∈ 𝐸,

E(
2𝜋

𝜀
)

𝑑

exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠)

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
)

≤ 𝑐
2.13
(

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
)

−𝑑

.

(35)

Proof. Note that

(
2𝜋

𝜀
)

𝑑/2

exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
)

= ∫
R𝑑

exp (− 𝜀
2
|𝑢|

2
+ 𝑖 ⟨𝑢,𝑋 (𝑡) − 𝑓 (𝑡)⟩) 𝑑𝑢

=

𝑑

∏

𝑘=1

∫
R

exp (− 𝜀
2

󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

+ 𝑖 ⟨𝑢
𝑘
, 𝑋

𝑘
(𝑡) − 𝑓

𝑘
(𝑡)⟩) 𝑑𝑢

𝑘
.

(36)

Denote by 𝐼
2
the identity matrix of order 2 and let Γ

𝑘
(𝑠, 𝑡) =

𝜀𝐼
2
+ Cov(𝑋

𝑘
(𝑠), 𝑋

𝑘
(𝑡)). Then the inverse of Γ

𝑘
(𝑠, 𝑡) is given

by

Γ
−1

𝑘
(𝑠, 𝑡) =

1

det Γ
𝑘
(𝑠, 𝑡)

× (
𝜀 + E [𝑋2

𝑘
(𝑡)] −E (𝑋

𝑘
(𝑠)𝑋

𝑘
(𝑡))

−E (𝑋
𝑘
(𝑠)𝑋

𝑘
(𝑡)) 𝜀 + E [𝑋2

𝑘
(𝑠)]

) ,

(37)

where det Γ
𝑘
(𝑠, 𝑡) denotes the determinant of Γ

𝑘
(𝑠, 𝑡).

By (36), Lemma 2, Fubini’s theorem, and some elemen-
tary calculations, we derive

E(
2𝜋

𝜀
)

𝑑

exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠)

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
)

=

𝑑

∏

𝑘=1

∫
R

∫
R

exp (−𝑖 (⟨𝑢
𝑘
, 𝑓

𝑘
(𝑠)⟩ + ⟨V

𝑘
, 𝑓

𝑘
(𝑡)⟩))

⋅ exp (− 𝜀
2
(
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2

))

× E exp (𝑖 ⟨𝑢
𝑘
, 𝑋

𝑘
(𝑠)⟩ + 𝑖 ⟨V

𝑘
, 𝑋

𝑘
(𝑡)⟩) 𝑑𝑢

𝑘
𝑑V

𝑘

=

𝑑

∏

𝑘=1

∫
R

∫
R

exp (−𝑖 (⟨𝑢
𝑘
, 𝑓

𝑘
(𝑠)⟩ + ⟨V

𝑘
, 𝑓

𝑘
(𝑡)⟩))

× exp(−1
2
(𝑢

𝑘
, V

𝑘
) Γ

𝑘
(𝑠, 𝑡) (𝑢

𝑘
, V

𝑘
)
󸀠

)𝑑𝑢
𝑘
𝑑V

𝑘

=

𝑑

∏

𝑘=1

2𝜋

√det Γ
𝑘
(𝑠, 𝑡)

× exp(−1
2
(𝑓

𝑘
(𝑠) , 𝑓

𝑘
(𝑡)) Γ

−1

𝑘
(𝑠, 𝑡) (𝑓

𝑘
(𝑠) , 𝑓

𝑘
(𝑡))

󸀠

)

=

𝑑

∏

𝑘=1

2𝜋

√det Γ
𝑘
(𝑠, 𝑡)

exp(−
𝑓
2

𝑘
(𝑠) + 𝑓

2

𝑘
(𝑡)

2𝜀 det Γ
𝑘
(𝑠, 𝑡)

)

⋅ exp(−
E(𝑓

𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡))

2

2 det Γ
𝑘
(𝑠, 𝑡)

)

≤

𝑑

∏

𝑘=1

2𝜋

√det Γ
𝑘
(𝑠, 𝑡)

× exp(−
𝑐
2.4

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

2 det Γ
𝑘
(𝑠, 𝑡)

) .

(38)

If det Γ
𝑘
(𝑠, 𝑡) ≥ |𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡)|

2, then

1

√det Γ
𝑘
(𝑠, 𝑡)

exp(−
𝑐
2.4

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

2 det Γ
𝑘
(𝑠, 𝑡)

)

≤
1

max {√det Γ
𝑘
(𝑠, 𝑡),

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨}

.

(39)

For all 𝑥 ≥ 0, we can deduce

exp (−
𝑐
2.4

2
𝑥) ≤ (𝑒𝑐

2.4
)
−1/2

𝑥
−1/2
. (40)

If det Γ
𝑘
(𝑠, 𝑡) < |𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡)|

2, by the inequality above and
taking 𝑐

2.14
= (𝑒𝑐

2.4
)
−1/2 and 𝑥 = |𝑓

𝑘
(𝑠) − 𝑓

𝑘
(𝑡)|

2
/ det Γ

𝑘
(𝑠, 𝑡),

we have

1

√det Γ
𝑘
(𝑠, 𝑡)

exp(−
𝑐
2.4

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

2 det Γ
𝑘
(𝑠, 𝑡)

)

≤
𝑐
2.14

max {√det Γ
𝑘
(𝑠, 𝑡),

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨}

.

(41)

It follows from Lemma 1 that, for all 𝑠, 𝑡 ∈ 𝐸,

det Γ
𝑘
(𝑠, 𝑡) ≥ det Cov (𝑋

𝑘
(𝑠) , 𝑋

𝑘
(𝑡))

≥ 𝑐
2.15
(

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ
)

2

.

(42)

By using (42) and the fact that 𝑓 ∈ Q(𝐾), we have

max {√det Γ
𝑘
(𝑠, 𝑡),

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨} ≥ 𝑐2.16

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
.

(43)

Combining (36) through (43), we prove that Lemma 4 holds.
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For proving the lower bound in Theorem 11, we will use
two lemmas below, which are slightly more general results,
by modifying the argument in [3, 17].

Lemma 5. Let 0 < 𝛼 < 1, 𝑏
1
> 𝑎

1
and 𝑏

2
> 𝑎

2
be given

constants. Then for all constants 𝑝, 𝑀 > 0 and 𝛿 > 2𝛼,
there exists a positive and finite constant 𝑐

2.17
, depending on

𝑎
1
, 𝑏

1
, 𝑎

2
, 𝑏

2
, 𝛿, 𝑝, 𝛼, and𝑀 only, such that, for all 0 < 𝐴 ≤

𝑀,

I (𝐴) =̂ ∫
𝑏1

𝑎1

𝑑𝑠∫

𝑏2

𝑎2

(𝐴 + |𝑠 − 𝑡|
2𝛼
)
−𝑝

𝑑𝑡

≤ 𝑐
2.17
(𝐴

−(𝑝−1/𝛿)
+ 1) .

(44)

Proof. Let 𝑎 = min{𝑎
1
, 𝑎

2
} and 𝑏 = max{𝑏

1
, 𝑏

2
}. By the

symmetry of the integrand, we get

I (𝐴) ≤ 2∫
𝑏

𝑎

𝑑𝑠∫

𝑏

𝑠

(𝐴 + (𝑡 − 𝑠)
2𝛼
)
−𝑝

𝑑𝑡. (45)

Putting 𝑢 = 𝑡 − 𝑠 and using the fact that 𝑎 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏, we see
that the above integral is bound by

2∫

𝑏

𝑎

𝑑𝑠∫

𝑏−𝑠

0

(𝐴 + 𝑢
2𝛼
)
−𝑝

𝑑𝑢

≤ 2 (𝑏 − 𝑎) ∫

𝑏−𝑎

0

(𝐴 + 𝑢
2𝛼
)
−𝑝

𝑑𝑢

=
𝑏 − 𝑎

𝛼
∫

𝐴+(𝑏−𝑎)
2𝛼

𝐴

V−𝑝(V − 𝐴)(1−2𝛼)/2𝛼𝑑V,

(46)

where we have used the substitution V = 𝐴 + 𝑢2𝛼.
Let 𝐵 =̂ 𝐴 + (𝑏 − 𝑎)

2𝛼. If 𝛼 > 1/2, then for 𝛿 >

2𝛼, it follows from (46) and Hölder’s inequality that there
exists a positive and finite constant 𝑐

2.18
, which depends on

𝑎
1
, 𝑏

1
, 𝑎

2
, 𝑏

2
, 𝛿, 𝑝, 𝛼, and𝑀 only, such that

I (𝐴) ≤
𝑏 − 𝑎

𝛼
(∫

𝐵

𝐴

V−𝑝𝛿𝑑V)
1/𝛿

× (∫

𝐵

𝐴

(V − 𝐴)−((2𝛼−1)/2𝛼)(𝛿/(𝛿−1))𝑑V)
(𝛿−1)/𝛿

≤ 𝑐
2.18
(𝐴

−(𝑝−1/𝛿)
+ 1) ,

(47)

where we have used the fact that ((2𝛼−1)/2𝛼)(𝛿/(𝛿−1)) < 1.
If 0 < 𝛼 ≤ 1/2, then some elementary calculations imply

that, for all 0 < 𝐴 ≤ 𝑀,

I (𝐴) ≤
𝑏 − 𝑎

𝛼
∫

𝐵

𝐴

V−𝑝(V − 𝐴)(1−2𝛼)/2𝛼𝑑V

≤
𝑏 − 𝑎

𝛼
∫

𝐵

𝐴

V−𝑝−1+1/2𝛼𝑑V

≤ 𝑐
2.19
(𝐴

−(𝑝−1/𝛿)
+ 1) ,

(48)

where 𝑐
2.19

depends on 𝑎
1
, 𝑏

1
, 𝑎

2
, 𝑏

2
, 𝛿, 𝑝, 𝛼, and𝑀 only. By

(47) and (48), the proof of Lemma 5 is finished.

Lemma 6. Let 𝛼, 𝛽, 𝜂, and 𝑏 be positive constants. For 𝐴 > 0
and 𝐵 > 0, let

J (𝐴, 𝐵) =̂ ∫
𝑏

0

𝑑𝑡

(𝐴 + 𝑡
𝛼
)
𝛽
(𝐵 + 𝑡)

𝜂
. (49)

Then there exist positive and finite constants 𝑐
2.20

and 𝑐
2.21

,
depending on 𝛼, 𝛽, 𝜂, and 𝑏 only, such that the following hold
for all reals 𝐴, 𝐵 > 0 satisfying 𝐴1/𝛼

≤ 𝑐
2.20
𝐵:

(i) if 𝛼𝛽 > 1, then

J (𝐴, 𝐵) ≤ 𝑐
2.21

1

𝐴𝛽−𝛼
−1

𝐵𝜂
; (50)

(ii) if 𝛼𝛽 = 1, then

J (𝐴, 𝐵) ≤ 𝑐
2.21

1

𝐵𝜂
log (1 + 𝐵𝐴−1/𝛼

) ; (51)

(iii) if 0 < 𝛼𝛽 < 1 and 𝛼𝛽 + 𝜂 ̸= 1, then

J (𝐴, 𝐵) ≤ 𝑐
2.21
(

1

𝐵𝛼𝛽+𝜂−1
+ 1) . (52)

Proof. If 𝑏 ≤ 1, by using Lemma 10 in [3], we can prove that
inequalities (50), (51), and (52) hold. If 𝑏 > 1, then we can
split the integral in (49) so that

J (𝐴, 𝐵) = ∫
1

0

𝑑𝑡

(𝐴 + 𝑡
𝛼
)
𝛽
(𝐵 + 𝑡)

𝜂

+ ∫

𝑏

1

𝑑𝑡

(𝐴 + 𝑡
𝛼
)
𝛽
(𝐵 + 𝑡)

𝜂

=̂I
1
+I

2
.

(53)

Let 𝑡 = 𝑏𝑠. Since 𝑏 > 1 and 𝛼, 𝛽, and 𝜂 are positive constants,
we get

I
2
= 𝑏∫

1

1/𝑏

𝑑𝑠

(𝐴 + (𝑏𝑠)
𝛼
)
𝛽

(𝐵 + 𝑏𝑠)
𝜂

≤ 𝑏∫

1

0

𝑑𝑠

(𝐴 + 𝑠
𝛼
)
𝛽
(𝐵 + 𝑠)

𝜂
.

(54)

By using (53), (54), and Lemma 10 in [3] again, we can also
prove (50), (51), and (52); in this case 𝑏 > 1. Thus, the proof
of Lemma 6 is finished.

Let𝐻 = (𝐻
1
, . . . , 𝐻

𝑁
) ∈ (0, 1)

𝑁 and 𝐾 = (𝐾
1
, . . . , 𝐾

𝑁
) ∈

(0, 1)
𝑁 be given vectors. For convenience, we may further

assume

0 < 𝐻
1
𝐾
1
≤ 𝐻

2
𝐾
2
≤ ⋅ ⋅ ⋅ ≤ 𝐻

𝑁
𝐾
𝑁
< 1. (55)

Lemma 7. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaus-

sian random field satisfying conditions (C1) and (C2). If
∑

𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) > 𝑑, then there exists a positive and finite
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constant 𝑐
2.22

, depending on 𝑎, 𝑏, 𝐻, 𝐾, 𝑁, and 𝑑 only, such
that, for all 𝑓 ∈ Q(𝐾),

∫
𝐼

∫
𝐼

𝑑

∏

𝑘=1

[max { det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−1/2

𝑑𝑡 𝑑𝑠 ≤ 𝑐
2.22
.

(56)

Proof. Note that 𝑓 ∈ Q(𝐾). Then, by using Lemma 1, we have

I =̂ ∫
𝐼

∫
𝐼

𝑑

∏

𝑘=1

[max { det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−1/2

𝑑𝑡 𝑑𝑠

≤ 𝑐
2.23
∫
𝐼

∫
𝐼

[

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
]

−𝑑

𝑑𝑡 𝑑𝑠.

(57)

Let 𝑘 ∈ {1, . . . , 𝑁} be the unique positive integer such that
𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

,

0

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

=̂ 0. (58)

Then, we choose positive constants 𝛿
1
, . . . , 𝛿

𝑁−1
such that

𝛿
ℓ
> 𝐻

ℓ
∧ 𝐾

ℓ
for each 1 ≤ ℓ ≤ 𝑁 − 1 and

1

𝛿
1

+
1

𝛿
2

+ ⋅ ⋅ ⋅ +
1

𝛿
𝑁−1

< 𝑑 <
1

𝛿
1

+
1

𝛿
2

+ ⋅ ⋅ ⋅ +
1

𝛿
𝑁−1

+
1

𝐻
𝑁
∧ 𝐾

𝑁

.

(59)

Applying Lemma 5 to (57) with

𝐴 =

𝑁

∑

ℓ=2

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
, 𝑝 = 𝑑, (60)

we obtain that

I ≤ 𝑐
2.24
+ 𝑐

2.24
∫

𝑏1

𝑎1

𝑑𝑠
2
∫

𝑏2

𝑎2

𝑑𝑡
2
⋅ ⋅ ⋅ ∫

𝑏𝑁

𝑎𝑁

𝑑𝑠
𝑁

× ∫

𝑏𝑁

𝑎𝑁

[

𝑁

∑

ℓ=2

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
]

−(𝑑−1/𝛿1)

𝑑𝑡
𝑁
.

(61)

By repeatedly using Lemma 5 to the integral in above inequal-
ity for𝑁 − 2 steps, we have

I ≤ 𝑐
2.25
+ 𝑐

2.25
∫

𝑏𝑁

𝑎𝑁

𝑑𝑠
𝑁

× ∫

𝑏𝑁

𝑎𝑁

[
󵄨󵄨󵄨󵄨𝑠𝑁 − 𝑡𝑁

󵄨󵄨󵄨󵄨

(𝐻𝑁∧𝐾𝑁)

]

−(𝑑−(1/𝛿1+⋅⋅⋅+1/𝛿𝑁−1))

𝑑𝑡
𝑁
.

(62)

Since the 𝛿󸀠𝑠 satisfy (59), we have

((𝐻
𝑁
∧ 𝐾

𝑁
)) (𝑑 − (

1

𝛿
1

+ ⋅ ⋅ ⋅ +
1

𝛿
𝑁−1

)) < 1. (63)

Thus, the integral in the right-hand side of (62) is finite. This
completes the proof of Lemma 7.

Lemma 8. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-

Gaussian random field satisfying conditions (C1) and (C2). If
∑

𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) > 𝑑, then there exist positive and finite

constants 𝛿
0
and 𝑐

2.26
, such that for all 𝑓 ∈ Q(𝐾), 𝛿 ∈ (0, 𝛿

0
),

∫
𝐼

∫
𝐼

|𝑡 − 𝑠|
−𝛾

𝑑

∏

𝑘=1

[max { det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−1/2

𝑑𝑡 𝑑𝑠

≤ 𝑐
2.26
,

(64)

where 𝛾 = min
1≤𝑘≤𝑁

{∑
𝑘

ℓ=1
((𝐻

𝑘
∧ 𝐾

𝑘
)/(𝐻

ℓ
∧ 𝐾

ℓ
)) + 𝑁 − 𝑘 −

(𝐻
𝑘
∧ 𝐾

𝑘
)(1 + 𝛿)𝑑} and 𝑐

2.26
depends on 𝑎, 𝑏, 𝐻, 𝐾, 𝛿

0
, 𝑁,

and 𝑑 only.

Proof. For our purpose, let us note that (55) implies
𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑

= (𝐻
𝑘
∧ 𝐾

𝑘
) ((

𝑁

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

− 𝑑)

+

𝑁

∑

ℓ=𝑘+1

(
1

𝐻
𝑘
∧ 𝐾

𝑘

−
1

𝐻
ℓ
∧ 𝐾

ℓ

)) > 0.

(65)

Then, there exist 𝛿
0
> 0 such that for all 𝑘 ∈ {1, . . . , 𝑁} and

𝛿 ∈ (0, 𝛿
0
), we have 𝛾 > 0. By using Lemma 1 and 𝑓 ∈ Q(𝐾),

we have

J =̂ ∫
𝐼

∫
𝐼

|𝑡 − 𝑠|
−𝛾

×

𝑑

∏

𝑘=1

[max {detCov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−1/2

𝑑𝑡 𝑑𝑠

≤ 𝑐
2.27
∫
𝐼

∫
𝐼

1

(∑
𝑁

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨)
𝛾

(∑
𝑁

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ∧𝐾ℓ
)
𝑑
𝑑𝑠 𝑑𝑡.

(66)

By a change of variable, we have

J ≤ 𝑐
2.28
∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁

⋅ ⋅ ⋅ ∫

𝑏1−𝑎1

0

1

(∑
𝑁

ℓ=1
𝑡
ℓ
)
𝛾

(∑
𝑁

ℓ=1
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
)
𝑑
𝑑𝑡

1
.

(67)

In order to show the integral in (67) is finite, we will integrate
[𝑑𝑡

1
], [𝑑𝑡

2
], . . . , [𝑑𝑡

𝑘
] iteratively.We only need to consider the

case when
𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

,

for some 1 ≤ 𝑘 ≤ 𝑁.

(68)
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Here and in the sequel∑0

ℓ=1
(1/(𝐻

ℓ
∧ 𝛽)) =̂ 0. Then, by using

(55), we can deduce that

𝛾 =

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) (1 + 𝛿) 𝑑, (69)

where 𝑘 is the unique integer satisfying (68).
If 𝑘 = 1 in (68), we integrate [𝑑𝑡

1
]. Note that 0 < (𝐻

1
∧

𝐾
1
)𝑑 < 1 and (𝐻

1
∧ 𝐾

1
)𝑑 + 𝛾 = 𝑁 − (𝐻

1
∧ 𝐾

1
)𝛿𝑑 ̸= 1. Then

we can use (52) of Lemma 6 with 𝐴 = ∑𝑁

ℓ=2
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
and 𝐵 =

∑
𝑁

ℓ=2
𝑡
ℓ
to get

J ≤ 𝑐
2.29
[∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁

⋅ ⋅ ⋅ ∫

𝑏2−𝑎2

0

1

(∑
𝑁

ℓ=2
𝑡
ℓ
)
(𝐻1∧𝐾1)𝑑+𝛾−1

𝑑𝑡
2
+ 1] < ∞,

(70)

since (𝐻
1
∧ 𝐾

1
)𝑑 + 𝛾 − 1 < 𝑁 − 1.

If 𝑘 > 1 in (68), we integrate [𝑑𝑡
1
] first. Since (𝐻

1
∧𝐾

1
)𝑑 >

1, we can use (50) of Lemma 6 with 𝐴 = ∑𝑁

ℓ=2
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
and 𝐵 =

∑
𝑁

ℓ=2
𝑡
ℓ
to get

J ≤ 𝑐
2.30
∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁

⋅ ⋅ ⋅ ∫

𝑏2−𝑎2

0

1

(∑
𝑁

ℓ=2
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
)
𝑑−1/(𝐻1∧𝐾1)

(∑
𝑁

ℓ=2
𝑡
ℓ
)
𝛾
𝑑𝑡

2
.

(71)

We can repeat this procedure for integrating 𝑑𝑡
2
, . . . , 𝑑𝑡

𝑘−1
.

Note that if 𝑑 = ∑𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)), then (𝐻

𝑘−1
∧𝐾

𝑘−1
)(𝑑−

∑
𝑘−2

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
))) = 1. We need to use (51) of Lemma 6 with

𝐴 = ∑
𝑁

ℓ=𝑘
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
and𝐵 = ∑𝑁

ℓ=𝑘
𝑡
ℓ
to integrate 𝑑𝑡

𝑘−1
and obtain

J ≤ 𝑐
2.31
∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁
⋅ ⋅ ⋅ ∫

𝑏𝑘−𝑎𝑘

0

1

(∑
𝑁

ℓ=𝑘
𝑡
ℓ
)
𝛾

× log(1 + 1

∑
𝑁

ℓ=𝑘
𝑡
ℓ

)𝑑𝑡
𝑘
< ∞,

(72)

since 𝛾 < 𝑁 − 𝑘 + 1.
On the other hand, if 𝑑 > ∑𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)), then (𝐻

𝑘−1
∧

𝐾
𝑘−1
)(𝑑 −∑

𝑘−2

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
))) > 1. By using (50) of Lemma 6

with 𝐴 = ∑𝑁

ℓ=𝑘
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
and 𝐵 = ∑𝑁

ℓ=𝑘
𝑡
ℓ
to integrate 𝑑𝑡

𝑘−1
, we

can deduce

J

≤ 𝑐
2.32
∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁

⋅ ⋅ ⋅ ∫

𝑏𝑘−𝑎𝑘

0

1

(∑
𝑁

ℓ=𝑘
𝑡
𝐻ℓ∧𝐾ℓ

ℓ
)
𝑑−∑
𝑘−1

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))

(∑
𝑁

ℓ=𝑘
𝑡
ℓ
)
𝛾

𝑑𝑡
𝑘
.

(73)

Note that 0 < (𝐻
𝑘
∧𝐾

𝑘
)(𝑑−∑

𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
))) < 1 and (𝐻

𝑘
∧

𝐾
𝑘
)(𝑑−∑

𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)))+𝛾 = 𝑁−𝑘+1−(𝐻

𝑘
∧𝐾

𝑘
)𝛿𝑑 ̸= 1

for a small enough 𝛿
0
. Applying (52) to integrate 𝑑𝑡

𝑘
in (73),

we see that
J

≤ 𝑐
2.33

× [∫

𝑏𝑁−𝑎𝑁

0

𝑑𝑡
𝑁

⋅ ⋅ ⋅ ∫

𝑏𝑘+1−𝑎𝑘+1

0

1

(∑
𝑁

ℓ=𝑘+1
𝑡
ℓ
)
𝛾+(𝐻𝑘∧𝐾𝑘)(𝑑−∑

𝑘−1

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))) −1

𝑑𝑡
𝑘+1

+1]

< ∞,

(74)

since 𝛾 + (𝐻
𝑘
∧ 𝐾

𝑘
)(𝑑 − ∑

𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
))) − 1 < 𝑁 − 𝑘.

Combining (70) through (74) yields (64). This completes the
proof of Lemma 8.

3. Characteristics of Polar Functions

In this section, we provide some necessary conditions and
sufficient conditions for a function 𝑓 ∈ C to be polar for
𝑋. We also give the intersection probabilities for a nonpolar
function and 𝑋 and determine the Hausdorff and packing
dimensions of the set {𝑡 ∈ 𝐼, 𝑋(𝑡) = 𝑓(𝑡)}.

Let us note that

P {∃𝑡 ∈ R
𝑁
, 𝑋 (𝑡) = 𝑓 (𝑡)} > 0. (75)

If and only if there exists a rectangle 𝐼 ⊂ R𝑁, such that

P {∃𝑡 ∈ 𝐼, 𝑋 (𝑡) = 𝑓 (𝑡)} > 0. (76)

For our purpose, it suffices to consider the polar functions of
𝑋 in a rectangle 𝐼 = Π𝑁

ℓ=1
[𝑎

ℓ
, 𝑏

ℓ
] ⊆ R𝑁 with 𝑎

ℓ
< 𝑏

ℓ
(ℓ =

1, . . . , 𝑁).

Theorem 9. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) on 𝐼. If
∑

𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) < 𝑑, thenL(𝐾) ⊂ P.

Proof. For any constants 0 < 𝛿 < 𝐻
ℓ
(1 ≤ ℓ ≤ 𝑁) and any

rectangle 𝐼 = Π𝑁

ℓ=1
[𝑎

ℓ
, 𝑏

ℓ
] ⊆ R𝑁 with 𝑎

ℓ
< 𝑏

ℓ
(ℓ = 1, . . . , 𝑁),

it follows from a similar argument as in the proof ofTheorem
4.2 in [2] that there is a random variable𝐴

1
of finitemoments

of all orders and an eventΩ∗

1
of probability 1 such that, for all

𝜔 ∈ Ω
∗

1
,

sup
𝑠,𝑡∈𝐼

|𝑋 (𝑠, 𝜔) − 𝑋 (𝑡, 𝜔)|

∑
𝑁

ℓ=1
|𝑠 − 𝑡|

𝐻ℓ−𝛿
≤ 𝐴

1
(𝜔) . (77)

For any 𝑓 ∈ L(𝐾), in order to prove 𝑓 ∈ P, it suffices to
prove that, for any 𝜀 > 0 and any rectangle 𝐼 ⊂ R𝑁,

P {𝜔 : ∃𝑡 ∈ 𝐼, 𝑋 (𝑡, 𝜔) = 𝑓 (𝑡)} ≤ 𝜀. (78)
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Fix 𝜀, 𝛿 and choose 𝜂 such that∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)) < (1 − 𝜂)𝑑.

By 𝐴
1
< ∞, a.s., then there exist Ω

𝜀
⊂ Ω

∗

1
and 𝑐

3.1
> 0 such

that P(Ω
𝜀
) > 1 − 𝜀/2 and for any 𝜔 ∈ Ω

𝜀
, 𝐴

1
(𝜔) ≤ 𝑐

3.1
. For

any integer 𝑛 ≥ 1, divide the rectangle 𝐼 into𝑚
𝑛
= (∏

𝑁

ℓ=1
(𝑏

ℓ
−

𝑎
ℓ
))𝑛

∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ)) subrectangles 𝐼

𝑛,♭
with sides parallel to the

axes and side lengths 𝑛−1/(𝐻ℓ∧𝐾ℓ) (ℓ = 1, . . . , 𝑁). Let 𝜏
𝑛,♭

be
the lower-left vertex of 𝐼

𝑛,♭
.

Let 𝜔 ∈ Ω
𝜀
, ♭ be fixed. If there exists 𝑡 ∈ 𝐼

𝑛,♭
such that

𝑋(𝑡, 𝜔) = 𝑓(𝑡), then by (77) and 𝑓 ∈L(𝐾),

󵄨󵄨󵄨󵄨𝑋 (𝜏𝑛,♭, 𝜔) − 𝑓 (𝜏𝑛,♭)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝑋 (𝜏𝑛,♭, 𝜔) − 𝑋 (𝑡, 𝜔)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝜏𝑛,♭, 𝜔) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑐
3.1

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝜏𝑛,♭,ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐻ℓ−𝛿

+ 𝑐
1.5

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝜏𝑛,♭,ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

𝐾ℓ−𝛿

≤ 𝑐
3.2

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝜏𝑛,♭,ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

(𝐻ℓ∧𝐾ℓ)−𝛿

≤ 𝑐
3.3
𝑛
−1+𝛾

,

(79)

where 𝛾 = max{𝛿/(𝐻
ℓ
∧ 𝐾

ℓ
), ℓ = 1, . . . , 𝑁}.

We can choose a positive 𝛿 such that 0 < 𝛾 < 𝜂. It follows
from (79) that

P {∃𝑡 ∈ 𝐼 such that 𝑋(𝑡) = 𝑓 (𝑡)}

<
𝜀

2
+ P {𝜔 ∈ Ω

𝜀
: ∃𝑡 ∈ 𝐼 such that 𝑋(𝑡, 𝜔) = 𝑓 (𝑡)}

≤
𝜀

2
+ P{

𝑚𝑛

⋃

𝑖=1

{𝜔 ∈ Ω
𝜀
: ∃𝑡 ∈ 𝐼

𝑛,♭

such that 𝑋(𝑡, 𝜔) = 𝑓 (𝑡) } }

≤
𝜀

2
+

𝑚𝑛

∑

𝑖=1

P {𝜔 ∈ Ω
𝜀
:
󵄨󵄨󵄨󵄨𝑋 (𝜏𝑛,♭, 𝜔) − 𝑓 (𝜏𝑛,♭)

󵄨󵄨󵄨󵄨

≤ 𝑐
3.3
𝑛
−1+𝛾

}

≤
𝜀

2
+ 𝑐

3.4
𝑛
∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))−(1−𝛾)𝑑 ≤ 𝜀.

(80)

In the above, we can get the last inequality as 𝑛 is big enough.
This proves Theorem 9.

Theorem 10. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) and 𝑓 ∈

Q(𝐾). If ∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) > 𝑑, then with probability 1,

dim {𝑡 ∈ 𝐼 : 𝑋 (𝑡) = 𝑓 (𝑡)}

≤ min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑}

=

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑,

if
𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

.

(81)

Proof. Let 𝐹(𝜔) = {𝑡 ∈ 𝐼 : 𝑋(𝑡, 𝜔) = 𝑓(𝑡)}, 𝜔 ∈ Ω. In order
to prove inequality (81), it suffices to prove that, for any 𝜀 > 0
and any 𝜁 > ∑𝑘

ℓ=1
((𝐻

𝑘
∧𝐾

𝑘
)/(𝐻

ℓ
∧𝐾

ℓ
))+𝑁−𝑘−(𝐻

𝑘
∧𝐾

𝑘
)𝑑,

P {𝜔 : dim (𝐹 (𝜔)) ≤ 𝜁} ≥ 1 − 𝜀. (82)

We choose 0 < 𝜂 < 1 such that 𝜁 > ∑𝑘

ℓ=1
((𝐻

𝑘
∧ 𝐾

𝑘
)/(𝐻

ℓ
∧

𝐾
ℓ
)) + 𝑁 − 𝑘 − (𝐻

𝑘
∧ 𝐾

𝑘
)(1 − 𝜂)𝑑. Then for all 0 < 𝜆 < 𝜂, we

have

𝑁

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

+

𝑁

∑

ℓ=𝑘+1

(
1

𝐻
𝑘
∧ 𝐾

𝑘

−
1

𝐻
ℓ
∧ 𝐾

ℓ

)

−
𝜁

𝐻
𝑘
∧ 𝐾

𝑘

− (1 − 𝜆) 𝑑 < 0.

(83)

For any integer 𝑛 ≥ 1, divide the interval 𝐼 into 𝑚
𝑛
=

[∏
𝑁

ℓ=1
(𝑏

ℓ
− 𝑎

ℓ
)] ⋅ 𝑛

∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ)) subrectangles 𝐼

𝑛,♭
of side

lengths 𝑛−1/(𝐻ℓ∧𝐾ℓ) (ℓ = 1, . . . , 𝑁). Let 𝜏
𝑛,♭

be the lower-left
vertex of 𝐼

𝑛,♭
. It follows from (83) that

lim
𝑛→∞

𝑛
∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))+∑

𝑁

ℓ=𝑘+1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ))−𝜁/(𝐻𝑘∧𝐾𝑘)−(1−𝜂)𝑑

= 0.

(84)

Let

𝐼
󸀠

𝑛,♭
(𝜔) = {

𝐼
𝑛,♭
, if ∃𝑡 ∈ 𝐼

𝑛,♭
, 𝑋 (𝑡, 𝜔) = 𝑓 (𝑡) ,

0 otherwise.
(85)

Then 𝐹(𝜔) can be covered by {𝐼󸀠
𝑛,♭
(𝜔)}. For every 1 ≤ 𝑘 ≤ 𝑁,

𝐼
𝑛,♭
(𝜔) can be covered by

𝑁

∏

ℓ=1

𝑛
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ)) = 𝑛

∑
𝑁

ℓ=1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ))

≤ 𝑛
∑
𝑁

ℓ=𝑘+1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ))

(86)

cubes of side length 𝑛−1/(𝐻𝑘∧𝐾𝑘). Then, we can cover the 𝐹(𝜔)
by a sequence of cubes of side length 𝑛−1/(𝐻𝑘∧𝐾𝑘).
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Repeating this procedure in (77) and (79) in Theorem 9,
we can deduce that, for all 𝜔 ∈ Ω

𝜀
, if there exists 𝑡 ∈ 𝐼

𝑛,♭
such

that𝑋(𝑡, 𝜔) = 𝑓(𝑡), then

󵄨󵄨󵄨󵄨𝑋 (𝜏𝑛,♭, 𝜔) − 𝑓 (𝜏𝑛,♭)
󵄨󵄨󵄨󵄨 ≤ 𝑐3.3𝑛

−1+𝛾
, (87)

where 𝛾 = max{𝛿/(𝐻
ℓ
∧ 𝐾

ℓ
), ℓ = 1, . . . , 𝑁}. Hence,

lim
𝑛→∞

∑

♭(𝜔)

[diam 𝐼󸀠
𝑛,♭
(𝜔)]

𝜁

≤ lim
𝑛→∞

∑

♭∈𝑇𝑛(𝜔)

[diam 𝐼
𝑛,♭
]
𝜁

, 𝜔 ∈ Ω
𝜀
,

(88)

where 𝑇
𝑛
(𝜔) = {♭ : |𝑋(𝜏

𝑛,♭
, 𝜔) − 𝑓(𝜏

𝑛,♭
)| ≤ 𝑐

3.3
𝑛
−1+𝛾

}. We
can choose a positive 𝛿 such that 0 < 𝛾 < 𝜂. It follows from
(84)∼(88) and lemma of Fatou that

E[ lim
𝑛→∞

∑

♭(𝜔)

[diam 𝐼
󸀠

𝑛,♭
(𝜔)]

𝜁

𝐼Ω𝜀
]

≤ lim
𝑛→∞

E[ ∑

♭∈𝑇𝑛(𝜔)

[diam 𝐼
󸀠

𝑛,♭
]
𝜁

𝐼Ω𝜀
]

≤ 𝑐3.5 lim
𝑛→∞

𝑚𝑛

∑

♭=1

[diam 𝐼𝑛,♭]
𝜁

×P {𝜔 ∈ Ω𝜀 :
󵄨󵄨󵄨󵄨𝑋 (𝜏𝑛,♭, 𝜔) − 𝑓 (𝜏𝑛,♭)

󵄨󵄨󵄨󵄨 ≤ 𝑐3.3𝑛
−1+𝛾

}

≤ 𝑐3.6

× lim
𝑛→∞

𝑛
∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))+∑

𝑁

ℓ=𝑘+1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ))−𝜁/(𝐻𝑘∧𝐾𝑘)−(1−𝛾)𝑑

= 0.

(89)

Therefore, there exists Ω
0
⊂ Ω such that P(Ω

0
) = 1, and for

all 𝜔 ∈ Ω
0
∩ Ω

𝜀
we have lim

𝑛→∞
∑

♭(𝜔)
[diam 𝐼

󸀠

𝑛,♭
(𝜔)]

𝜁
= 0.

Then, dim(𝐹(𝜔)) ≤ 𝜁. Since P(Ω
0
∩ Ω

𝜀
) > 1 − 𝜀/2, we obtain

(82).

Theorem 11. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2) and 𝑓 ∈

Q(𝐾). If∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)) > 𝑑, then with positive probability,

dim {𝑡 ∈ 𝐼 : 𝑋 (𝑡) = 𝑓 (𝑡)}

≥ min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑}

=

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑,

if
𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

.

(90)

Proof. Let us assume that ∑𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) ≤ 𝑑 <

∑
𝑘

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)) for some 1 ≤ 𝑘 ≤ 𝑁, and let 𝛿 be a positive

constant such that

𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

< (1 + 𝛿) 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

(91)

and hence

𝛽 =̂ min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) (1 + 𝛿) 𝑑}

=

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) (1 + 𝛿) 𝑑.

(92)

Note that, if we can prove that there is a constant 𝑐
3.7
> 0,

independent of 𝛿 and 𝛽, such that

P {𝜔 : dim {𝑡 ∈ 𝐼 : 𝑋 (𝑡, 𝜔) = 𝑓 (𝑡)} ≥ 𝛽} ≥ 𝑐
3.7
, (93)

then the lower bound in (90) will follow by letting 𝛿 ↓ 0. The
proof of (93) is based on the capacity argument due toKahane
[11].

Let M+

𝛽
be the space of all nonnegative measures on R𝑁

with finite 𝛽-energy. It is known thatM+

𝛽
is a completemetric

space under the metric

󵄩󵄩󵄩󵄩𝜇
󵄩󵄩󵄩󵄩𝛽
= ∫

R𝑁
∫
R𝑁

𝜇 (𝑑𝑡) 𝜇 (𝑑𝑠)

|𝑡 − 𝑠|
𝛽

. (94)

We define a sequence of random positive measures 𝜇
𝜀
on the

Borel sets 𝐶 of 𝐼 by

𝜇
𝜀
(𝐶) = ∫

𝐶

(
2𝜋

𝜀
)

𝑑/2

exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
)𝑑𝑡. (95)

It follows from Kahane [11] or Testard [16] that if there are
positive constants 𝑐

3.8
and 𝑐

3.9
such that

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩) ≥ 𝑐3.8, E (

󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩

2

) ≤ 𝑐
3.9
, E (

󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩𝛽
) < ∞,

(96)

where ‖𝜇
𝜀
‖ = 𝜇

𝜀
(𝐼), then there is a subsequence of {𝜇

𝜀
}, say

{𝜇
𝜀𝑘
}, such that 𝜇

𝜀𝑘
→ 𝜇 in M+

𝛽
and 𝜇 is strictly positive

with probability≥ 𝑐2
3.8
/(2𝑐

3.9
). In this case, it follows from (95)

that the measure 𝜇 has its support in 𝐹 a.s. Hence, Frostman’s
theorem yields (93) with 𝑐

3.7
= 𝑐

2

3.8
/(2𝑐

3.9
). It remains to verify

(96).
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By using Fubini’s theorem and (10), for all 𝜀 ∈ (0, 1), we
have

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩) = ∫

𝐼

∫
R𝑑

exp(−|𝑢|
2

2𝜀
)

× E (exp (𝑖 ⟨𝑢,𝑋 (𝑡) − 𝑓 (𝑡)⟩)) 𝑑𝑢 𝑑𝑡

= ∫
𝐼

(

𝑑

∏

𝑘=1

∫
R

exp (−𝑖 ⟨𝑢
𝑘
, 𝑓

𝑘
(𝑡)⟩)

× exp(−1
2
(𝜀

−1
+ Var (𝑋

𝑘
(𝑡)))

×
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

)𝑑𝑢
𝑘
)𝑑𝑡

= ∫
𝐼

𝑑

∏

𝑘=1

(
2𝜋

𝜀−1 + Var (𝑋
𝑘
(𝑡))

)

1/2

× exp(−
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

2 (𝜀−1 + Var (𝑋
𝑘
(𝑡)))

) 𝑑𝑡

≥ ∫
𝐼

𝑑

∏

𝑘=1

(
2𝜋

1 + Var (𝑋
𝑘
(𝑡))

)

1/2

× exp(−
󵄨󵄨󵄨󵄨𝑓𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

2Var (𝑋
𝑘
(𝑡))

) 𝑑𝑡 =̂ 𝑐
3.8
.

(97)

Using Lemmas 4 and 7 and Fubini’s theorem, we can deduce
that

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩

2

)

= ∫
𝐼

∫
𝐼

E(
2𝜋

𝜀
)

𝑑

× exp (− (󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠)
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

) (2𝜀)
−1
) 𝑑𝑡 𝑑𝑠

≤ 𝑐
3.10
∫
𝐼

∫
𝐼

𝑑

∏

𝑘=1

[max {det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−(1/2)

𝑑𝑡 𝑑𝑠

≤ 𝑐
3.9
.

(98)

Similar to (98), we have

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩𝛽
)

= ∫
𝐼

∫
𝐼

1

|𝑠 − 𝑡|
𝛽
E(
2𝜋

𝜀
)

𝑑

× exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠)

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)

󵄨󵄨󵄨󵄨

2

2𝜀
)𝑑𝑠 𝑑𝑡

≤ 𝑐
3.11
∫
𝐼

∫
𝐼

|𝑠 − 𝑡|
−𝛽

×

𝑑

∏

𝑘=1

[max { det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡)) ,

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑠) − 𝑓𝑘 (𝑡)
󵄨󵄨󵄨󵄨

2

}]
−(1/2)

𝑑𝑡 𝑑𝑠

≤ 𝑐
3.12
,

(99)

where the last inequality follows from Lemma 8. This com-
pletes the proof of Theorem 11.

By usingTheorems 10 and 11, we can derive the following
corollaries.

Corollary 12. If ∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) > 𝑑 and 𝑓 ∈ Q(𝐾), then

with positive probability,

dim {𝑡 ∈ 𝐼 : 𝑋 (𝑡) = 𝑓 (𝑡)}

= min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑}

=

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑,

𝑖𝑓

𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

.

(100)

In particular, we have the following.

Corollary 13. If∑𝑁

ℓ=1
(1/(𝐻

ℓ
∧𝐾

ℓ
)) > 𝑑, then Q(𝐾) ⊂ C \P.

Thefollowing corollary presents theHausdorffdimension
about the fixed points of𝑋(𝑡), 𝑡 ∈ 𝐼.

Corollary 14. Let 𝐹 =̂ {𝑡 ∈ 𝐼, 𝑋(𝑡) = 𝑡} and 𝑁 = 𝑑. Then,
with positive probability,

dim𝐹 = min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

(
𝐻

𝑘

𝐻
ℓ

− 1) + (1 − 𝐻
𝑘
) 𝑑}

=

𝑘

∑

ℓ=1

(
𝐻

𝑘

𝐻
ℓ

− 1) + (1 − 𝐻
𝑘
) 𝑑,

if
𝑘−1

∑

ℓ=1

1

𝐻
ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ

.

(101)

The following corollary also solves the question proposed
by Le Gall [13] about the existence of nonpolar, continuous
functions satisfying the Hölder condition for the Brownian
motion.

Corollary 15. Let 𝐵 = {𝐵(𝑡), 𝑡 ∈ R
+
} be (1, 𝑑) Brownian

motion. Then for any 0 < 𝛽 < 1/𝑑, there exists a function
𝑓 satisfying the Hölder condition with index 𝛽 such that 𝑓 ∈
C \P.
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The following theorem provides the intersection proba-
bility for a nonpolar function and 𝑋 in terms of Hausdorff
measure and capacity, respectively.

Theorem 16. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-Gaussian

random field satisfying conditions (C1) and (C2). If 𝐸 ⊆ 𝐼 is
a compact set on R𝑁 and 𝑓 ∈ Q(𝐾), then there exist positive
constants 𝑐

3.13
and 𝑐

3.14
depending on 𝐸, 𝐾, and 𝐻 only, such

that

𝑐
3.13

C
𝜌

𝑑
(𝐸)

≤ P {∃𝑡 ∈ 𝐸 such that 𝑋 (𝑡) = 𝑓 (𝑡)}

≤ 𝑐
3.14

H
𝜌

𝑑
(𝐸) ,

(102)

where the metric 𝜌 is defined in (21),C𝜌

𝑑
(𝐸) is the capacity of 𝐸

on R𝑁 generated by the kernel function 𝜌−𝑑(𝑠, 𝑡), and H
𝜌

𝑑
(𝐸)

is defined as the 𝑑-dimensional Hausdorff measure of 𝐸 in the
metric space (R𝑁

, 𝜌).

Proof. We first prove the lower bound in (102). When
C

𝜌

𝑑
(𝐸) = 0, the lower bound in (102) holds automatically. On

the other hand, whenC
𝜌

𝑑
(𝐸) > 0, by the definition ofC𝜌

𝑑
(𝐸),

then there exists a finite positive measure 𝜎 supported on 𝐸,
such that

I
𝜌

𝑑
(𝜎) =̂ ∫

𝐸

∫
𝐸

𝜎 (𝑑𝑡) 𝜎 (𝑑𝑠)

[𝜌 (𝑠, 𝑡)]
𝑑
<

1

C
𝜌

𝑑
(𝐸)
. (103)

For all 𝜀 > 0, we define a family of random measures
𝜇
𝜀
=̂ 𝜇

𝜀
(𝑥, ⋅) on the Borel sets 𝐶 of 𝐸 by

𝜇
𝜀
(𝐶) = ∫

𝐶

(
2𝜋

𝜀
)

𝑑/2

exp(−
󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠) − 𝑥

󵄨󵄨󵄨󵄨

2

2𝜀
)𝜎 (𝑑𝑠)

= ∫
𝐶

∫
R𝑑

exp(−
𝜀
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

2

+ 𝑖 ⟨𝜉, 𝑋 (𝑠) − 𝑓 (𝑠) − 𝑥⟩)𝑑𝜉𝜎 (𝑑𝑠) .

(104)

We claim that there are positive constants 𝑐
3.15

and 𝑐
3.16

, such
that

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩) ≥ 𝑐3.15, E (

󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩

2

) ≤ 𝑐
3.16

I
𝜌

𝑑
(𝜎) , (105)

where ‖𝜇
𝜀
‖ = 𝜇

𝜀
(𝐸).

For any 𝜀 ∈ (0, 1), by Fubini’s theorem and (10), we have

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩)

= ∫
𝐸

∫
R𝑑

exp(− 𝜀
2

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2

)

× E (exp (𝑖 ⟨𝜉, 𝑋 (𝑠) − 𝑓 (𝑠) − 𝑥⟩)) 𝑑𝜉𝜎 (𝑑𝑠)

= ∫
𝐸

𝑑

∏

𝑘=1

(
2𝜋

𝜀 + Var (𝑋
𝑘
(𝑠) − 𝑓

𝑘
(𝑠))

)

1/2

× exp(−
𝑥
2

𝑘

2 (𝜀 + Var (𝑋
𝑘
(𝑠) − 𝑓

𝑘
(𝑠)))

) 𝜎 (𝑑𝑠)

≥ ∫
𝐸

𝑑

∏

𝑘=1

(
2𝜋

1 + Var (𝑋
𝑘
(𝑠))

)

1/2

× exp(−
𝑥
2

𝑘

2Var (𝑋
𝑘
(𝑠))

) 𝜎 (𝑑𝑠)

=̂ 𝑐
3.15
.

(106)

Let𝑀𝜀

𝑘
(𝑠, 𝑡) = 𝜀𝐼

2
+Cov(𝑋

𝑘
(𝑠)−𝑓

𝑘
(𝑠), 𝑋

𝑘
(𝑡)−𝑓

𝑘
(𝑡)). It follows

from Lemmas 1 and 2 that

det𝑀𝜀

𝑘
(𝑠, 𝑡) ≥ Cov (𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠) , 𝑋

𝑘
(𝑡) − 𝑓

𝑘
(𝑡))

= det Cov (𝑋
𝑘
(𝑠) , 𝑋

𝑘
(𝑡))

+ E[𝑓
𝑘
(𝑡) 𝑋

𝑘
(𝑠) − 𝑓

𝑘
(𝑠)𝑋

𝑘
(𝑡)]

2

≥ 𝑐
3.17

𝑁

∑

ℓ=1

󵄨󵄨󵄨󵄨𝑠ℓ − 𝑡ℓ
󵄨󵄨󵄨󵄨

2(𝐻ℓ∧𝐾ℓ)

=̂ 𝑐
3.18
𝜌
2
(𝑠, 𝑡) .

(107)

By Fubini’s theorem, (103), and (107), we have

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩

2

)

= ∫
𝐸

∫
𝐸

E(
2𝜋

𝜀
)

𝑑

× exp (− (󵄨󵄨󵄨󵄨𝑋 (𝑠) − 𝑓 (𝑠) − 𝑥
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡) − 𝑥

󵄨󵄨󵄨󵄨

2

) (2𝜀)
−1
)

× 𝜎 (𝑑𝑠) 𝜎 (𝑑𝑡)
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= ∫
𝐸

∫
𝐸

𝑑

∏

𝑘=1

2𝜋

(det𝑀𝜀

𝑘
(𝑠, 𝑡))

1/2

× exp(−1
2
(𝑥

𝑘
, 𝑥

𝑘
) (𝑀

𝜀

𝑘
(𝑠, 𝑡))

−1

(𝑥
𝑘
, 𝑥

𝑘
)
󸀠

)

× 𝜎 (𝑑𝑠) 𝜎 (𝑑𝑡)

≤ ∫
𝐸

∫
𝐸

𝑐
3.16

𝜌𝑑 (𝑠, 𝑡)
𝜎 (𝑑𝑠) 𝜎 (𝑑𝑡)

< 𝑐
3.16

I
𝜌

𝑑
(𝜎) <

𝑐
3.16

C
𝜌

𝑑
(𝐸)
.

(108)

By modifying an argument from Kahane [11] or Testard [16],
we can verify that there is a subsequence of {𝜇

𝜀
}, say {𝜇

𝜀𝑛
},

such that 𝜇
𝜀𝑛
→ 𝜇 and 𝜇 is strictly positive with probability

that at least 𝑐2
3.15
/(𝑐

3.16
I

𝜌

𝑑
(𝜎)). It follows from (104) and the

continuity of𝑋 that 𝜇 has its support on {𝑡 ∈ 𝐸 : 𝑋(𝑡)−𝑓(𝑡) =
𝑥} a.s. Then, we apply the Paley-Zygmund inequality, (103),
and (105), to deduce that

P {𝑡 ∈ 𝐸 : 𝑋 (𝑡) = 𝑓 (𝑡)} ≥
[E (

󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩)]

2

E (
󵄩󵄩󵄩󵄩𝜇𝜀
󵄩󵄩󵄩󵄩

2

)

≥
𝑐
2

3.15

𝑐
3.16
𝐼
𝜌

𝑑
(𝜎)

≥
𝑐
2

3.15

𝑐
3.16

C
𝜌

𝑑
(𝐸) .

(109)

Next we prove that the upper of (102) holds. WhenH
𝜌

𝑑
(𝐸) =

∞, the result follows immediately; when 0 < H
𝜌

𝑑
(𝐸) < ∞,

we can choose and fix an arbitrary constant 𝛾 > H
𝜌

𝑑
(𝐸). By

using the definition of H𝜌

𝑑
(𝐸) and modifying an argument

from Theorem 32 in Rogers [18], there is a sequence of balls
𝐵
𝜌
(𝑠
𝑛
, 𝑟

𝑛
) (0 < 𝑟

𝑛
< 𝛿, 𝑛 = 1, 2, . . .) in the metric space

(R𝑁
, 𝜌) such that

𝐸 ⊆

∞

⋃

𝑛=1

𝐵
𝜌
(𝑠

𝑛
, 𝑟

𝑛
) ,

∞

∑

𝑛=1

𝑟
𝑑

𝑛
< 𝛾. (110)

By (110) and Lemma 3, we have

P {𝑡 ∈ 𝐸 : 𝑋 (𝑡) = 𝑓 (𝑡)}

≤

∞

∑

𝑛=1

P {𝑡 ∈ 𝐵
𝜌
(𝑠

𝑛
, 𝑟

𝑛
) : 𝑋 (𝑡) = 𝑓 (𝑡)}

≤ 𝑐
3.19

∞

∑

𝑛=1

𝑟
𝑑

𝑛
< 𝑐

3.19
𝛾.

(111)

This implies that the upper of (102) holds in this case.
When H

𝜌

𝑑
(𝐸) = 0, by using Theorem 32 in Rogers [18]

again, we can deduce that there exist sequences of open balls
𝐵
𝜌
(𝑠
𝑛
, 𝑟

𝑛
) (0 < 𝑟

𝑛
< 𝛿, 𝑛 = 1, 2, . . .) in the metric space

(R𝑁
, 𝜌) such that

𝐸 ⊆ lim sup
𝑛→∞

𝐵
𝜌
(𝑠

𝑛
, 𝑟

𝑛
) ,

∞

∑

𝑛=1

𝑟
𝑑

𝑛
< ∞. (112)

Let

𝐷
𝑛
= {𝑡 ∈ 𝐵

𝜌
(𝑠

𝑛
, 𝑟

𝑛
) : 𝑋 (𝑡) = 𝑓 (𝑡)} , (113)

and then by Lemma 3 and (112) we have

∞

∑

𝑛=1

P (𝐷
𝑛
) ≤ 𝑐

3.20

∞

∑

𝑛=1

𝑟
𝑑

𝑛
< ∞. (114)

Therefore the Borel-Cantelli Lemma implies

P{lim sup
𝑛→∞

𝐷
𝑛
} = 0. (115)

On the other hand, by (112) we have

{𝑡 ∈ 𝐸 : 𝑋 (𝑡) = 𝑓 (𝑡)} ⊆ lim sup
𝑛→∞

𝐷
𝑛
. (116)

Then (115) and (116) imply the upper bound of (102) when
H

𝜌

𝑑
(𝐸) = 0. Thus, the proof of Theorem 16 is finished.

Finally, we discuss the packing dimension for the (𝑁, 𝑑)-
anisotropic Gaussian random fields.

For any 𝜀 > 0 and any bounded set 𝐸 ⊂ R𝑁, we
use 𝑀(𝜀, 𝐸) to denote the smallest number of cubes of side
lengths 𝜀 that are needed to cover 𝐸. Then the upper box-
counting dimension of 𝐸 is defined as

Δ (𝐸) = lim sup
𝜀→0

log𝑀(𝜀, 𝐸)

− log 𝜀
. (117)

The packing dimension of 𝐸 is defined as

Dim (𝐸) = inf {supΔ (𝐸
𝑛
) , 𝐸 ⊂

∞

⋃

𝑛=1

𝐸
𝑛
} . (118)

It is proved in Tricot Jr. [19] that, for any bounded set𝐸 ⊂ R𝑁,

0 ≤ dim (𝐸) ≤ Dim (𝐸) ≤ Δ (𝐸) ≤ 𝑁. (119)

Theorem 17. Let 𝑋 = {𝑋(𝑡), 𝑡 ∈ R𝑁
} be an (𝑁, 𝑑)-

Gaussian random field satisfying conditions (C1) and (C2). If
∑

𝑁

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) > 𝑑, then for any 𝑓 ∈ Q(𝐾), with positive

probability

Dim {𝑡 ∈ 𝐼, 𝑋 (𝑡) = 𝑓 (𝑡)}

= min
1≤𝑘≤𝑁

{

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑}

=

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑,

if
𝑘−1

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

≤ 𝑑 <

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

.

(120)

Proof. The lower bound of (120) follows from (90) and (119).
In order to prove the upper bound in (120), let us assume that



Abstract and Applied Analysis 15

∑
𝑘−1

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) ≤ 𝑑 < ∑

𝑘

ℓ=1
(1/(𝐻

ℓ
∧ 𝐾

ℓ
)) for some 1 ≤

𝑘 ≤ 𝑁. Then, by (119) we only need to prove that

Δ (𝐹) ≤

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑 a.s., (121)

where 𝐹 = {𝑡 ∈ 𝐼 : 𝑋(𝑡) = 𝑓(𝑡)}.
For any integer 𝑛 ≥ 1, divide the 𝐼 into 𝑚

𝑛
= [∏

𝑁

ℓ=1
(𝑏

ℓ
−

𝑎
ℓ
)]⋅𝑛

∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ)) subrectangles 𝐼

𝑛,♭
with sides parallel to the

axes and side lengths 𝑛−(1/(𝐻ℓ∧𝐾ℓ)) (1 ≤ ℓ ≤ 𝑁). Then 𝐼 can be
covered by {𝐼

𝑛,♭
} and each 𝐼

𝑛,♭
is equivalent to a ball of radius

𝑛
−1 under the metric 𝜌. It follows from Lemma 3 that

P {∃𝑡 ∈ 𝐼
𝑛,♭
: 𝑋 (𝑡) = 𝑓 (𝑡)}

≤ P{ inf
𝑡∈𝐼𝑛,♭

󵄨󵄨󵄨󵄨𝑋 (𝑡) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 <

1

𝑛
}

≤ 𝑐
3.21
𝑛
−𝑑
.

(122)

For every ♭, let

𝐼
󸀠

𝑛,♭
= {

𝐼
𝑛,♭
, if ∃𝑡 ∈ 𝐼

𝑛,♭
, 𝑋 (𝑡) = 𝑓 (𝑡)

0, otherwise.
(123)

Then 𝐹 can be covered by {𝐼󸀠
𝑛,♭
}. For every 1 ≤ 𝑘 ≤ 𝑁, 𝐼󸀠

𝑛,♭
can

be covered by

𝑁

∏

ℓ=1

𝑛
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ)) ≤ 𝑛

∑
𝑁

ℓ=𝑘+1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ)) (124)

cubes of side length 𝑛−1/(𝐻𝑘∧𝐾𝑘). Thus, we can cover the 𝐹
by a sequence of cubes of side length 𝑛−1/(𝐻𝑘∧𝐾𝑘). Denote the
number of such cubes by𝑀

𝑛,𝑘
. Using (122) and (124), we have

E [𝑀(𝑛
−(1/(𝐻𝑘∧𝐾𝑘)), 𝐹)]

≤ E [𝑀
𝑛,𝑘
]

≤ 𝑐
3.22
𝑛
∑
𝑁

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ))+∑

𝑁

ℓ=𝑘+1
(1/(𝐻𝑘∧𝐾𝑘)−1/(𝐻ℓ∧𝐾ℓ))⋅𝑛

−𝑑

= 𝑐
3.22
𝑛
∑
𝑘

ℓ=1
(1/(𝐻ℓ∧𝐾ℓ)+(𝑁−𝐾)/(𝐻𝑘∧𝐾𝑘)−𝑑).

(125)

Now let 0 < 𝛿 < 1 be fixed and let 𝜂 be the constant defined
by

𝜂 =

𝑘

∑

ℓ=1

1

𝐻
ℓ
∧ 𝐾

ℓ

+
𝑁 − 𝑘

𝐻
𝑘
∧ 𝐾

𝑘

− (1 − 𝛿) 𝑑. (126)

We consider the sequence of integers 𝑛
𝑖
= 2

𝑖
(𝑖 ≥ 1). By using

(125) and Markov inequality, we have
∞

∑

𝑖=1

P {𝑀(𝑛
−1/(𝐻𝑘∧𝐾𝑘)

𝑖
, 𝐹) > 𝑐𝑛

𝜂

𝑖
}

≤ 𝑐
3.23

∞

∑

𝑖=1

2
−𝛿𝑑𝑖

< ∞.

(127)

Then it follows from the Borel-Cantelli lemma that a.s.

𝑀(𝑛
−1/(𝐻𝑘∧𝐾𝑘)

𝑖
, 𝐹) ≤ 𝑐𝑛

𝜂

𝑖
for all 𝑖 large enough. (128)

For any 0 < 𝜀 < 1, we can choose some positive integer 𝑖 such
that 2−𝑖−1 < 𝜀 ≤ 2−𝑖. Then, this, together with (128), implies
that a.s.

Δ (𝐹) = lim
𝜀→0

log [𝑀(𝜀
1/(𝐻𝑘∧𝐾𝑘), 𝐹)]

− log 𝜀1/(𝐻𝑘∧𝐾𝑘)

≤ lim
𝑖→∞

log [𝑀(𝑛
−1/(𝐻𝑘∧𝐾𝑘)

𝑖+1
, 𝐹)]

− log 𝑛−1/(𝐻𝑘∧𝐾𝑘)
𝑖

≤

𝑘

∑

ℓ=1

𝐻
𝑘
∧ 𝐾

𝑘

𝐻
ℓ
∧ 𝐾

ℓ

+ 𝑁 − 𝑘 − (1 − 𝛿) (𝐻
𝑘
∧ 𝐾

𝑘
) 𝑑.

(129)

Letting 𝛿 ↘ 0 along rational numbers and optimizing over
𝑘 = 1, . . . , 𝑁, we can deduce that (121) holds.

4. Applications to SPDEs

These results in this paper are applicable to solutions of SPDEs
such as the linear string process considered by Mueller and
Tribe [6], linear hyperbolic SPDEs considered by Dalang
and Nualart [10], and nonlinear stochastic heat equations
considered by Dalang et al. [8]. In this section, we only
consider the Hausdorff and packing dimensions of the set
{𝑡 ∈ 𝐼 : 𝑋(𝑡) = 𝑓(𝑡)} for nonlinear stochastic heat equations
in [8].

Let 𝑊̇ = (𝑊̇
1
, . . . , 𝑊̇

𝑑
) be a space-time white noise

in R𝑑. That is, the components 𝑊̇
1
(𝑥, 𝑠), . . . , 𝑊̇

𝑑
(𝑥, 𝑠) are

independent space-time white noises, which are generalized
Gaussian processes with covariance given by

E [𝑊̇
𝑖
(𝑥, 𝑠) 𝑊̇

𝑗
(𝑦, 𝑡)] = 𝛿 (𝑥 − 𝑦) 𝛿 (𝑠 − 𝑡) , (𝑖 = 1, . . . , 𝑑) ,

(130)

where 𝛿(⋅) is the Dirac delta function. For all 1 ≤ 𝑗 ≤ 𝑑, let
𝑏
𝑗
: R𝑑

󳨃→ R be globally Lipschitz and bounded functions,
and let 𝜎 =̂ (𝜎

𝑖𝑗
) be a deterministic 𝑑 × 𝑑 invertible matrix.

Consider the system of SPDEs

𝜕𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑠
=
𝜕
2
𝑢
𝑖
(𝑠, 𝑥)

𝜕𝑥2
+

𝑑

∑

𝑗=1

𝜎
𝑖,𝑗
𝑊̇

𝑗
(𝑠, 𝑥) + 𝑏

𝑖
(𝑢 (𝑠, 𝑥)) ,

(131)

for 1 ≤ 𝑖 ≤ 𝑑, 𝑠 ∈ [0, 𝑇] and 𝑥 ∈ [0, 1], with the initial
conditions 𝑢(0, 𝑥) = 0 for all 𝑥 ∈ [0, 1], and the Neumann
boundary conditions

𝜕𝑢
𝑖
(𝑠, 0)

𝜕𝑥
=
𝜕𝑢

𝑖
(𝑠, 1)

𝜕𝑥
= 0, 0 ≤ 𝑠 ≤ 𝑇, (132)

where 𝑢(𝑠, 𝑥) = (𝑢
1
(𝑠, 𝑥), . . . , 𝑢

𝑑
(𝑠, 𝑥)). Equation (131) can be

interpreted rigorously as in Dalang et al. [8].
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A random field 𝑢 = {𝑢(𝑠, 𝑥), 𝑠 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]} is a
solution of (131) if 𝑢 is adapted to (F

𝑠
) and if for every 𝑖 ∈

{1, . . . , 𝑑}, 𝑠 ∈ [0, 𝑇] and 𝑥 ∈ [0, 1],

𝑢
𝑖
(𝑠, 𝑥) = ∫

𝑠

0

∫

1

0

𝐺
𝑠−𝑟
(𝑥, V)

𝑑

∑

𝑗=1

𝜎
𝑖,𝑗
𝑊

𝑗
(𝑑𝑟, 𝑑V)

+ ∫

𝑠

0

∫

1

0

𝐺
𝑠−𝑟
(𝑥, V) 𝑏

𝑖
(𝑢 (𝑠, 𝑥)) 𝑑𝑟 𝑑V,

(133)

where 𝐺
𝑠
(𝑥, 𝑦) is the Green kernel for the heat equation with

Neumann boundary conditions (see Walsh [20]).
For the linear form of (131) (i.e., 𝑏 ≡ 0 and 𝜎 ≡

𝐼
𝑑
(the 𝑑 × 𝑑 identity matrix)), Mueller and Tribe [6]

found necessary and sufficient conditions (in terms of the
dimension 𝑑) for its solution 𝑢 to hit points or to have double
points of various types. Wu and Xiao [21] further studied the
fractal properties of the sample paths of 𝑢 and obtained the
Hausdorff dimensions of the level sets and the set of double
times of 𝑢. Recently, Chen [5] studied the fractal properties
of the algebraic sum of the image sets for 𝑢 and obtained the
Hausdorff and packing dimensions of the algebraic sum of
the image sets of the string. More generally, Dalang et al. [8]
studied hitting probabilities for the nonlinear equation (131).
They also determined the Hausdorff dimensions of the range
and level sets of these processes.

In the following, we show the Hausdorff dimension and
the packing dimension of the intersecting sets {𝑡 ∈ 𝐼 : 𝑋(𝑡) =
𝑓(𝑡)} of the nonpolar functions for nonlinear stochastic heat
equations in [8]. As shown by [8, Proposition 4.1], it is
sufficient to consider these problems for the solution of (131)
in the following drift-free case (i.e., 𝑏 ≡ 0):

𝜕𝑢

𝜕𝑠
(𝑠, 𝑥) =

𝜕
2
𝑢

𝜕𝑥2
(𝑠, 𝑥) + 𝜎𝑊̇. (134)

The solution of (134) is the mean zero Gaussian random field
𝑢 = {𝑢(𝑠, 𝑥), 𝑠 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]} with values in R𝑑 defined
by

𝑢 (𝑠, 𝑥) = ∫

𝑠

0

∫

1

0

𝐺
𝑠−𝑟
(𝑥, 𝑦) 𝜎𝑊(𝑑𝑟, 𝑑𝑦)

𝑠 ∈ [0, 𝑇] , 𝑥 ∈ [0, 1] .

(135)

Moreover, since the matrix 𝜎 is invertible, a change of
variables shows (see proof of Proposition 4.1 in [8]) that
V =̂ 𝜎−1𝑢 solves the following uncoupled system of SPDE:

𝜕V
𝜕𝑠
(𝑠, 𝑥) =

𝜕
2V
𝜕𝑥2

(𝑠, 𝑥) + 𝜎𝑊̇. (136)

Note that 𝑓 ∈ Q(𝐾) if and only if 𝜎−1𝑓 ∈ Q(𝐾); that
is, they belong or do not belong to the same functional
class Q(𝐾). Thus, both processes 𝑢 and V have the same
intersection probability, Hausdorff dimension and packing
dimension properties. Therefore, without loss of generality,
we will assume that 𝜎 = 𝐼

𝑑
in (134).

The following is a consequence of Lemmas 4.2 and 4.3
of Dalang et al. [8] or Lemma 4.1, in Biermé et al. [1], which
indicates that theGaussian randomfield 𝑢 satisfies conditions
(C1) and (C2) with𝐻

1
= 1/4 and𝐻

2
= 1/2.

Lemma 18. Let 𝑢 = {𝑢(𝑠, 𝑥), 𝑠 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]} be the
solution of (134). Then for any compact set 𝐸 ⊆ (0, 𝑇] × [0, 1],
there exist positive and finite constants 𝑐

4.1
, . . . , 𝑐

4.5
such that

the following hold.

(i) For all (𝑠, 𝑥) ∈ 𝐸, 𝑐
4.1
≤ E[𝑢(𝑠, 𝑥)]

2
≤ 𝑐

4.2
and for all

(𝑠, 𝑥), (𝑡, 𝑦) ∈ 𝐸,

𝑐
4.3
(|𝑠 − 𝑡|

1/2
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) ≤ E[𝑢 (𝑠, 𝑥) − 𝑢 (𝑡, 𝑦)]
2

≤ 𝑐
4.4
(|𝑠 − 𝑡|

1/2
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) .

(137)

(ii) For all (𝑠, 𝑥), (𝑡, 𝑦) ∈ 𝐸,

Var (𝑢 (𝑠, 𝑥) | 𝑢 (𝑡, 𝑦)) ≥ 𝑐
4.5
(|𝑠 − 𝑡|

1/2
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) .
(138)

Proof. Since 𝐸 is a compact set on (0, 𝑇] × [0, 1], then there
exists a positive constant 𝑐, such that 𝐸 ⊂ [𝑐, 𝑇] × [0, 1]. By
(135), we have

E[𝑢 (𝑠, 𝑥)]
2
= ∫

𝑠

0

𝑑𝑟∫

1

0

(𝐺
𝑠−𝑟
(𝑥, 𝑦))

2

𝑑𝑦. (139)

Note that E[𝑢(𝑠, 𝑥)]2 is a continuous function in (𝑠, 𝑥) and
positive on 𝐸. This implies the first conclusion of the lemma.
Inequality (137) follows (4.11) in Lemma 4.2 of Dalang et al.
[8].

It follows from Lemma 4.3 of Dalang et al. [8] that

det Cov (𝑢 (𝑠, 𝑥) , 𝑢 (𝑡, 𝑦)) ≥ 𝑐
4.5
(|𝑠 − 𝑡|

1/2
+
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) .

(140)

By using (8), (140), and the first inequality in Lemma 18,
we can deduce that (138) holds. This finishes the proof of
Lemma 18.

Therefore, Lemma 18 shows thatTheorem 16 includes the
corresponding conclusion of solutions of nonlinear stochastic
heat equations in [8]. The following theorems, which are two
new results in [6, 8, 10], are the consequences of Theorems
10, 11, and 17 with 𝐾 = (𝐾

1
, 𝐾

2
) ∈ (0, 1)

2. Moreover, we
can obtain very different results when the parameters 𝐾 take
different values.

Theorem 19. Let 𝑢 = {𝑢(𝑠, 𝑥), 𝑠 ∈ [0, 𝑇], 𝑥 ∈ [0, 1]} be the
solution of (131) and let 𝐼 be a rectangle on (0, 𝑇] × [0, 1]. The
following conclusions hold.

(i) If 𝑑 > ∑2

ℓ=1
(4/(ℓ ∧ (4𝐾

ℓ
))), then for all 𝑓 ∈ L(𝐾), we

have 𝑓 ∈ P and

dim {(𝑠, 𝑥) ∈ 𝐼 : 𝑢 (𝑠, 𝑥) = 𝑓 (𝑠, 𝑥)} = 0 a.s. (141)



Abstract and Applied Analysis 17

(ii) If 𝑑 < ∑2

ℓ=1
(4/(ℓ ∧ (4𝐾

ℓ
))), then for all 𝑓 ∈ Q(𝐾), we

have 𝑓 ∈ C \P, and

Dim {(𝑠, 𝑥) ∈ 𝐼 : 𝑢 (𝑠, 𝑥) = 𝑓 (𝑠, 𝑥)}

= dim {(𝑠, 𝑥) ∈ 𝐼 : 𝑢 (𝑠, 𝑥) = 𝑓 (𝑠, 𝑥)}

=

{{{{{{{{

{{{{{{{{

{

2 − (
1

4
∧ 𝐾

1
)𝑑, if ≤ 𝑑 < 4

1 ∧ (4𝐾
1
)
,

1 +
2 ∧ (4𝐾

2
)

1 ∧ (4𝐾
1
)

− (
1

2
∧ 𝐾

2
)𝑑, if 4

1 ∧ (4𝐾
1
)
≤ 𝑑 <

2

∑

ℓ=1

4

ℓ ∧ (4𝐾
ℓ
)
,

(142)

on an event of positive probability.

(iii) If 𝐸 ⊆ 𝐼 is a Borel set and 𝑓 ∈ Q(𝐾), then there exist
positive constants 𝑐

4.6
and 𝑐

4.7
, such that

𝑐
4.6
C

𝜌

𝑑
(𝐸) ≤ P {∃ (𝑠, 𝑥) ∈ 𝐸 such that 𝑋 (𝑠, 𝑥) = 𝑓 (𝑠, 𝑥)}

≤ 𝑐
4.7
H

𝜌

𝑑
(𝐸) ,

(143)

where 𝜌 is the metric on [0, 𝑇] × [0, 1] defined by

𝜌 ((𝑠, 𝑥) , (𝑡, 𝑦)) = |𝑠 − 𝑡|
(1/4)∧𝐾1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(1/2)∧𝐾2
. (144)

Proof. As shown by Proposition 4.1 in [8], it is sufficient to
prove the results for the case of 𝑏 ≡ 0 and 𝜎 = 𝐼

𝑑
in (131). Note

that 𝐾 = (𝐾
1
, 𝐾

2
) ∈ (0, 1)

2 and 𝐻 = (1/4, 1/2). Therefore,
the conclusions follow from Theorems 9, 10, 11, 16, 17 and
Lemma 18.

As we showed, in Theorem 19, we can also apply these
theorems in this paper to recover the same results such as the
Brownian sheet [15], fractional Brownian motion [14], frac-
tional Brownian sheets [4], linear hyperbolic SPDEs consid-
ered by Dalang and Nualart [10], linear SPDEs considered by
Mueller and Tribe [6], and operator-scaling stable Gaussian
randomfields with stationary increments constructed in [22].
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