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We first present some new existence theorems for fixed point problem andminimization problem in compactmetric spaces without
assuming that mappings possess convexity property. Some applications of our results to new fixed point theorems for nonself
mappings in the setting of strictly convex normed linear spaces and usual metric spaces are also given.

1. Introduction and Preliminaries

Let (𝑋, 𝑑) be a metric space. Denote by N(𝑋) the family of
all nonempty subsets of 𝑋. The symbols N, R, and C are
used to denote the sets of positive integers, real numbers, and
complex numbers, respectively. Let 𝐾 be a nonempty subset
of 𝑋, let 𝑇 : 𝐾 → 𝑋 be a single-valued mapping, and let 𝑆 :
𝐾 → N(𝑋) be amultivaluedmapping. A point V in𝐾 is said
to be a fixed point of𝑇 (resp. 𝑆) if𝑇V = V (resp. V ∈ 𝑆V).The set
of fixed points of 𝑇 (resp. 𝑆) is denoted byF(𝑇) (resp.F(𝑆)).
An extended real valued function𝑓 : 𝑋 → (−∞, +∞] is said
to be lower semicontinuous at 𝑥 ∈ 𝑋 if, for any sequence {𝑥

𝑛
}

in 𝑋 with 𝑥
𝑛
→ 𝑥, we have 𝑓(𝑥) ≤ lim inf

𝑛→∞
𝑓(𝑥
𝑛
). The

function 𝑓 is called to be lower semicontinuous on 𝑋 if 𝑓 is
lower semicontinuous at every point of 𝑋. The function 𝑓 is
said to be proper if 𝑓 ̸≡ ∞.

Let (𝐸, ‖ ⋅ ‖) be a normed linear space over the field K =

C or R. 𝐸 is said to be strictly convex if 𝑥 = 𝑦 whenever
‖(𝑥 + 𝑦)/2‖ = ‖𝑥‖ = ‖𝑦‖; in other words, the unit sphere of 𝐸
does not contain nontrivial segments. It is worth mentioning
that the strict convexity of a normed linear space 𝐸 can
be characterized by the properties: for any nonzero vectors
𝑥, 𝑦 ∈ 𝐸, if ‖𝑥 + 𝑦‖ = ‖𝑥‖ + ‖𝑦‖, then 𝑦 = 𝑐𝑥 for some real

𝑐 > 0. The following four types of line segments between two
distinct points 𝑎 and 𝑏 of 𝐸 are defined as the sets:

Seg (𝑎, 𝑏) = {𝜆𝑎 + (1 − 𝜆) 𝑏 : 𝜆 ∈ (0, 1)} ,

Seg [𝑎, 𝑏) = {𝜆𝑎 + (1 − 𝜆) 𝑏 : 𝜆 ∈ (0, 1]} ,

Seg (𝑎, 𝑏] = {𝜆𝑎 + (1 − 𝜆) 𝑏 : 𝜆 ∈ [0, 1)} ,

Seg [𝑎, 𝑏] = {𝜆𝑎 + (1 − 𝜆) 𝑏 : 𝜆 ∈ [0, 1]} .

(1)

Clearly, Seg[𝑎, 𝑏] is a closed subset of 𝐸.
The celebrated Banach contraction principle [1] plays an

important role in various fields of nonlinear analysis and
applied mathematical analysis.

Theorem 1 (Banach [1]). Let (𝑋, 𝑑) be a complete metric space
and let 𝑇 : 𝑋 → 𝑋 be a selfmap. Assume that there exists a
nonnegative number 𝛾 < 1 such that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝛾𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋. (2)

Then𝑇 has a unique fixed point in𝑋.Moreover, for each𝑥 ∈ 𝑋,
the iterative sequence {𝑇𝑛𝑥}

𝑛∈N converges to the unique fixed
point of 𝑇.
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Let 𝐾 be a nonempty subset of a metric space (𝑋, 𝑑) and
let 𝑇 : 𝐾 → 𝐾 be a mapping. Recall that 𝑇 is said to be
contractive [2] if

𝑑 (𝑇𝑥, 𝑇𝑦) < 𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐾 with 𝑥 ̸= 𝑦. (3)

The following interesting fixed point theorem in the
setting of compact metric spaces is due to Edelstein in [2].

Theorem 2 (Edelstein [2]). Let (𝐾, 𝑑) be a nonempty compact
metric space and let 𝑇 : 𝐾 → 𝐾 be contractive. Then 𝑇 has a
unique fixed point in 𝐾.

In 1976, Caristi proved the following famous fixed point
theorem to extend Banach contraction principle.

Theorem 3 (Caristi [30]). Let (𝑋, 𝑑) be a complete metric
space and let 𝑓 : 𝑋 → R be a lower semicontinuous and
bounded below function. Suppose that 𝑇 is a Caristi-type map
on 𝑋 dominated by 𝑓; that is, 𝑇 satisfies

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋. (4)

Then 𝑇 has a fixed point in𝑋.

It is well-known that Caristi’s fixed point theorem is
equivalent to Ekeland’s variational principle, to Takahashi’s
nonconvex minimization theorem, to Daneš’ drop theorem,
to petal theorem, and to Oettli-Théra’s theorem; see, for
example, [3, 4] and references therein for more details. In
view of the important contribution of Caristi’s fixed point
theorem on nonlinear analysis, a great deal of generalizations
in various different directions of the Caristi’s fixed point
theorem has been investigated by several authors. For more
details on these generalizations, one can refer to [3–19] and
references therein.

During the last few decades, an interesting and important
direction of research in metric fixed point theory is to study
the existence and uniqueness of fixed points for single-valued
nonselfmappings ormultivalued nonselfmappings satisfying
certain nonlinear conditions. A mass of such research has
been investigated by many authors; see, for example, [20–29]
and the references therein.

In this work, we first present some new existence the-
orems for fixed point problem and minimization problem
in compact metric spaces without assuming that mappings
possess convexity property. Some applications of our results
to new fixed point theorems for nonself mappings in the
setting of strictly convex normed linear spaces and usual
metric spaces are also given.

2. Existence Results for Fixed
Point Problem and Minimization
Problem without Convexity

We start with the following crucial and useful existence result
for fixed point problem and minimization problem which is
one of the main results of this paper.

Theorem 4. Let (𝐾, 𝑑) be a nonempty compact metric space,
let 𝑓 : 𝐾 → (−∞, +∞] be a proper lower semicontinuous
function bounded from below, and let 𝑇 : 𝐾 → N(𝐾) be a
multivalued mapping. Suppose that

(𝐻1) for any 𝑥 ∈ 𝐾 with 𝑥 ∉ 𝑇𝑥, there exists 𝑦 ∈ 𝑇𝑥 such
that

𝑓 (𝑦) < 𝑓 (𝑥) . (5)

Then, there exists V ∈ 𝐾 such that

(a) V ∈ 𝑇V,
(b) 𝑓(V) = inf{𝑓(𝑥) : 𝑥 ∈ 𝑇V} = inf{𝑓(𝑥) : 𝑥 ∈ 𝐾} <
+∞.

Proof. Since 𝑓 is bounded from below,

𝑐 := inf {𝑓 (𝑥) : 𝑥 ∈ 𝐾} > −∞. (6)

Since 𝑓 is proper, there exists 𝑤 ∈ 𝐾 such that 𝑓(𝑤) < +∞.
It follows that

𝑐 ≤ 𝑓 (𝑤) < +∞. (7)

Hence, by (6) and (7), we know 𝑐 ∈ R. One can find a
sequences {V

𝑛
}
𝑛∈N in𝐾 such that

lim
𝑛→∞

𝑓 (V
𝑛
) = 𝑐. (8)

By the compactness of 𝐾, there exists subsequences {V
𝑛𝑗
} ⊂

{V
𝑛
} and V ∈ 𝐾 such that

V
𝑛𝑗
󳨀→ V as 𝑗 󳨀→ ∞. (9)

By the lower semicontinuity of 𝑓 and (8), we have

𝑐 ≤ 𝑓 (V) ≤ lim inf
𝑗→∞

𝑓(V
𝑛𝑗
) = 𝑐, (10)

which implies

𝑓 (V) = 𝑐 = inf {𝑓 (𝑥) : 𝑥 ∈ 𝐾} . (11)

Next, we claim that V ∈ 𝑇V. On the contrary, assume that
V ∉ 𝑇V. Then, by our hypothesis (𝐻1), there exists 𝑦V ∈ 𝑇V
such that

𝑓 (V) > 𝑓 (𝑦V) ≥ 𝑓 (V) , (12)

which is a contradiction.Therefore V ∈ 𝑇V and the conclusion
(a) is proved. Due to

𝑓 (V) = inf {𝑓 (𝑥) : 𝑥 ∈ 𝐾} ≤ inf {𝑓 (𝑥) : 𝑥 ∈ 𝑇V} ≤ 𝑓 (V) ,
(13)

we show the conclusion (b). The proof is completed.

The following existence theorem is obviously an immedi-
ate result fromTheorem 4.
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Theorem 5. Let (𝐾, 𝑑) be a nonempty compact metric space,
let 𝑓 : 𝐾 → (−∞, +∞] be a proper lower semicontinuous
function bounded from below, and let 𝑇 : 𝐾 → 𝐾 be a single-
valued selfmapping. Suppose that

(𝐻2) 𝑓(𝑥) − 𝑓(𝑇𝑥) > 0 for any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥.

Then there exists V ∈ 𝐾 such that

(a) 𝑇V = V,
(b) 𝑓(V) = inf{𝑓(𝑥) : 𝑥 ∈ 𝐾} < +∞.

In fact, we have the following important fact.

Theorem 6. Theorems 4 and 5 are equivalent.

Proof. It suffices to show that Theorem 5 implies Theorem 4.
Under the assumption (𝐻1) ofTheorem 4, for any 𝑥 ∈ 𝐾with
𝑥 ∉ 𝑇𝑥, there exists 𝑦

𝑥
∈ 𝑇𝑥 such that

𝑓 (𝑦
𝑥
) < 𝑓 (𝑥) . (14)

So, we can define a single-valued selfmap 𝐺 : 𝐾 → 𝐾 by

𝐺𝑥 := {
𝑥, if 𝑥 ∈ 𝑇𝑥,
𝑦
𝑥
, if 𝑥 ∉ 𝑇𝑥.

(15)

It is easy to see that𝐺 satisfies𝑓(𝑥)−𝑓(𝐺𝑥) > 0 for any 𝑥 ∈ 𝐾
with 𝑥 ̸=𝐺𝑥. So, all the hypotheses ofTheorem 5 are fulfilled.
It is therefore possible to apply Theorem 5 to get V ∈ 𝐾 such
that

(a) 𝐺V = V,
(b) 𝑓(V) = inf{𝑓(𝑥) : 𝑥 ∈ 𝐾} < +∞.

By (a) and the definition of 𝐺, we have V ∈ 𝑇V. From (b) and
V ∈ 𝑇V, we get

𝑓 (V) = inf {𝑓 (𝑥) : 𝑥 ∈ 𝑇V} = inf {𝑓 (𝑥) : 𝑥 ∈ 𝐾} < +∞.
(16)

ThereforeTheorem 5 impliesTheorem 4 and hence the proof
is completed.

Applying Theorem 4, we establish the following com-
pactness version of Caristi’s type fixed point theorem for
multivalued mappings.

Theorem 7. Let (𝐾, 𝑑) be a nonempty compact metric space,
let 𝑓 : 𝐾 → (−∞, +∞] be a proper lower semicontinuous
function bounded from below, and let 𝑇 : 𝐾 → N(𝐾) be a
multivalued mapping. Suppose that, for any 𝑥 ∈ 𝐾, there exists
𝑦 ∈ 𝑇𝑥 such that

𝑑 (𝑥, 𝑦) ≤ 𝑓 (𝑥) − 𝑓 (𝑦) . (17)

Then there exists V ∈ 𝐾 such that

(a) V ∈ 𝑇V,
(b) 𝑓(V) = inf{𝑓(𝑥) : 𝑥 ∈ 𝑇V} = inf{𝑓(𝑥) : 𝑥 ∈ 𝐾} <
+∞.

Proof. For any 𝑥 ∈ 𝐾 with 𝑥 ∉ 𝑇𝑥, by our hypothesis, there
exists 𝑦 ∈ 𝑇𝑥 such that

0 < 𝑑 (𝑥, 𝑦) ≤ 𝑓 (𝑥) − 𝑓 (𝑦) (18)

which implies

𝑓 (𝑦) < 𝑓 (𝑥) . (19)

So (𝐻1) as inTheorem 4 is satisfied.Therefore the conclusion
follows fromTheorem 4.

As a direct consequence of Theorem 7 we obtain the
following result which is a compactness version of Caristi’s
fixed point theorem.

Theorem 8. Let (𝐾, 𝑑) be a nonempty compact metric space,
let 𝑓 : 𝐾 → (−∞, +∞] be a proper lower semicontinuous
function bounded from below, and let 𝑇 : 𝐾 → 𝐾 be a single-
valued selfmapping. Suppose that 𝑇 is a Caristi-type map on𝐾
dominated by 𝑓; that is, 𝑇 satisfies

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑓 (𝑥) − 𝑓 (𝑇𝑥) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐾. (20)

Then there exists V ∈ 𝐾 such that

(a) 𝑇V = V,
(b) 𝑓(V) = inf{𝑓(𝑥) : 𝑥 ∈ 𝐾} < +∞.

Theorem 9. Theorems 7 and 8 are equivalent.

By applying Theorem 5 (or Theorem 4), we obtain the
following new fixed point theorem for nonself mappings in
metric spaces.

Theorem 10. Let𝐾 be a nonempty compact subset of a metric
space (𝑋, 𝑑) and let 𝑆 : 𝐾 → 𝑋 be a continuous mapping.
Suppose that

(𝐻3) for any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑆𝑥 there exists 𝑦 ∈ 𝐾 \ {𝑥} such
that

𝑑 (𝑦, 𝑆𝑦) < 𝑑 (𝑥, 𝑆𝑥) . (21)

Then 𝑆 admits a fixed point in 𝐾.

Proof. Define 𝑓 : 𝐾 → R by

𝑓 (𝑥) = 𝑑 (𝑥, 𝑆𝑥) for 𝑥 ∈ 𝐾. (22)

By the continuity of 𝑆,𝑓 is continuous and bounded below by
0. By the assumption (𝐻3), for any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑆𝑥, there
exists 𝑦

𝑥
∈ 𝐾 \ {𝑥} such that

𝑓 (𝑦
𝑥
) = 𝑑 (𝑦

𝑥
, 𝑆𝑦
𝑥
) < 𝑑 (𝑥, 𝑆𝑥) = 𝑓 (𝑥) , (23)

so we can define a single-valued selfmap 𝑇 : 𝐾 → 𝐾 by

𝑇𝑥 := {
𝑥, if 𝑥 = 𝑆𝑥,
𝑦
𝑥
, if 𝑥 ̸= 𝑆𝑥.

(24)
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For any 𝑥 ∈ 𝐾with 𝑥 ̸= 𝑆𝑥, by (23) and the definition of 𝑇, we
obtain

𝑓 (𝑥) − 𝑓 (𝑇𝑥) > 0. (25)

Hence we prove that (𝐻3) implies (𝐻2) in Theorem 5.
Applying Theorem 5, there exists V ∈ 𝐾 such that 𝑇V = V,
which deduce 𝑆V = V. The proof is completed.

Remark 11. Edelstein’s fixed point theorem [2] (i.e., Theo-
rem 2) is a special case of Theorem 10. Indeed, since 𝑇 is
contractive, it is easy to see that 𝑇 is continuous on 𝐾. For
any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥, let 𝑦 = 𝑇𝑥. Then 𝑦 ∈ 𝐾 \ {𝑥} and

𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑦, 𝑇𝑦) = 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑇𝑥, 𝑇
2

𝑥)

> 𝑑 (𝑥, 𝑇𝑥) − 𝑑 (𝑥, 𝑇𝑥) = 0.

(26)

Hence (𝐻3) as in Theorem 10 is satisfied. Therefore the
conclusion follows fromTheorem 10.

3. Some Applications of Theorem 10

In this section, we study some applications of Theorem 10
to fixed point theory. We first establish a new fixed point
theorem without assuming that nonself mappings possess
convexity property in the setting of strictly convex normed
linear spaces by exploitingTheorem 10.

Theorem 12. Let (𝐸, ‖ ⋅ ‖) be a strictly convex normed linear
space, let 𝐾 be a nonempty compact subset of 𝐸, and let 𝑇 :
𝐾 → 𝐸 be a continuous mapping. Suppose that

(𝐻4) for any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥 there exists 𝑦 ∈ 𝐾 \ {𝑥} and
𝑦 ̸= 𝑇𝑥 such that

‖𝑥 − 𝑇𝑥‖ =
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦 − 𝑇𝑥

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .
(27)

Then 𝑇 admits a fixed point in 𝐾.

Proof. We first claim that the condition (𝑃) holds, where

(𝑃) for any 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥 there exists 𝑦 ∈ 𝐾 \ {𝑥}
such that ‖𝑦 − 𝑇𝑦‖ < ‖𝑥 − 𝑇𝑥‖.

Indeed, let 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥 be given. By (𝐻4), there exists
𝑦
𝑥
∈ 𝐾 \ {𝑥} and 𝑦

𝑥
̸= 𝑇𝑥 such that

‖𝑥 − 𝑇𝑥‖ =
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑥 − 𝑇𝑥

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦𝑥
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑥

󵄩󵄩󵄩󵄩 .
(28)

It follows that
󵄩󵄩󵄩󵄩𝑦𝑥 − 𝑇𝑦𝑥

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑥 − 𝑇𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦𝑥

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑦𝑥 − 𝑇𝑥

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦𝑥

󵄩󵄩󵄩󵄩

= ‖𝑥 − 𝑇𝑥‖ .

(29)

If ‖𝑦
𝑥
− 𝑇𝑦
𝑥
‖ < ‖𝑥 − 𝑇𝑥‖, then our claim (𝑃) is finished.

Suppose ‖𝑦
𝑥
−𝑇𝑦
𝑥
‖ = ‖𝑥−𝑇𝑥‖. Since 𝐸 is strictly convex,

𝑥 ̸= 𝑦
𝑥
, 𝑦
𝑥
̸= 𝑇𝑥, and ‖𝑥 − 𝑇𝑥‖ = ‖𝑥 − 𝑦

𝑥
‖ + ‖𝑦

𝑥
− 𝑇𝑥‖, there

exists 𝜆 > 0 such that

𝑦
𝑥
− 𝑇𝑥 = 𝜆 (𝑥 − 𝑦

𝑥
) . (30)

Let 𝑐 = 𝜆/(1 + 𝜆). Then 𝑐 ∈ (0, 1). By (30), we have

𝑦
𝑥
= 𝑐𝑥 + (1 − 𝑐) 𝑇𝑥 ∈ Seg (𝑥, 𝑇𝑥) . (31)

Hence 𝑦
𝑥
∈ Seg(𝑥, 𝑇𝑥) ∩ 𝐾. Put

A = {𝑤 ∈ Seg (𝑥, 𝑇𝑥) ∩ 𝐾 : ‖𝑤 − 𝑇𝑤‖ = ‖𝑥 − 𝑇𝑥‖} . (32)

Since 𝑦
𝑥
∈ A,A ̸= 0. Let 𝜌 := sup

𝑤∈A‖𝑤 − 𝑥‖. Then

0 <
󵄩󵄩󵄩󵄩𝑦𝑥 − 𝑥

󵄩󵄩󵄩󵄩 ≤ 𝜌 < sup
𝑤∈𝐾

‖𝑤 − 𝑥‖ < ∞. (33)

We can choose a sequence {V
𝑛
} ⊂ A, such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩V𝑛 − 𝑥
󵄩󵄩󵄩󵄩 = 𝜌. (34)

Since {V
𝑛
} ⊂ Seg(𝑥, 𝑇𝑥) ∩ 𝐾 ⊂ Seg[𝑥, 𝑇𝑥] ∩ 𝐾 and

Seg[𝑥, 𝑇𝑥]∩𝐾 is a nonempty compact subset of 𝐸, there exist
a subsequence {V

𝑛𝑖
} of {V

𝑛
} and a vector V ∈ Seg[𝑥, 𝑇𝑥] ∩ 𝐾

such that

V
𝑛𝑖
󳨀→ V as 𝑖 󳨀→ ∞. (35)

By taking into account (34) and (35), we get

‖V − 𝑥‖ = lim
𝑖→∞

󵄩󵄩󵄩󵄩󵄩
V
𝑛𝑖
− 𝑥
󵄩󵄩󵄩󵄩󵄩
= 𝜌 > 0, (36)

which implies V ̸= 𝑥. So V ∈ Seg(𝑥, 𝑇𝑥] ∩ 𝐾 and hence there
exists 𝜅 ∈ [0, 1) such that

V = 𝜅𝑥 + (1 − 𝜅) 𝑇𝑥. (37)

On the other hand, by the continuity of 𝑇, we obtain

𝑇V
𝑛𝑖
󳨀→ 𝑇V as 𝑖 󳨀→ ∞. (38)

For any 𝑖 ∈ N, since V
𝑛𝑖
∈ A, we have

󵄩󵄩󵄩󵄩󵄩
V
𝑛𝑖
− 𝑇V
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
= ‖𝑥 − 𝑇𝑥‖ . (39)

Thus, by (37), we obtain

‖V − 𝑇V‖ ≤
󵄩󵄩󵄩󵄩󵄩
V − V
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
V
𝑛𝑖
− 𝑇V
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑇V
𝑛𝑖
− 𝑇V

󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
V − V
𝑛𝑖

󵄩󵄩󵄩󵄩󵄩
+ ‖𝑥 − 𝑇𝑥‖ +

󵄩󵄩󵄩󵄩󵄩
𝑇V
𝑛𝑖
− 𝑇V

󵄩󵄩󵄩󵄩󵄩
∀𝑖 ∈ N.

(40)

By taking the limit from both sides of the last inequality, we
get

‖V − 𝑇V‖ ≤ ‖𝑥 − 𝑇𝑥‖ . (41)

If ‖V −𝑇V‖ < ‖𝑥 − 𝑇𝑥‖, then our claim (𝑃) is proved when we
take 𝑦 = V. Suppose ‖V − 𝑇V‖ = ‖𝑥 − 𝑇𝑥‖. Let

B = {𝑤 ∈ Seg [V, 𝑇𝑥] ∩ 𝐾 : ‖𝑤 − 𝑇𝑤‖ = ‖V − 𝑇V‖} . (42)
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Then 0 ̸=B ⊂ A. Let 𝜁 := sup
𝑤∈B‖𝑤 − 𝑥‖. Then 0 < 𝜁 ≤ 𝜌 <

∞. We can find a sequence {𝑧
𝑛
} ⊂ B ⊂ Seg[V, 𝑇𝑥] ∩ 𝐾, such

that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑥
󵄩󵄩󵄩󵄩 = 𝜁. (43)

By the compactness of Seg[V, 𝑇𝑥] ∩ 𝐾, there exist a subse-
quence {𝑧

𝑛𝑗
} of {𝑧

𝑛
} and a vector 𝑧 ∈ Seg[V, 𝑇𝑥] ∩𝐾 such that

𝑧
𝑛𝑗
󳨀→ 𝑧 as 𝑗 󳨀→ ∞. (44)

From (43) and (44), we get

‖𝑧 − 𝑥‖ = lim
𝑗→∞

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑗
− 𝑥
󵄩󵄩󵄩󵄩󵄩󵄩
= 𝜁. (45)

By (44) and the continuity of 𝑇, we have

𝑇𝑧
𝑛𝑗
󳨀→ 𝑇𝑧 as 𝑗 󳨀→ ∞. (46)

For any 𝑗 ∈ N,
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑗
− 𝑇𝑧
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
= ‖V − 𝑇V‖ = ‖𝑥 − 𝑇𝑥‖ due to V

𝑛𝑗
∈B.

(47)

Since

‖𝑧 − 𝑇𝑧‖ ≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧 − 𝑧
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑛𝑗
− 𝑇𝑧
𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑇𝑧
𝑛𝑗
− 𝑇𝑧

󵄩󵄩󵄩󵄩󵄩󵄩
∀𝑗 ∈ N,

(48)

taking into account (44), (46), and (47), we get

‖𝑧 − 𝑇𝑧‖ ≤ ‖𝑥 − 𝑇𝑥‖ . (49)

We will verify ‖𝑧 − 𝑇𝑧‖ < ‖𝑥 − 𝑇𝑥‖. Assume ‖𝑧 − 𝑇𝑧‖ =
‖𝑥 − 𝑇𝑥‖ = ‖V − 𝑇V‖. Then 𝑧 ∈ B. So 𝑧 = 𝜂V + (1 − 𝜂)𝑇𝑥 for
some 𝜂 ∈ [0, 1]. Thus, by (37), we have

V = 𝜅𝑥 + (1 − 𝜅) 𝑇𝑥

= 𝜅𝑥 + (1 − 𝜅) (
1

1 − 𝜂
𝑧 −

𝜂

1 − 𝜂
V)

(50)

which deduces

V =
𝜅 (1 − 𝜂)

1 − 𝜂𝜅
𝑥 +

1 − 𝜅

1 − 𝜂𝜅
𝑧. (51)

Since 𝜅 ∈ [0, 1), we have 1 − 𝜂𝜅 > 0 and (1 − 𝜅)/(1 − 𝜂𝜅) > 0.
Because 𝜅(1 − 𝜂)/(1 − 𝜂𝜅) > 0, (1 − 𝜅)/(1 − 𝜂𝜅) > 0, and
𝜅(1−𝜂)/(1−𝜂𝜅)+ (1−𝜅)/(1−𝜂𝜅) = 1, we know V ∈ Seg(𝑥, 𝑧)
and hence

‖𝑥 − 𝑧‖ = ‖𝑥 − V‖ + ‖V − 𝑧‖ . (52)

Since V ̸= 𝑥 and V ̸= 𝑧, by (36), (45), and (52), we get

𝜁 = ‖𝑧 − 𝑥‖ > ‖V − 𝑥‖ = 𝜌, (53)

which leads a contradiction. Hence it must be ‖𝑧 − 𝑇𝑧‖ <
‖𝑥 − 𝑇𝑥‖. So our claim (𝑃) is proved when we take 𝑦 = 𝑧.
Now, all the hypotheses of Theorem 10 are fulfilled, so it is
therefore possible to apply Theorem 10 to get the thesis.

As another interesting application ofTheorem 10, we give
the following new fixed point result for nonself mappings in
usual metric spaces. It is worth mentioning that condition
(𝐻5) as in Theorem 13 is different from condition (𝐻4) as in
Theorem 12.

Theorem 13. Let𝐾 be a nonempty compact subset of a metric
space (𝑋, 𝑑) and let 𝑆 : 𝐾 → 𝑋 be a continuous mapping.
Suppose that

(𝐻5) for any 𝑥 ∈ 𝐾with 𝑥 ̸= 𝑆𝑥, there exists 𝑦 ∈ 𝐾\{𝑥} such
that

𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑆𝑥) = 𝑑 (𝑥, 𝑆𝑥) ,

𝑑 (𝑆𝑥, 𝑆𝑦) < 𝑑 (𝑥, 𝑦) .
(54)

Then 𝑆 admits a fixed point in 𝐾.

Proof. Let 𝑥 ∈ 𝐾 with 𝑥 ̸= 𝑇𝑥 be given. Then, by (𝐻5), there
exists 𝑦 ∈ 𝐾 \ {𝑥} such that

𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑆𝑥) = 𝑑 (𝑥, 𝑆𝑥) ,

𝑑 (𝑆𝑥, 𝑆𝑦) < 𝑑 (𝑥, 𝑦) .
(55)

It follows from the last inequalities that

𝑑 (𝑥, 𝑆𝑥) − 𝑑 (𝑦, 𝑆𝑦) = 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑆𝑥) − 𝑑 (𝑦, 𝑆𝑦)

≥ 𝑑 (𝑥, 𝑦) − 𝑑 (𝑆𝑥, 𝑆𝑦)

> 𝑑 (𝑥, 𝑦) − 𝑑 (𝑥, 𝑦) = 0.

(56)

So (𝐻3) as in Theorem 10 is satisfied. Hence the conclusion
follows fromTheorem 10.

Let 𝐾 be a nonempty subset of a metric space (𝑋, 𝑑). A
mapping 𝑇 : 𝐾 → 𝐾 is said to be metrically inward [30] if,
for each 𝑥 ∈ 𝐾, there exists 𝑢 ∈ 𝐾 such that

𝑑 (𝑥, 𝑢) + 𝑑 (𝑢, 𝑇𝑥) = 𝑑 (𝑥, 𝑇𝑥) , (57)

where 𝑢 = 𝑥 if and only if 𝑥 = 𝑇𝑥.

Theorem 14. Let𝐾 be a nonempty compact subset of a metric
space (𝑋, 𝑑) and let 𝑆 : 𝐾 → 𝑋 be a metrically inward
contractive mapping. Then 𝑆 admits a unique fixed point in𝐾.

Proof. Applying Theorem 13, 𝑆 has a fixed point in 𝐾. To see
the uniqueness of fixed points of 𝑆, let 𝑢, V ∈ F(𝑆). If 𝑢 ̸= V,
since 𝑆 is contractive, we have

𝑑 (𝑢, V) = 𝑑 (𝑆𝑢, 𝑆V) < 𝑑 (𝑢, V) , (58)

a contradiction. Hence 𝑢 = V andF(𝑆) is a singleton set. The
proof is completed.

Finally, the following example is given to illustrate Theo-
rem 14.
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Example 15 (see [26, Example 3.1]). Let 𝑋 = R2. Define a
norm on𝑋 by

‖𝑥‖ = max {󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨} for 𝑥 = (𝑥

1
, 𝑥
2
) ∈ 𝑋. (59)

Then (𝑋, ‖ ⋅ ‖) is a Banach space and the norm is equivalent
to the Euclidean norm on𝑋. Let

𝐾 = { (𝑥
1
, 𝑥
2
) ∈ 𝑋 : 0 ≤ 𝑥

2
≤ 𝑥
1
,

0 ≤ 𝑥
1
≤
1

2
} ∪ {(1 − √2, 0)} .

(60)

So 𝐾 is a nonempty compact subset of (𝑋, ‖ ⋅ ‖). Define a
mapping 𝑆 : 𝐾 → 𝑋 by

𝑆𝑥 = (
𝑥2
1
− 1

2
,
𝑥2
2

2
) for 𝑥 = (𝑥

1
, 𝑥
2
) ∈ 𝐾. (61)

Hence 𝑆 : 𝐾 → 𝑋 is a metrically inward contractive
mapping (see [26, Example 3.1]). By applyingTheorem 14, we
know that 𝑆 has a unique fixed point in 𝐾. In fact, precisely
speaking, (1 − √2, 0) is the unique fixed point of 𝑆.
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