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We employed the Haar wavelet method to find numerical solution of the system of Fredholm integral equations (SFIEs) and the
systemofVolterra integral equations (SVIEs). Five test problems, forwhich the exact solution is known, are considered. Comparison
of the results is obtained by the Haar wavelet method with the exact solution.

1. Introduction

TheHaar wavelet was initiated and independently developed
by Haar [1] in the early nineteen tens. In recent years,
many different methods and different basis functions have
been used to estimate the solution of the system of integral
equations, such as Adomian decomposition method [1, 2],
Taylor’s expansion method [3, 4], homotopy perturbation
method [5, 6], projection method and Nystrom method [7],
Spline collocation method [8], Runge-Kutta method [9], sinc
method [10], Tau method [11], block-pulse functions, hat
basis functionsmethod [12], and operationalmatrices [13, 14].

In the present paper, we useHaar wavelet method to solve
the system of linear Fredholm integral equations (SLFIEs) of
the second kind:

U (𝑥) − ∫
1

0

K (𝑥, 𝑡)U (𝑡) 𝑑𝑡 = F (𝑥) , 0 < 𝑥 < 1, (1)

and the system of linear Volterra integral equations (SLVIEs)
of the second kind:

U (𝑥) − ∫
𝑥

0

K (𝑥, 𝑡)U (𝑡) 𝑑𝑡 = F (𝑥) , 0 < 𝑥 < 1, (2)

where

U (𝑥) = [𝑢
1
(𝑥) , 𝑢

2
(𝑥) , . . . , 𝑢

𝑛
(𝑥)]
𝑇

,

F (𝑥) = [𝑓
1
(𝑥) , 𝑓

2
(𝑥) , . . . , 𝑓

𝑛
(𝑥)]
𝑇

,

K (𝑥, 𝑡) = 𝑘
𝑖𝑗
(𝑥, 𝑡) , 𝑖, 𝑗 = 1, 2 . . . , 𝑛.

(3)

In (1) and (2), the functions K and F are given, and U is
the vector function of the solution of systems (1) and (2) that
will be determined. Also, we assume that (1) and (2) have a
unique solution.

2. Haar Wavelet Method

Let us confine to the time interval 𝑡 ∈ [0, 1].TheHaar wavelet
family is

ℎ
𝑖
(𝑥) =

{{

{{

{

1 for 𝑡 ∈ [𝜏
1
, 𝜏
2
]

−1 for 𝑡 ∈ [𝜏
2
, 𝜏
3
]

0 elsewhere.
(4)

Here the notations are as follows:

𝜏
1
=

𝑘

𝑚
, 𝜏

2
=

𝑘 + (1/2)

𝑚
, 𝜏

3
=

𝑘 + 1

𝑚
. (5)
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The integer 𝑚 = 2𝑗, 𝑗 = 0, 1, . . . , 𝐽, indicates the level of
the wavelet; 𝑘 = 0, 1, . . . , 𝑚 − 1 is the translation parameter.
The integer 𝐽 determines the maximal level of resolution.The
index 𝑖 is calculated from the formula 𝑖 = 𝑚 + 𝑘 + 1; the
minimal value for which (4) holds is 𝑖 = 2 (then 𝑚 = 1, 𝑘 =

0); the maximal value is 𝑖 = 2𝑀, where 𝑀 = 2
𝐽. The index

𝑖 = 1 corresponds to the scaling function of the Haar wavelet
ℎ
1
(𝑡) ≡ 1.
Simple calculations show the following.
We have that

∫
1

0

ℎ
𝑖
(𝑡) ℎ
𝑙
(𝑡) 𝑑𝑡 =

{

{

{

1

𝑚
for 𝑖 = 𝑙

0 for 𝑖 ̸= 𝑙;
(6)

consequently, the functions ℎ
𝑖
(𝑡) are orthogonal.

Next we discretize the functions ℎ
𝑖
(𝑥) by dividing the

interval 𝑥 ∈ [0, 1] into 2𝑀 parts of equal lengthΔ𝑥 = 1/(2𝑀)

and introduce the collocation points:

𝑥
𝑙
=

𝑙 − (1/2)

2𝑀
, 𝑙 = 1, 2, . . . , 2𝑀. (7)

Following Chen and Hsiao [15, 16] the coefficients matrix
𝐻
𝑖𝑙

= ℎ
𝑖
(𝑡
𝑙
) is introduced (this is a 2𝑀 × 2𝑀 matrix). A

function 𝑢(𝑡) which is defined in the interval 𝑥 ∈ [0, 1] can
be expanded into the Haar wavelet series:

𝑢 (𝑥) =

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥) , (8)

where 𝑎 is the wavelet coefficients. The discrete form of this
equation is

𝑢 (𝑥
𝑙
) =

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥
𝑙
) =

2𝑀

∑
𝑖=1

𝑎
𝑖
𝐻
𝑖𝑙

(9)

or in a matrix presentation 𝑢 = 𝑎𝐻, where 𝑢 and 𝑎 are 2𝑀

dimensional row vectors.

3. System of Fredholm Integral Equation

Let us consider SLFIEs (1) at (𝑖, 𝑗, 𝑛 = 1, 2):

𝑢 (𝑥) − ∫
1

0

𝑘
11

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫
1

0

𝑘
12

(𝑥, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓
1
(𝑥) ,

V (𝑥) − ∫
1

0

𝑘
21

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫
1

0

𝑘
22

(𝑥, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓
2
(𝑥) ,

𝑥 ∈ [0, 1] .

(10)

Let

𝑢 (𝑥) =

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥) , V (𝑥) =

2𝑀

∑
𝑖=1

𝑏
𝑖
ℎ
𝑖
(𝑥) . (11)

Replacing (12) into (10) and (11) we find

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥) −

2𝑀

∑
𝑖=1

𝑎
𝑖
𝐺
1𝑖
(𝑥) −

2𝑀

∑
𝑖=1

𝑏
𝑖
𝐺
2𝑖
(𝑥) = 𝑓

1
(𝑥) ,

2𝑀

∑
𝑖=1

𝑏
𝑖
ℎ
𝑖
(𝑥) −

2𝑀

∑
𝑖=1

𝑎
𝑖
𝐺
3𝑖
(𝑥) −

2𝑀

∑
𝑖=1

𝑏
𝑖
𝐺
4𝑖
(𝑥) = 𝑓

2
(𝑥) ,

(12)

where

𝐺
1𝑖
(𝑥) = ∫

1

0

𝑘
11

(𝑥, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

𝐺
2𝑖
(𝑥) = ∫

1

0

𝑘
12

(𝑥, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

𝐺
3𝑖
(𝑥) = ∫

1

0

𝑘
21

(𝑥, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

𝐺
4𝑖
(𝑥) = ∫

1

0

𝑘
22

(𝑥, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡.

(13)

Next we will evaluate the wavelet coefficients 𝑎
𝑖
and 𝑏
𝑖
in

the following way.

Collocation Method. Satisfying (12) only at the collocation
points (7) we get a system of linear equations:

2𝑀

∑
𝑖=1

[𝑎
𝑖
(ℎ
𝑖
(𝑡
𝑙
) − 𝐺
1𝑖
(𝑥
𝑙
)) − 𝑏
𝑖
𝐺
2𝑖
(𝑥
𝑙
)] = 𝑓

1
(𝑥
𝑙
) ,

2𝑀

∑
𝑖=1

[𝑏
𝑖
(ℎ
𝑖
(𝑡
𝑙
) − 𝐺
4𝑖
(𝑥
𝑙
)) − 𝑎

𝑖
𝐺
3𝑖
(𝑥
𝑙
)] = 𝑓

2
(𝑥
𝑙
) ,

𝑙 = 1, 2, . . . , 2𝑀.

(14)

Therefore the matrix form of this system is given by

𝑎 (𝐻 − 𝐺
1
) − 𝑏𝐺

2
= 𝐹
1
, 𝑏 (𝐻 − 𝐺

4
) − 𝑎𝐺

3
= 𝐹
2
,

where G
𝑖𝑙
= G
𝑖
(𝑥
𝑙
) , F
𝑙
= f (𝑥

𝑙
) .

(15)

Now, we can present the following problems.

Example 1. Consider the following SLFIEs [3, 16]:

𝑢 (𝑥) − ∫
1

0

(𝑥 − 𝑡)
3
𝑢 (𝑡) 𝑑𝑡 − ∫

1

0

(𝑥 − 𝑡)
2V (𝑡) 𝑑𝑡

=
1

20
−

11

30
𝑥 +

5

3
𝑥
2
−

1

3
𝑥
3
,

V (𝑥) − ∫
1

0

(𝑥 − 𝑡)
4
𝑢 (𝑡) 𝑑𝑡 − ∫

1

0

(𝑥 − 𝑡)
3V (𝑡) 𝑑𝑡

= −
1

30
−

41

60
𝑥 +

3

20
𝑥
2
+

23

12
𝑥
3
−

1

3
𝑥
4
.

(16)
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Carrying out the integration in (13) we obtain

𝐺
1
(𝑥)

=

{{{{

{{{{

{

𝑥(1 + 𝑥
2) −

1 + 6𝑥2

4
for 𝑖 = 1

7 − 24𝑚𝑥 + 24 (𝑘 + 𝑘2 − 2𝑘𝑚𝑥 + 𝑚2𝑥2)

32𝑚4
for 𝑖 > 1,

𝐺
2
(𝑥)

=

{{

{{

{

1

3
+ (𝑥 − 1) 𝑥 for 𝑖 = 1

−
1 + 2𝑘 − 2𝑚𝑥

4𝑚3
for 𝑖 > 1,

𝐺
3
(𝑥)

=

{{{{{{{{

{{{{{{{{

{

1

5
+ 𝑥 (𝑥 − 1) (1 + 𝑥 (𝑥 − 1)) for 𝑖 = 1

− ((1 + 2𝑘 − 2𝑚𝑥) (3 + 8𝑘2 + 𝑘 (8 − 16𝑚𝑥)

+8𝑚𝑥 (−1 + 𝑚𝑥)))

×(16𝑚5)
−1

for 𝑖 > 1,

𝐺
4
(𝑥)

=

{{{{

{{{{

{

𝑥(1 + 𝑥
2
) −

1 + 6𝑥2

4
for 𝑖 = 1

7 − 24𝑚𝑥 + 24 (𝑘 + 𝑘2 − 2𝑘𝑚𝑥 + 𝑚2𝑥2)

32𝑚4
for 𝑖 > 1.

(17)

We apply collocation method, and vectors 𝑎
𝑖
and 𝑏
𝑖
can

be calculated from (15); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (11).

Computations were carried out for different values of 𝐽.
These results were compared with the exact solution 𝑢(𝑥) =

𝑥
2 and V(𝑥) = −𝑥 + 𝑥2 + 𝑥3.
The accuracy of the results (see Table 1 and Figure 1) was

estimated by the error function for 𝑢(𝑥) and V(𝑥):

𝑒
𝐽
= max
1≤𝑙≤2𝑀

󵄨󵄨󵄨󵄨𝑢 (𝑥
𝑙
) − 𝑢
𝑒𝑥

(𝑥
𝑙
)
󵄨󵄨󵄨󵄨 ,

𝑒
𝐽
= max
1≤𝑙≤2𝑀

󵄨󵄨󵄨󵄨V (𝑥
𝑙
) − V
𝑒𝑥

(𝑥
𝑙
)
󵄨󵄨󵄨󵄨 ,

(18)

where 𝑥
𝑙
is defined by (7).

Example 2. Consider the following SLFIEs given by [10, 12]:

𝑢 (𝑥) + ∫
1

0

𝑒
𝑥−𝑡

𝑢 (𝑥) 𝑑𝑡 + ∫
1

0

𝑒
(𝑥+2)𝑡V (𝑥) 𝑑𝑡

= 2𝑒
𝑥
+

𝑒𝑥+1 − 1

𝑥 + 1
,

V (𝑥) + ∫
1

0

𝑒
𝑥𝑡
𝑢 (𝑥) 𝑑𝑡 + ∫

1

0

𝑒
𝑥+𝑡V (𝑥) 𝑑𝑡

= 𝑒
𝑥
+ 𝑒
−𝑥

+
𝑒𝑥+1 − 1

𝑥 + 1
.

(19)

Table 1: Error of 𝑢(𝑥) and V(𝑥) of Example 1.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 1.45𝐸 − 3 1.57𝐸 − 3

3 16 3.65𝐸 − 4 4.16𝐸 − 4

4 32 9.19𝐸 − 5 1.06𝐸 − 4

5 64 2.29𝐸 − 5 2.68𝐸 − 5

Carrying out the integration in (13) we obtain

𝐺
1
(𝑥) = {

(−1 + 𝑒) 𝑒
−1+𝑥 for 𝑖 = 1

𝑒−((1+𝑘)/𝑚)+𝑥(−1 + 𝑒1/2𝑚)
2

for 𝑖 > 1,

𝐺
2
(𝑥) =

{{{

{{{

{

−1 + 𝑒
2+𝑥

2 + 𝑥
for 𝑖 = 1

−
𝑒𝑘(2+𝑥)/𝑚(−1 + 𝑒(2+𝑥)/2𝑚)

2

2 + 𝑥
for 𝑖 > 1,

𝐺
3
(𝑥) =

{{{

{{{

{

−1 + 𝑒
𝑥

𝑥
for 𝑖 = 1

−
𝑥 − 𝑒𝑘𝑥/𝑚(−1 + 𝑒𝑥/2𝑚)

2

/𝑥

4𝑚2
for 𝑖 > 1,

𝐺
4
(𝑥) = {

(−1 + 𝑒) 𝑒
𝑥 for 𝑖 = 1

−𝑒(𝑘/𝑚)+𝑥(−1 + 𝑒1/2𝑚)
2

for 𝑖 > 1.

(20)

We apply collocation method, and vectors 𝑎
𝑖
and 𝑏
𝑖
can

be calculated from (15); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (11).

Computations were carried out for different values of 𝐽.
These results were compared with the exact solution (see
Table 2 and Figure 2) 𝑢(𝑥) = 𝑒

𝑥 and V(𝑥) = 𝑒−𝑥.

Example 3. Consider the following SLFIEs given by [10]:

𝑢 (𝑥) − ∫
1

0

𝑥 + 𝑡

3
𝑢 (𝑡) 𝑑𝑡 − ∫

1

0

𝑥 + 𝑡

3
V (𝑡) 𝑑𝑡 =

𝑥

18
+

17

36
,

V (𝑥) − ∫
1

0

𝑥𝑡𝑢 (𝑡) 𝑑𝑡 − ∫
1

0

𝑥𝑡V (𝑡) 𝑑𝑡 = 𝑥
2
−

19

12
+ 1.

(21)

Carrying out the integration in (13) we obtain

𝐺
𝑗
(𝑥) =

{{{{

{{{{

{

1

6
+

𝑥

3
for 𝑖 = 1

𝑗 = 1, 2, 3, 4

−
1

12𝑚2
for 𝑖 > 1

. (22)

We apply collocation method, and vectors 𝑎
𝑖
and 𝑏

𝑖
can

be calculated from (15); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (11).

Computations were carried out for different values of 𝐽

(see Table 3 and Figure 3). These results were compared with
the exact solution 𝑢(𝑥) = 𝑥 + 1 and V(𝑥) = 𝑥

2 + 1.
By comparing the results obtained with the results found

in [3, 10, 12], we find that the results we have obtained
are accurate and error rate, which is much less but almost
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact solution
Numerical solution

(a)

0.0 0.2 0.4 0.6 0.8 1.0
−0.2

0.0

0.2

0.4

0.6

0.8

Exact solution
Numerical solution

(b)

Figure 1: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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Figure 2: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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Figure 3: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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Table 2: Error of 𝑢(𝑥) and V(𝑥) of Example 2.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 2.28𝐸 − 2 7.30𝐸 − 3

3 16 5.79𝐸 − 3 1.82𝐸 − 3

4 32 1.45𝐸 − 3 4.56𝐸 − 4

5 64 2.95𝐸 − 4 4.62𝐸 − 5

Table 3: Error of 𝑢(𝑥) and V(𝑥) of Example 3.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 6.15𝐸 − 3 8.22𝐸 − 3

3 16 1.57𝐸 − 3 2.13𝐸 − 3

4 32 3.96𝐸 − 4 5.42𝐸 − 4

5 64 9.95𝐸 − 5 1.36𝐸 − 4

nonexistent compared to other methods, is also shown in
tables of error attached and this shows the importance of the
method used.

4. System of Volterra Integral Equations

Let us consider system of linear Volterra integral equations
(SLVIEs) (2) at (𝑖, 𝑗 = 1, 2, 𝑛 = 2):

𝑢 (𝑥) − ∫
𝑥

0

𝑘
11

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫
𝑥

0

𝑘
12

(𝑥, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓
1
(𝑥) ,

V (𝑥) − ∫
𝑥

0

𝑘
21

(𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫
𝑥

0

𝑘
22

(𝑥, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓
2
(𝑥) ,

𝑥 ∈ [0, 1] .

(23)

Its discrete form is

𝑢 (𝑥
𝑙
) − ∫
𝑥𝑙

0

𝑘
11

(𝑥
𝑙
, 𝑡) 𝑢 (𝑡) 𝑑𝑡

− ∫
𝑥𝑙

0

𝑘
12

(𝑥
𝑙
, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓

1
(𝑥
𝑙
) ,

V (𝑥
𝑙
) − ∫
𝑥𝑙

0

𝑘
21

(𝑥
𝑙
, 𝑡) 𝑢 (𝑡) 𝑑𝑡

− ∫
𝑥𝑙

0

𝑘
22

(𝑥
𝑙
, 𝑡) V (𝑡) 𝑑𝑡 = 𝑓

2
(𝑥
𝑙
) ,

𝑥 ∈ [0, 1] ,

(24)

where 𝑥
𝑙
defined in (7) are the collocation points.

Let

𝑢 (𝑥) =

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥) , V (𝑥) =

2𝑀

∑
𝑖=1

𝑏
𝑖
ℎ
𝑖
(𝑥) . (25)

Replacing (25) with (24) we find

2𝑀

∑
𝑖=1

𝑎
𝑖
ℎ
𝑖
(𝑥
𝑙
) −

2𝑀

∑
𝑖=1

𝑎
𝑖
(𝐺
11
)
𝑖
(𝑥
𝑙
) −

2𝑀

∑
𝑖=1

𝑏
𝑖
(𝐺
12
)
𝑖
(𝑥
𝑙
) = 𝑓
1
(𝑥
𝑙
) ,

2𝑀

∑
𝑖=1

𝑏
𝑖
ℎ
𝑖
(𝑥
𝑙
) −

2𝑀

∑
𝑖=1

𝑎
𝑖
(𝐺
21
)
𝑖
(𝑥
𝑙
) −

2𝑀

∑
𝑖=1

𝑏
𝑖
(𝐺
22
)
𝑖
(𝑥
𝑙
) = 𝑓
2
(𝑥
𝑙
) .

(26)

The matrices (𝐺
𝑠𝑟
)
𝑖𝑙

= (𝐺
𝑠
)
𝑖
(𝑥
𝑙
), 𝑠, 𝑟 = 1, 2, are now

defined as

(𝐺
11
)
𝑖𝑙
= ∫
𝑥𝑙

0

𝑘
11

(𝑥
𝑙
, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

(𝐺
12
)
𝑖𝑙
= ∫
𝑥𝑙

0

𝑘
12

(𝑥
𝑙
, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

(𝐺
21
)
𝑖𝑙
= ∫
𝑥𝑙

0

𝑘
21

(𝑥
𝑙
, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡,

(𝐺
22
)
𝑖𝑙
= ∫
𝑥𝑙

0

𝑘
22

(𝑥
𝑙
, 𝑡) ℎ
𝑖
(𝑡) 𝑑𝑡.

(27)

By computing these integrals the following cases should
be distinguished:

(𝐺
𝑠𝑟
)
𝑖𝑙

=

{{{{{{{{{{

{{{{{{{{{{

{

0 if 𝑥
𝑙
< 𝜏
1

∫
𝑥𝑙

𝜏1

𝑘
𝑠𝑟

(𝑥
𝑙
, 𝑡) 𝑑𝑡 if 𝜏

1
≤ 𝑥
𝑙
< 𝜏
2

∫
𝜏2

𝜏1

𝑘
𝑠𝑟

(𝑥
𝑙
, 𝑡) 𝑑𝑡 − ∫

𝑥𝑙

𝜏2

𝑘
𝑠𝑟

(𝑥
𝑙
, 𝑡) 𝑑𝑡 if 𝜏

2
≤ 𝑥
𝑙
< 𝜏
3

∫
𝜏2

𝜏1

𝑘
𝑠𝑟

(𝑥
𝑙
, 𝑡) 𝑑𝑡 − ∫

𝜏3

𝜏2

𝑘
𝑠𝑟

(𝑥
𝑙
, 𝑡) 𝑑𝑡 if 𝑥

𝑙
≥ 𝜏
3
.

(28)

Next we will evaluate the wavelet coefficients 𝑎
𝑖
and 𝑏
𝑖
in

the following way.

Collocation Method. Satisfying (27) and (28) only at the
collocation points (7) we get a system of linear equations

2𝑀

∑
𝑖=1

[𝑎
𝑖
(ℎ
𝑖
(𝑡
𝑙
) − (𝐺

11
)
𝑖
(𝑥
𝑙
)) − 𝑏
𝑖
(𝐺
12
)
𝑖
(𝑥
𝑙
)] = 𝑓

1
(𝑥
𝑙
) ,

2𝑀

∑
𝑖=1

[𝑏
𝑖
(ℎ
𝑖
(𝑡
𝑙
) − (𝐺

22
)
𝑖
(𝑥
𝑙
)) − 𝑎

𝑖
(𝐺
21
)
𝑖
(𝑥
𝑙
)] = 𝑓

2
(𝑥
𝑙
) ,

𝑙 = 1, 2, . . . , 2𝑀.

(29)

The matrix form of this system is

𝑎 (𝐻 − 𝐺
11
) − 𝑏𝐺

12
= 𝐹
1
, 𝑏 (𝐻 − 𝐺

22
) − 𝑎𝐺

21
= 𝐹
2
.

(30)
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Example 4. Consider the following (SLVIEs) [17]:

𝑢 (𝑥) − ∫
𝑥

0

𝑥𝑡𝑢 (𝑡) 𝑑𝑡 − ∫
𝑥

0

(𝑥 + 𝑡) V (𝑡) 𝑑𝑡

= 𝑒
2𝑥

(−
1

2
𝑥
2
+

1

4
𝑥 + 1) + 𝑒

−2𝑥
(𝑥 +

1

4
) −

3

4
𝑥 −

1

4
,

V (𝑥) − ∫
𝑥

0

(𝑥 − 𝑡) 𝑢 (𝑡) 𝑑𝑡 − ∫
𝑥

0

(𝑥 + 𝑡)
2V (𝑡) 𝑑𝑡

= 𝑒
−2𝑥

(2𝑥
2
+ 𝑥 +

5

4
) −

1

4
𝑒
2𝑥

−
1

2
𝑥
2
.

(31)

Carrying out the integration in (28) we obtain

(𝐺
11
)
𝑖𝑙

=

{{{{{{{{

{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

1

2
(𝑥3
𝑙
− 𝑥
𝑙
𝜏2
1
) for 𝜏

1
≤ 𝑥
𝑙
< 𝜏
2

−
1

2
𝑥
𝑙
(𝑥2
𝑙
+ 𝜏2
1
− 2𝜏2
2
) for 𝜏

2
≤ 𝑥
𝑙
< 𝜏
3

−
1

2
𝑥
𝑙
(𝜏2
1
− 2𝜏2
2
+ 𝜏2
3
) for 𝑥

𝑙
≥ 𝜏
3
,

(𝐺
12
)
𝑖𝑙

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

1

2
(𝑥
𝑙
− 𝜏
1
) (3𝑥
𝑙
+ 𝜏
1
)

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

−
3𝑥2
𝑙

2
−

𝜏2
1

2
− 𝑥
𝑙
(𝜏
1
− 2𝜏
2
) + 𝜏2
2

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

−
𝜏2
1

2
+ 𝜏2
2
−

𝜏2
3

2
− 𝑥
𝑙
(𝜏
1
− 2𝜏
2
+ 𝜏
3
)

for 𝑥
𝑙
≥ 𝜏
3
,

(𝐺
21
)
𝑖𝑙

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

1

2
(𝑥
𝑙
− 𝜏
1
)
2 for 𝜏

1
≤ 𝑥
𝑙
< 𝜏
2

1

2
(−𝑥2
𝑙
+ 𝜏2
1
− 2𝑥
𝑙

× (𝜏
1
− 2𝜏
2
) − 2𝜏2

2
) for 𝜏

2
≤ 𝑥
𝑙
< 𝜏
3

1

2
(𝜏2
1
− 2𝜏2
2
+ 𝜏2
3

− 2𝑥
𝑙
(𝜏
1
− 2𝜏
2
+ 𝜏
3
)) for 𝑥

𝑙
≥ 𝜏
3
,

(𝐺
22
)
𝑖𝑙

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0 for𝑥
𝑙
< 𝜏
1

8𝑥
3

𝑙

3
−

1

3
(𝑥
𝑙
+ 𝜏
1
)
3

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

1

3
(−8𝑥3
𝑙
− (𝑥
𝑙
+ 𝜏
1
)
3

+ 2(𝑥
𝑙
+ 𝜏
2
)
3

)

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

1

3
(−(𝑥
𝑙
+ 𝜏
1
)
3

+ 2(𝑥
𝑙
+ 𝜏
2
)
3

− (𝑥
𝑙
+ 𝜏
3
)
3

)

for𝑥
𝑙
≥ 𝜏
3
.

(32)

We apply collocation method, and vectors 𝑎
𝑖
and 𝑏
𝑖
can

be calculated from (30); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (25).

Computations were carried out for different values of 𝐽

(see Table 4 and Figure 4). These results were compared with
the exact solution 𝑢(𝑥) = 𝑒

2𝑥 and V(𝑥) = 𝑒−2𝑥.
The accuracy of the results was estimated by the error

function for 𝑢(𝑥) and V(𝑥):

𝑒
𝐽
= max
1≤𝑙≤2𝑀

󵄨󵄨󵄨󵄨𝑢 (𝑥
𝑙
) − 𝑢
𝑒𝑥

(𝑥
𝑙
)
󵄨󵄨󵄨󵄨 ,

𝑒
𝐽
= max
1≤𝑙≤2𝑀

󵄨󵄨󵄨󵄨V (𝑥
𝑙
) − V
𝑒𝑥

(𝑥
𝑙
)
󵄨󵄨󵄨󵄨 ,

(33)

where 𝑥
𝑙
is defined by (7).

Example 5. Consider the following (SLVIEs) [4, 18]:

𝑢 (𝑥)

= −1 − 𝑥cos(𝑥)2 + 2 cos (𝑥) + sin (𝑥) (1 −
1

2
𝑥 + cos (𝑥))

+ ∫
𝑥

0

((sin (𝑥 − 𝑡) − 1) 𝑢 (𝑡) + (1 − 𝑡 cos (𝑥)) V (𝑡)) 𝑑𝑡,

V (𝑥) = −𝑥 + sin (𝑥) + ∫
𝑥

0

(𝑢 (𝑡) + (𝑥 − 𝑡) V (𝑡)) 𝑑𝑡.

(34)

Carrying out the integration in (28) we obtain

(𝐺
11
)
𝑖𝑙

=

{{{{{{{{{

{{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

1 − cos [𝑥
𝑙
− 𝜏
1
] − 𝑥
𝑙
+ 𝜏
1

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

−1 − cos [𝑥
𝑙
− 𝜏
1
] + 2 cos [𝑥

𝑙
− 𝜏
2
]

+𝑥
𝑙
+ 𝜏
1
− 2𝜏
2

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

− cos [𝑥
𝑙
− 𝜏
1
] + 2 cos [𝑥

𝑙
− 𝜏
2
]

− cos [𝑥
𝑙
− 𝜏
3
] + 𝜏
1
− 2𝜏
2
+ 𝜏
3

for 𝑥
𝑙
≥ 𝜏
3
,

(𝐺
12
)
𝑖𝑙

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

𝑥
𝑙
− 𝜏
1
+

1

2
cos [𝑥

𝑙
] (−𝑥2
𝑙
+ 𝜏2
1
) for 𝜏

1
≤ 𝑥
𝑙
< 𝜏
2

−𝑥
𝑙
− 𝜏
1
+ 2𝜏
2

+
1

2
cos [𝑥

𝑙
] (𝑥2
𝑙
+ 𝜏2
1
− 2𝜏2
2
) for 𝜏

2
≤ 𝑥
𝑙
< 𝜏
3

1

2
(− 2 (𝜏

1
− 2𝜏
2
+ 𝜏
3
)

+ cos [𝑥
𝑙
] (𝜏2
1
− 2𝜏2
2
+ 𝜏2
3
)) for 𝑥

𝑙
≥ 𝜏
3
,

(𝐺
21
)
𝑖𝑙

=

{{{{

{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

𝑥
𝑙
− 𝜏
1

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

−𝑥
𝑙
− 𝜏
1
+ 2𝜏
2

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

−𝜏
1
+ 2𝜏
2
− 𝜏
3

for 𝑥
𝑙
≥ 𝜏
3
,
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Figure 4: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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Figure 5: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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Figure 6: (a) Exact and Haar wavelet solution of 𝑢(𝑥) at 𝐽 = 5. (b) Exact and Haar wavelet solution of V(𝑥) at 𝐽 = 5.
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(𝐺
22
)
𝑖𝑙

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

1

2
(𝑥
𝑙
− 𝜏
1
)
2

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

1

2
(−𝑥2
𝑙
+ 𝜏2
1
− 2𝑥
𝑙
(𝜏
1
− 2𝜏
2
) − 2𝜏2

2
)

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

1

2
(𝜏2
1
− 2𝜏2
2
+ 𝜏2
3
− 2𝑥
𝑙
(𝜏
1
− 2𝜏
2
+ 𝜏
3
))

for 𝑥
𝑙
≥ 𝜏
3
.

(35)

We apply collocation method, and vectors 𝑎
𝑖
and 𝑏
𝑖
can

be calculated from (29); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (25).

Computations were carried out for different values of 𝐽

(see Table 5 and Figure 5). These results were compared with
the exact solution 𝑢(𝑥) = cos (𝑥) and V(𝑥) = sin(𝑥).

Example 6. Consider the following (SLVIEs):

𝑢 (𝑥) = 1 − 𝑥
2
+ ∫
𝑥

0

V (𝑡) 𝑑𝑡, V (𝑥) = 𝑥 + ∫
𝑥

0

𝑢 (𝑡) 𝑑𝑡.

(36)

Carrying out the integration in (28) we obtain

(𝐺
12
)
𝑖𝑙
=

{{{{

{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

𝑥
𝑙
− 𝜏
1

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

−𝑥
𝑙
− 𝜏
1
+ 2𝜏
2

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

−𝜏
1
+ 2𝜏
2
− 𝜏
3

for 𝑥
𝑙
≥ 𝜏
3
,

(𝐺
21
)
𝑖𝑙
=

{{{{

{{{{

{

0 for 𝑥
𝑙
< 𝜏
1

𝑥
𝑙
− 𝜏
1

for 𝜏
1
≤ 𝑥
𝑙
< 𝜏
2

−𝑥
𝑙
− 𝜏
1
+ 2𝜏
2

for 𝜏
2
≤ 𝑥
𝑙
< 𝜏
3

−𝜏
1
+ 2𝜏
2
− 𝜏
3

for 𝑥
𝑙
≥ 𝜏
3
.

(37)

We apply collocation method, and vectors a
𝑖
and b

𝑖
can

be calculated from (29); the functions 𝑢(𝑥) and V(𝑥) are
evaluated from (25).

Computations were carried out for different values of 𝐽

(see Table 6 and Figure 6). These results were compared with
the exact solution 𝑢(𝑥) = 1 and V(𝑥) = 2𝑥.

5. Conclusion

In this work the Haar wavelet method for solution of
linear systems integral equations is proposed. A method of
solution which is applicable for different kind of integral
equations, Fredholm and Volterra systems of integral equa-
tions, is worked out. The solution is based on the collocation
techniques which are proposed. The elaborated method is
very simple and, as it follows from the test problems, high
precision of results can be obtained with a small number of
calculation points.The calculations show that by doubling the
number of the calculation points the error function decreases.
This result follows also from analytical considerations. It

Table 4: Error of 𝑢(𝑥) and V(𝑥) of Example 4.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 1.51𝐸 − 2 9.43𝐸 − 3

3 16
4 32
5 64 3.14𝐸 − 4 1.91𝐸 − 4

Table 5: Error of 𝑢(𝑥) and V(𝑥) of Example 5.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 1.74𝐸 − 3 1.94𝐸 − 3

3 16 4.78𝐸 − 4 5.07𝐸 − 4

4 32 1.20𝐸 − 4 1.29𝐸 − 4

5 64 30.3𝐸 − 5 3.27𝐸 − 5

Table 6: Error of 𝑢(𝑥) and V(𝑥) of Example 6.

𝐽 2𝑀 Error of function 𝑢(𝑥) Error of function V(𝑥)
2 8 5.76𝐸 − 3 4.23𝐸 − 3

3 16 1.47𝐸 − 3 1.10𝐸 − 3

4 32 2.72𝐸 − 4 2.82𝐸 − 4

5 64 9.36𝐸 − 5 7.09𝐸 − 5

should be noted that in the case of Haar wavelets we have
to solve systems of linear equations with a smaller condition
number as for other methods based on piecewise constant
approximation.
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