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A systematic theoretical basis is developed that optimizes an arbitrary number of variables for (i) modeling data and (ii) the
determination of stationary points of a function of several variables by the optimization of an auxiliary function of a single variable
deemed the most significant on physical, experimental or mathematical grounds from which all the other optimized variables may
be derived. Algorithms that focus on a reduced variable set avoid problems associated with multiple minima and maxima that
arise because of the large numbers of parameters. For (i), both approximate and exact methods are presented, where the single
controlling variable k of all the other variables P (𝑘) passes through the local stationary point of the least squares metric. For (ii), an
exact theory is developed whereby the solution of the optimized function of an independent variation of all parameters coincides
with that due to single parameter optimization of an auxiliary function.The implicit function theorem has to be further qualified to
arrive at this result. A nontrivial real world application of the above implicit methodology to rate constant and final concentration
parameter determination is made to illustrate its utility.This work is more general than the reduction schemes for conditional linear
parameters since it covers the nonconditional case as well and has potentially wide applicability.

1. Introduction

The following theory is a systematic development of all func-
tions covering properties of constrained and unconstrained
functions that are continuous and differentiable to various
specified degrees [1, 2] and the proof of the existence of
implicit functions [3] for the form of these functions to be
optimized. The implicit function theorem is applied in a
manner that requires further qualification because the opti-
mization problem is of an unconstrained kind without any
redundant variables. Methods (i)a,b (described in Sections 2
and 3, resp.) refer to modeling of data [4, Chapter 15, pages
773–806] where the form of the function 𝑄MD(P, 𝑘) with
independently varying variables (P, 𝑘) is

𝑄MD (P, 𝑘) =
𝑁
󸀠

∑
𝑖=1

(𝑦
𝑖
− 𝑓 (P, 𝑡

𝑖
, 𝑘))
2
, (1)

where 𝑦
𝑖
and 𝑡
𝑖
are datapoints and 𝑓 is a known function,

and optimizations of 𝑄MD may be termed a least squares

(LS) fit over parameters (P, 𝑘) which are independently
optimized for𝑁󸀠 datasets. Method (ii) focuses on optimizing
a general 𝑄

𝐸
(P, 𝑘) function, not necessarily LS in form.

There are many standard and hybrid methods to deal with
such optimization [4, Chapter 10], such as golden section
searches in 1D, simplex methods over multidimensions [4,
pages 499–525], steepest descent and conjugate methods
[5], and variable metric methods in multidimensions [4,
pages 521–525]. Hybrid methods include multidimensional
(DFP) secantmethods [6], BFGS secant optimization [7], and
RFO rational function optimization [8], which is a Newton-
Raphson technique utilizing a rational function rather than a
quadratic model for the function close to the solution point.
Global deterministic optimization schemes combine several
of the above approaches [9, Section 6.7.6]. Other physical
methods, perhaps less easy to justify analytically, include
probabilistic “basin-hopping” algorithms [9, Section 6.7.4],
simulated annealingmethods [10], and genetic algorithms [9,
page 346]. An analytical justification on the other hand is
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attempted here for these deterministic methods, but in real-
world applications some of the assumptions (e.g., C2 conti-
nuity, compactness of spaces) may not always be obtained.
For what follows, the distance metrics used are all Euclidean,
represented by | ⋅ | or ‖ ⋅ ‖, where det ‖ ⋅ ‖ represents the
determinant of the matrix ‖ ⋅ ‖. Reduction of the number of
variables to be optimized is possible in the standard matrix
regressionmodel only if conditional linear parameters𝛽 exist
[11], where these 𝛽 variables do not appear in the final 𝑆(𝜃)
expression of the least squares function (2) to be optimized,
whereas the 𝜙 nonconditional linear parameters do and are a
subset of the 𝜃 variables; for the existence of each conditional
linear parameter, there is a unit reduction in the number of
independent parameters to be optimized.These reductions in
variable number occur for any “expectation function” 𝑓(x, 𝜃)
which is the model or law for which a fitting is required,
where there are 𝑁 different datapoints x

𝑖
, 𝑖 = 1, 2, . . . , 𝑁

that must be used to determine the 𝑝 parameter variables 𝜃
[11, page 32, Chapter 2]. A conditionally linear parameter 𝜃

𝑖

exists if and only if the derivative of the expectation function
𝑓(x, 𝜃) with respect to 𝜃

𝑖
is independent of 𝜃

𝑖
. Clearly such a

condition may severely limit the number of parameters that
can be neglected for the expectation function variables when
the prescribed matrix regressional techniques are employed
[11, Section 3.5.5, page 85] where the residual sum of squares
is minimized:

𝑆 (𝜃) =
󵄩󵄩󵄩󵄩y − 𝜂(𝜃)

󵄩󵄩󵄩󵄩
2
. (2)

The𝑁-vectors 𝜂(𝜃) in 𝑃-dimensional space define the expec-
tation surface. If the 𝜃 variables are partitioned into the
conditional linear parameters 𝛽 and the other nonlinear
parameters 𝜙, then the response can be written 𝜂(𝛽,𝜙) =
A(𝜙)𝛽. Golub and Pereyra [12] used a standard Gauss-
Newton algorithm to minimise 𝑆

2
(𝜙) = ‖y − A(𝜙)𝛽̂(𝜙)‖

2

that depended only on the nonlinear parameters 𝜙, where
𝛽̂(𝜙) = A+(𝜙)y with A+ being a defined pseudoinverse
of A [11, Section 3.5.5, page 85], where A+ and A are
matrices. The variables must be separable as discussed above
and the number of variable reduction is only equal to
the number of conditional linear parameters that exists for
the problem. In applications, the preferred algorithm that
exploits this valuable variable reduction is called variable
projection. There are many applications in time resolved
spectroscopy that is heavily dependent on this technique and
many references to the method are given in the review by
van Stokkum et al. [13]. Recently this method of variable
projection has been extended in a restricted sense [14] in the
field of inverse problems, which is not related to our method
of either modeling or optimization, nor is the methodology
related to the implicit function properties. In short, much of
the reported methods developed are 𝑎𝑑 ℎ𝑜𝑐, meaning that
they are constructed to face the specific problems at hand
with no claim to overall generality and this work too is 𝑎𝑑 ℎ𝑜𝑐
in the sense of suggesting variable reduction with specific
classes of noninverse problems as indicated where the work
develops a method of reducing the variable number to unity
for all variables in the expectation function space irrespective
of whether they are conditional or not by approximating their

values by a method of averages (for method (i)a) without
any form of linear regression being used in determining
their approximations during the minimization iterations
and without necessarily using the standard matrix theory
that is valid for a very limited class of functions. Methods
(i)b and (ii) are on the other hand exact treatments. No
“elimination” of conditional linear parameters is involved in
this nonlinear regressionmethod.Nor is any projection in the
mathematical sense involved. These general methods could
have useful applications in deterministic systems comprising
many parameters that are all linked to one variable: the
primary one (denoted 𝑘 here) that is considered on physical
grounds to be the most significant. A generalization of this
method would be to select a smaller set of variables than the
full parameter list instead of just one variable as illustrated
here. Another tool that could be used in conjunction with
the reduced variable method is to employ the various search
algorithms that has been actively developed to the reduction
scheme developed here [15–19]. As far as we are aware,
these optimization methods for multivariable problems all
seem to mainly focus on various stochastic or deterministic
methods using discrete algorithms in some type of search
sequence of the domain space of the multivariable domain
space {P, 𝑘, 𝑡} as detailed below in more recent publications.
In other less ambitious works, the problem is narrowed to
the specific nature of the system where the object function
is specified and which is amenable to precise treatment, for
example [20, 21], with a well-defined domain space, without
variable reduction. In another context, quite different from
the current development, variable reduction has been applied
to DEA problems [22]. Other examples of multiparameter
complex systems include those for multiple-step elementary
reactions each with its own rate constant that gives rise to
photochemical spectra signals that must be resolved unam-
biguously [23], but these belong to the class of functions with
conditional linear parameters. The work here, on the other
hand, predominantly focuses on accurately determining the
range of the function to be optimized by reducing the space
of the domain. Hence, this method can be successfully com-
binedwith the usual domain searching techniquesmentioned
above to effectively locate stationary points by a two-pronged
approach. All these complex and coupled processes in phys-
ical theories are related by postulated laws 𝑌law(P, 𝑘, 𝑡) that
feature parameters (P, 𝑘). Other examples include quantum
chemical calculations with many topological and orientation
variables that need to be optimized with respect to the
energy, but in relation to one or a few variables, such as the
molecular trajectory parameter during a chemical reaction
where this variable is of primary significance in deciding
on the “reasonableness” of the analysis [9, Section 6.2.3,
page 294]. Methods (i)a and (i)b below refer to LS data-
fitting algorithms. Method (i)a is an approximate method
where it is proved under certain conditions; it could be a
more accurate determination of parameters compared to a
standard LS fit using (1). Method (i)b develops a technique
where the optimum value for 𝑄MD with domain values (P, 𝑘)
coincides with that of the standard LS method where the
(P, 𝑘) variables are varied independently. Also discussed are
the relative accuracy of both methods (i)a in Section 2.2
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and (i)b (endnote at end of Section 3). Method (ii) develops
a single parameter optimization where the conditions of
an arbitrary 𝑄OPT(P, 𝑘) function are met simultaneously;
namely,

𝜕𝑄OPT (𝑘)

𝜕𝑘
= 0 󳨀→ {

𝜕𝑄OPT (P, 𝑘)
𝜕P

= 0,
𝜕𝑄OPT (P, 𝑘)

𝜕𝑘
= 0} .

(3)

We note that methods (i)a, (i)b, and (ii) are not related
to the Adomian decomposition method and its variants
that expand polynomial coefficients [24] for solutions to
differential equations not connected to estimation theory;
indeed here there are no boundary values that determine the
solution of the differential equations.

2. Method (i)a Theory

This approximate method utilizes the average of the 𝑁
𝑐

unique solutions for each value of 𝑘 defined above, where the
form of the fitting function—a “law” of nature for instance—
is specified. Deterministic laws of nature are conveniently
written in the form

𝑌law = 𝑌law (P, 𝑘, 𝑡) , (4)

linking the variable 𝑌law to 𝑡. The components of P, 𝑃
𝑖
(𝑖 =

1, 2, . . . , 𝑁
𝑝
) and 𝑘 are parameters. Verification of a law of

form (4) relies on an experimental dataset {(𝑌exp(𝑡𝑖), 𝑡𝑖), 𝑖 =
1, 2, . . . , 𝑁}. The 𝑡 variable could be a vector of variable
components of experimentally measured values or a single
parameter as in the kinetics examples below where 𝑡

𝑖
denotes

values of time 𝑡 in the domain space. The vector form will
be denoted by x. Variables (x) are defined as members of
the “domain space” of the measurable system and similarly
𝑌law is the defined range or “response” space of the physical
measurement. Confirmation or verification of the law is based
on (a) deriving experimentally meaningful values for the
parameters (P, 𝑘) and (b) showing a good enough degree
of fit between the experimental set 𝑌exp(𝑡𝑖) and 𝑌law(𝑡𝑖). In
real world applications, to chemical kinetics, for instance,
several methods [25–28] and so forth have been devised to
determine the optimal (P, 𝑘) parameters, but most if not all
these methods consider the aforementioned parameters as
autonomous and independent (e.g., [26]). A similar scenario
broadly holds for current state-of-the-art applications of
structural elucidation via energy functions [9, Chapsters
4, 6]. To preserve the viewpoint of the interrelationship
between these parameters and the experimental data, we
devise schemes that relate P to 𝑘 for all 𝑃

𝑖
via the set

{𝑌exp(𝑡𝑖), 𝑡𝑖} and optimize the fit over 𝑘-space only. That is
there is induced a𝑃

𝑖
(𝑘) dependency on 𝑘 via the experimental

set {𝑌exp(𝑡𝑖), 𝑡𝑖}. The conditions that allow for this will also be
stated for the different methods.

2.1. Details of Method (i)a. Let 𝑁
𝑝
be the number of com-

ponents of the P parameter, 𝑁󸀠 the number of dataset pairs
(𝑌exp(𝑡𝑖), 𝑡𝑖), and 𝑁𝑠 the number of singularities where the
use of a particular dataset (𝑌exp, 𝑡) leads to a singularity in

the determination of 𝑃
𝑖
(𝑘) as defined below and which must

be excluded from being used in the determination of 𝑃
𝑖
(𝑘).

Then (𝑁
𝑝
+ 1) ≤ (𝑁 − 𝑁

𝑠
) for the unique determination

of {P, 𝑘}. Let 𝑁
𝑐
be the total number of different datasets

that can be chosen which does not lead to singularities.
If the singularities are not choice dependent, that is, a
particular dataset pair leads to singularities for all possible
choices, then we have the following definition for 𝑁

𝑐
where

𝑁−𝑁
𝑠𝐶
𝑁
𝑝

= 𝑁
𝑐
is the total number of combinations of the

data-sets {𝑌exp(𝑡𝑖), 𝑡𝑖} taken𝑁𝑝 at a time that does not lead to
singularities in 𝑃

𝑖
. In general,𝑁

𝑐
is determined by the nature

of the datasets and the way in which the proposed equations
are to be solved. Write 𝑌law in the form

𝑌law (𝑡, 𝑘) = 𝑓 (P, 𝑡, 𝑘) , (5)

and for a particular dataset {𝑌exp(𝑡𝑖), 𝑡𝑖}, write 𝑓(𝑖) ≡

𝑓(P, 𝑡
𝑖
, 𝑘). Define the vector function fg with components

𝑓
𝑔
(𝑖) ≡ Yexp(𝑡𝑖) − 𝑓(𝑖) = 𝑓𝑔(𝑖)(P, 𝑘). Assume fg ∈ C1 defined

on an open set 𝐾
0
that contains 𝑘

0
.

Lemma 1. For any 𝑘
0
such that det ‖𝜕𝑓

𝑔
(𝑖)(P, 𝑘

0
)/𝜕𝑃
𝑗
‖ ̸=

0, ∃ the unique function P(𝑘) ∈ C1(𝑤𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
𝑃
𝑖
(𝑘) ⋅ ⋅ ⋅ 𝑃

𝑁
𝑐

(𝑘)) defined on 𝐾
0
where P(𝑘

0
) = P0, and where

fg(P(𝑘), 𝑘) = 0 for every 𝑘 ∈ 𝐾0.

Proof. The above follows from the implicit function theorem
(IFT) [3, Theorem 13.7, page 374] where 𝑘 ∈ 𝐾

0
is the inde-

pendent variable for the existence of the P(𝑘) function.

We seek the solutions for P(𝑘) subject to the above
conditions for our defined functions. Map 𝑓 → 𝑌th(P, 𝑡, 𝑘)
as follows:

𝑌th (𝑡, 𝑘) = 𝑓 (P, 𝑡, 𝑘) , (6)

where the term P and its components are defined below and
where 𝑘 is a varying parameter. For any of the (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑁
𝑝

)

combinations denoted by a combination variable 𝛼 ≡

(𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑁
𝑝

) where 𝑖
𝑗
≡ (𝑌exp(𝑡𝑖

𝑗

), 𝑡
𝑖
𝑗

) is a particular dataset
pair, it is in principle possible to solve for the components ofP
in terms of 𝑘 through the following simultaneous equations:

𝑌exp (𝑡𝑖
1

) = 𝑓 (P, 𝑡
𝑖
1

, 𝑘) ,

𝑌exp (𝑡𝑖
2

) = 𝑓 (P, 𝑡
𝑖
2

, 𝑘) ,

...

𝑌exp (𝑡𝑖
𝑁𝑝

) = 𝑓 (P, 𝑡
𝑖
𝑁𝑝

, 𝑘) ,

(7)

from Lemma 1. And each 𝛼 choice yields a unique solution
𝑃
𝑖
(𝑘, 𝛼) (𝑖 = 1, 2, . . . , 𝑁

𝑝
), where 𝑃

𝑖
(𝑘, 𝛼) ∈ C1. Hence any

function of 𝑃
𝑖
(𝑘, 𝛼) involving addition and multiplication is

also in C1. For each 𝑃
𝑖
, there will be 𝑁

𝑐
different solutions,

𝑃
𝑖
(𝑘, 1), 𝑃

𝑖
(𝑘, 2), . . . , 𝑃

𝑖
(𝑘,𝑁
𝑐
). We can define an arithmetic
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mean (there are several possible mean definitions that can be
utilized) for the components of P as

𝑃
𝑖 (𝑘) =

1

𝑁
𝑐

𝑁
𝑐

∑
𝑗=1

𝑃
𝑖
(𝑘, 𝑗) . (8)

In choosing an appropriate functional form for P (8) we
assumed equal weightage for each of the dataset combina-
tions; however, the choice is open, based on appropriate
physical criteria. We verify below that the choice of P(𝑘)
satisfies the constrained variation of the LS method so as to
emphasize the connection between the level-surfaces of the
unconstrained LS with the line function P(𝑘).

Each 𝑃
𝑖
(𝑘, 𝑗) is a function of 𝑘 whose derivative is known

either analytically or by numerical differentiation. To derive
an optimized set, then for the LS method, define

𝑄 (𝑘) =

𝑁
󸀠

∑

𝑖=1
󸀠

(𝑌exp(𝑡𝑖) − 𝑌th(𝑘, 𝑡𝑖))
2

. (9)

Then for an optimized 𝑘, we have 𝑄󸀠(𝑘) = 0. Defining

𝑅 (𝑘) = 𝑐 ⋅

𝑁
󸀠

∑

𝑖=1
󸀠

(𝑌exp (𝑡𝑖) − 𝑌th (𝑘, 𝑡𝑖)) ⋅ 𝑌
󸀠

th (𝑘, 𝑡𝑖) , (10)

the optimized solution of 𝑘 corresponds to 𝑅(𝑘) = 0

which has been reduced to a one-dimensional problem. The
standard LS variation on the other hand states that the
variables 𝑃

𝑇
= {P, 𝑘} in (5) are independently varied so that

𝑄
𝑇
(𝑃
𝑇
) =

𝑁
󸀠

∑
𝑖=1

(𝑌exp(𝑡𝑖) − 𝑓(𝑃𝑇, 𝑡𝑖))
2

, (11)

with solutions for 𝑄
𝑇
in terms of 𝑃

𝑇
whenever 𝜕𝑄

𝑇
/𝜕𝑃
𝑇
=

0. Of interest is the relationship between the single variable
variation in (9) and the total variation in (11). Since P is a
function of 𝑘, then (11) is a constrained variation where

𝛿𝑄 (𝑘) = 𝛿𝑄 (P, 𝑘) = (𝜕𝑄
𝜕P

⋅ 𝛿P + 𝜕𝑄
𝜕𝑘
) , (12)

subjected to 𝑔
𝑖
(P, 𝑘) = 𝑃

𝑖
− ℎ
𝑖
(𝑘) = 0 (i.e., 𝑃

𝑖
= ℎ
𝑖
(𝑘)

for some function of 𝑘) and where 𝑃
𝑖
are the components of

P. According to the Lagrange multiplier theory [3, Theorem
13.12, page 381] the function 𝑓 : R𝑛 → R has an optimal
value at 𝑥

0
subject to the constraints 𝑔 : R𝑛 → R𝑚 over the

subset 𝑆 where g = (𝑔
1
, 𝑔
2
⋅ ⋅ ⋅ 𝑔
𝑚
) vanishes; that is, 𝑥

0
∈ 𝑋
0
,

where 𝑋
0
= {𝑥 : 𝑥 ∈ 𝑆, g(𝑥) = 0} when either of the

following equivalent equations ((13), (14)) are satisfied:

𝐷
𝑟
𝑓 (𝑥
0
) +

𝑚

∑
𝑘=1

𝜆
𝑘
𝐷
𝑟
𝑔
𝑘
(𝑥
0
) = 0 (𝑟 = 1, 2, . . . , 𝑛) , (13)

∇𝑓 (𝑥
0
) + 𝜆
1
∇𝑔
1
(𝑥
0
) + ⋅ ⋅ ⋅ + 𝜆

𝑚
∇𝑔
𝑚
(𝑥
0
) = 0, (14)

where det ‖𝐷
𝑗
𝑔
𝑖
(𝑥
0
)‖ ̸= 0 and the 𝜆’s are invariant real

numbers. We refer to 𝑃
𝑖
as any variable that is a function of

𝑘 constructed on physical or mathematical grounds, and not
just to the special case defined in (8). Write

𝑔
𝑖
= 𝑃
𝑖
− ℎ
𝑖 (𝑘) = 0 (𝑖 = 1, 2, . . . , 𝑁

𝑝
) , (15)

where 𝐷
𝑗
𝑔
𝑖
(𝑥
0
) = 𝛿

𝑖𝑗
since 𝐷

𝑗
= 𝜕/𝜕𝑃

𝑗
and therefore

det ‖𝐷
𝑗
𝑔
𝑖
(𝑥
0
)‖ ̸= 0. We abbreviate the functions 𝑓(𝑖) =

𝑓(P, 𝑡
𝑖
, 𝑘) and 𝑓(𝑖) = 𝑓(P, 𝑡

𝑖
, 𝑘). Define

𝑓
𝑄 (𝑥) ≡ 𝑄 (P, 𝑘, 𝑡) =

𝑁
󸀠

∑

𝑖=1
󸀠

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖))
2

, (16)

where 𝑌exp(𝑡𝑖) are the experimental subspace variables as in
(7) with 𝑥 ∈ 𝑋

0
defined above. We next verify the relation

between 𝑄(𝑘) and 𝑄
𝑇
.

Verification. The solution 𝑄󸀠(𝑘) = 𝑅(𝑘) = 0 of (10) is
equivalent to the variation of 𝑓

𝑄
(𝑥) defined in (16) subjected

to constraints 𝑔
𝑖
of (15).

Proof. Define the Lagrangian to the problem asL = 𝑓
𝑄
(𝑥) +

∑
𝑁
𝑝

𝑖=1
𝜆
𝑖
𝑔
𝑖
. Then the equations that satisfy the stationary

condition
𝜕L

𝜕𝑃
𝑗

= 0, 𝑗 = 1, 2, . . . , 𝑁
𝑝
;

𝜕L

𝜕𝑘
= 0 (17)

reduce to the (equivalent) simultaneous equations

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖))
𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

= 𝜆
󸀠

𝑗
, 𝑗 = 1, 2, . . . , 𝑁

𝑝
, (18)

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖))
𝜕𝑓 (𝑖)

𝜕𝑘
+

𝑁
𝑝

∑
𝑗=1

𝜆
󸀠

𝑗

𝜕𝑝
𝑗

𝜕𝑘
= 0. (19)

Substituting 𝜆󸀠
𝑗
in (18) to (19) leads to

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖))
𝜕𝑓 (𝑖)

𝜕𝑘

+

𝑁
𝑝

∑
𝑗=1

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖)) ⋅
𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

⋅
𝜕𝑝
𝑗

𝜕𝑘
= 0.

(20)

Since 𝑑𝑃
𝑖
/𝑑𝑘 = 𝜕𝑝

𝑖
/𝜕𝑘, then (20) implies 𝑑𝑄(P, 𝑘, 𝑡)/𝑑𝑘 = 0

for the 𝑄 functions in (11), (12), and (16).

Of interest is the theoretical relationship of the (P, 𝑘)
variables of the 𝑄 functions described by (9), (12), (16)
denoted 𝑄

1
and those of the freely varying 𝑄 function of (1)

denoted 𝑄
2
with the variable set which can be written as

𝑄
1
= 𝑄 (P, 𝑡, 𝑘) , (21)

𝑄
2
= 𝑄 (P, 𝑡, 𝑘) , (22)

which is given by the following theorem, where we abbreviate
𝛼
𝑖
= (𝑌exp(𝑡𝑖) − 𝑓(P, 𝑡𝑖, 𝑘)) and 𝛼𝑖 = (𝑌exp(𝑡𝑖) − 𝑓(P, 𝑡𝑖, 𝑘)),

where we note that the 𝑓 functional form is unique and is of
the same form for both these 𝛼 variables.
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Theorem 2. The unconstrained LS solution to 𝑄
2
= 𝑄(P, 𝑘, 𝑡)

for the independent variables {P, 𝑘} is also a solution for the
constrained variation single variable 𝑘󸀠, where P = P(𝑘󸀠), 𝑘 =
𝑘󸀠. Further, the two solutions coincide if and only if

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (P, 𝑡𝑖, 𝑘))
𝜕𝑓 (P, 𝑡

𝑖
, 𝑘)

𝜕𝑃
𝑗

= 0,

𝑗 = 1, 2, . . . , 𝑁
𝑝
.

(23)

Proof. The 𝑄
2
unconstrained solution is derived from the

equations

𝜕𝑄
2

𝜕𝑃
𝑗

= 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

= 0, 𝑗 = 1, 2, . . . , 𝑁
𝑝
, (24)

𝜕𝑄
2

𝜕𝑘
= 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑘
= 0, (25)

with 𝑐 being constants. If there is a P(𝑘) dependency, then we
have

𝑑𝑄
1 (𝑘)

𝑑𝑘
= 𝑐 ⋅

𝑁
𝑝

∑
𝑗=1

(

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

)
𝜕𝑃
𝑗

𝜕𝑘
+ 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑘
.

(26)

If the variable set {P, 𝑘} satisfies (24) and (25) in uncon-
strained variation, then the values when substituted into (26)
satisfy the equation 𝑑𝑄

1
(𝑘)/𝑑𝑘 = 0 since 𝑓(𝑖) and 𝑓(𝑖)

are the same functional form. This proves the first part of
the theorem. The second part follows from the converse
argument, where from (26), if 𝑑𝑄

1
(𝑘)/𝑑𝑘 = 0, then setting

one factor to zero in (27) leads to the implication of (28)

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

= 0, 𝑗 = 1, 2, . . . , 𝑁
𝑝
, (27)

󳨐⇒

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑘
= 0, (28)

which is the solution set {P(𝑘󸀠), 𝑘󸀠} which satisfies
𝑑𝑄
1
(𝑘)/𝑑𝑘 = 0 and is satisfied by the conditions of

both (27) and (28). Then (27) satisfies (24) and (28) satisfies
(25).

The theorem, verification, and lemma above do not
indicate topologically under what conditions a coincidence
of solutions for the constrained and unconstrained mod-
els exists. Figure 1 depicts the discussion below. From
Theorem 2, if set 𝐴 represents the solution {P, 𝑘} for the
unconstrained LS method and set 𝐵 = {P, 𝑘󸀠} for the
constrained method, then 𝐵 ⊇ 𝐴. Define 𝑘 within the range
𝑘
1
≤ 𝑘 ≤ 𝑘

2
. Then 𝑘 is in a compact space, and since P(𝑘) ∈

C1, P(𝑘) is uniformly continuous [2, Theorem 8, page 79].
Then admissible solutions to the above constraint problem
with the inequality 𝐵 ⊇ 𝐴 imply𝑄(P(𝑘)) ≥ 𝑄min, where𝑄min

QT(P, k)

QT(Pi, P0/Pi, k)

Q = s1

Q = s2

Q = s3

Pi

(P(k), k)

QT(P0, k0) = Qmin

(P0, k0)

Pi,0 + ΔPi
Pi,0 + ΔP

󳰀
i

Q(k)

Figure 1: Depiction of how the 𝑘 variation optimizing 𝑄 leads to a
solution on a level surface of the 𝑄

𝑇
function where 𝑄

𝑇
≤ 𝑄.

is the unconstrained minimum. The unconstrained 𝑄 = 𝑄
𝑇

LS function to be minimized in (11) implies

∇𝑄 = 0, (
𝜕𝑄

𝜕𝑘
=
𝜕𝑄

𝜕𝑃
𝑖

= 0, for 𝑖 = 1, 2, . . . , 𝑁
𝑝
) . (29)

Defining the constrained function 𝑄
𝑐
(𝑘) =

∑
𝑁
󸀠

𝑖=1
(𝑌exp(𝑖) − 𝑓(P(𝑘), 𝑡𝑖, 𝑘))

2, then 𝑄
𝑐
(𝑘) = 𝑄 ∘ 𝑃

𝑇
where

𝑃
𝑇

= (𝑃
1
(𝑘), 𝑃
2
(𝑘), . . . , 𝑃

𝑁
𝑝

(𝑘), 𝑘)
𝑇. Because 𝑄󸀠

𝑐
(𝑘) =

(𝜕𝑄/𝜕P, 𝜕𝑄/𝜕𝑘) ⋅ (𝑃󸀠
1
(𝑘) ⋅ ⋅ ⋅ 𝑃

𝑁
𝑝

(𝑘), 𝑘)
𝑇, solutions occur

when (i) ∇𝑄 = 0 corresponding to the coincidence of the
local minimum of the unconstrained 𝑄 for the best choice
for the line with coordinates (P(𝑘), 𝑘) as it passes through
the local unconstrained minimum and (ii) 𝑃󸀠

𝑖
(𝑘) = 0,

(𝑖 = 1, 2, . . . , 𝑁
𝑝
), 𝜕𝑄/𝜕𝑘 = 0 where this solution is a

special case of (iii) when the vector 𝑃󸀠
𝑇
is ⊥ to ∇𝑄 ̸= 0;

that is, 𝑃󸀠
𝑇
is at a tangent to the surface 𝑄 = 𝑆

2
for some

𝑆
2
≥ 𝑄min where this situation is shown in Figure 1, where

the vector is tangent at some point of the surface 𝑄
𝑇
= 𝑆
2
.

Whilst the above characterizes the topology of a solution
only, the existence of a solution for the line (P(𝑘), 𝑘) which
passes through the point of the unconstrained minimum
of 𝑄
𝑇
is proven below under certain conditions where a set

of equations are constructed to allow for this significant
application that specifies the conditions when the standard
LS constrained variation solution implies the same solution
as for the unconstrained variation. Also discussed is the case
when it may be possible for unconstrained solution set 𝑈
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to satisfy the inequality 𝑄
𝑐
(𝑈) ≥ 𝑄

𝑐
, where 𝑄

𝑐
is a function

designed to accommodate all solutions of (7), as given below
in (30).

2.2. Discussion of LS Fit for a Function 𝑄
𝑐
with a Possibility

of a Smaller LS Deviation than for {P, 𝑘} Parameters Derived
from a Free Variation of (11). The LS function metric such
as (11) implied 𝑄(P, 𝑘) ≤ 𝑄(P, 𝑘) at a stationary (minimum)
point for variables (P, 𝑘). On the other hand, the sets of
solutions of (7) denoted {}

𝑖
,𝑁
𝑐
in number provides for each

set exact solutions P(𝑘) averaged to P(𝑘) using (8). If the {P
𝑖
},

𝑖 = 1, 2, . . . , 𝑁
𝑐
solutions are in a 𝛿-neighbourhood, then we

examine the possibility that the composite functionmetric to
be optimized over all the sets of equations {}

𝑖
,𝑁
𝑐
in number

defined here as

𝑄
𝑐 (P, 𝑘) = ∑

𝑖∈{}
1
,{}
2
⋅⋅⋅{}
𝑁𝑐

(𝑌exp − 𝑓(𝑖))
2

, (30)

could be such that

𝑄
𝑐
(P
𝑇
, 𝑘) ≥ 𝑄

𝑐
(P, 𝑘) , (31)

where (P
𝑇
, 𝑘) is the unconstrained optimized value of (22).

This implies that under these conditions, the 𝑄
𝑐
of (30) is

a better measure of fit. This will be proven to be the case
under certain conditions below. For what follows, the P(𝑘)

{}
𝑖

for equation set {}
𝑖
obtains for all 𝑘 values of the open set

S, 𝑘 ∈ S, from the IFT, including 𝑘
0
which minimises (9).

Another possibility that will be discussed briefly later is where
in (30), all {P, 𝑘} are free to vary. Here we consider the case
of the 𝑁

𝑐
P values averaged to P for some 𝑘. We recall the

intermediate-value theorem (IVT) [3, Theorem 4.38, page
87] for real continuous functions 𝑓 defined over a connected
domain 𝑆 which is a subset of some R𝑛. We assume that the
𝑓 functions immediately below obey the IVT. For each {P

𝑖
}

solution of the {}
𝑖
set for a specific 𝑘 = 𝑘

0
we assume that the

function 𝑄
𝑐,𝑖
(P) is a strictly increasing function in the sense

of definition (7) below, where

𝑄
𝑐,𝑖 (P) = ∑

𝑗∈{}
𝑖

(𝑌exp(𝑗) − 𝑓(𝑗))
2

, (32)

with 𝑄
𝑐,𝑖
(P)(𝑘
0
) = 0, in the following sense.

Definition 3. A real function 𝑓 is (strictly) increasing in a
connected domain 𝑆 ∈ R𝑁 about the origin at 𝑟

0
if relative

to this origin, if |𝑟
2
| > |𝑟

1
| (for the boundaries 𝜕 of ball

𝐵(𝑟
0
, 𝑟
1
) and 𝐵(𝑟

0
, 𝑟
2
)) implies both max 𝑓(𝜕𝐵(𝑟

0
, 𝑟
2
))(>) ≥

max𝑓(𝜕𝐵(𝑟
0
, 𝑟
1
)) and min𝑓(𝜕𝐵(𝑟

0
, 𝑟
2
))(>) ≥

min𝑓(𝜕𝐵(𝑟
0
, 𝑟
1
)).

Note. A similar definition is obtained for a (strictly) decreas-
ing function with the (<) ≤ inequalities. Since the 𝜕𝐵
boundaries are compact and 𝑓 is continuous, the maximum
and minimum values are attained for all ball boundaries.
We assume 𝑓 to be strictly increasing relative to 𝑟

0
for what

follows below.

Lemma4. For any region bounded by 𝜕𝐵(𝑟
0
, 𝑟
1
) and 𝜕𝐵(𝑟

0
, 𝑟
2
)

with coordinate r (radius 𝑟 centered about coordinate 𝑟
0
),

min𝑓 (𝜕𝐵 (𝑟
0
, 𝑟
1
)) < 𝑓 (r) < max𝑓 (𝜕𝐵 (𝑟

0
, 𝑟
2
)) . (33)

Proof. Suppose in fact 𝑓(r) < min𝑓(𝜕𝐵(𝑟
0
, 𝑟
1
)); then

min𝑓 (𝜕𝐵 (𝑟
0
, 𝑟)) < min𝑓 (𝜕𝐵 (𝑟

0
, 𝑟
1
)) (𝑟 > 𝑟

1
) (34)

which is a contradiction to the definition and a similar proof
is obtained for the upper bound.

Note. Similar conditions apply for the nonstrict inequalities
≤, ≥.

The function that is optimized is

𝑄
𝑐 (P) =

𝑁
𝑐

∑
𝑖=1

𝑄
𝑐,𝑖 (P) . (35)

Define P
𝑖
as the solution vector for the equation set {}

𝑖
.

We illustrate the conditions where the solution P
𝑇
for a

free variation for the 𝑄 metric given in (11) can fulfill the
inequality where 𝑄

𝑐
is as defined in (35)

𝑄
𝑐
(P
𝑇
) ≥ 𝑄

𝑐
(P) (36)

withP given as in (8). A preliminary result is required. Define
max ‖P

𝑖
− P
𝑗
‖ = 𝛿, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁

𝑐
and 𝛿P

𝑖
= P − P

𝑖
.

Lemma 5. ‖𝛿P
𝑖
‖ ≤ 𝛿.

Proof.

󵄩󵄩󵄩󵄩󵄩
P − P
𝑖

󵄩󵄩󵄩󵄩󵄩
=
1

𝑁
𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑞

P
𝑞
− 𝑁
𝑐
P
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑁
𝑐

𝑁
𝑐

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
P
𝑗
− P
𝑖

󵄩󵄩󵄩󵄩󵄩
≤ 𝛿.

(37)

Lemma 6. 𝑄
𝑐
(P
𝑇
, 𝑘) > 𝑄

𝑐
(P, 𝑘) for 𝛿 < ‖P

𝑇
− P
𝑖
‖ < 𝛿

𝑇
for

some 𝛿
𝑇
.

Proof. Any point P would be located within a spherical
annulus centered at P

𝑖
, with radii chosen so that by Lemma 4,

we have the following results:

𝜖max,𝑖 > 𝑄𝑐,𝑖 (P) > 𝜖min,𝑖, (38)

where 𝑓 = 𝑄
𝑐,𝑖

in (32). Choose 𝛿
𝑖
so that 𝛿

𝑖
< ‖𝛿P

𝑖
‖ < 𝛿.

Define Ann(𝛿, 𝛿
𝑖
,P
𝑖
) as the space bounded by the boundary

of the balls centered onP
𝑖
of radius 𝛿 and 𝛿

𝑖
(𝛿 > 𝛿

𝑖
).ThenP ∈

Ann(𝛿, 𝛿
𝑖
,P
𝑖
) by Lemma 5. Since 𝑄

𝑐
in (30) is not equivalent

to𝑄
𝑇
= 𝑄 in (11) where wewrite here the free variation vector

solution as P
𝑇
, then the above results lead to the following:

𝑁
𝑐

∑
𝑖=1

𝜖min,𝑖 < 𝑄𝑐 (P) =
𝑁
𝑐

∑
𝑖=1

𝑄
𝑐,𝑖
(P) <

𝑁
𝑐

∑
𝑖=1

𝜖max,𝑖, (39)

𝜖max,𝑖 < 𝑄𝑐,𝑖 (P𝑇) < 𝜖𝑇,𝑖, (40)

where (40) follows from (33). Summing (40) leads to
𝑄
𝑐
(P
𝑇
, 𝑘) > 𝑄

𝑐
(P, 𝑘).
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Hence we have demonstrated that it may bemore realistic
or accurate to fit parameters based on a function that
represents different coupling sets such as𝑄

𝑐
above rather than

the standard LS method using (30) if P
𝑇
lies sufficiently far

away from P. We note that if P
𝑇
is the solution of the free

variation of the above 𝑄
𝑐
in (30), then from the arguments

presented after the proof of Theorem 2, it follows that

𝑄
𝑐
(P
𝑇
) ≤ 𝑄

𝑐
(P) , (41)

which implies that the independent variation of all param-
eters in LS optimization of the 𝑄

𝑐
variation is the most

accurate functional form to use assuming equal weighting of
experimental measurements than the standard free variation
of parameters using the 𝑄 function of (11).

3. Method (i)b Theory

Whilst it is advantageous in science data analysis to optimize
a particular multiparameter function by focusing on a few
key variables (our 𝑘 variable of restricted dimensionality,
which we have applied to a 1-dimensional optimization in
the next section), it has been shown that this method yields
a solution that is always of higher value for the same 𝑄
function than a full, independent parameter optimization,
meaning that it is less accurate. The key issue, therefore, is
whether for any𝑄 function, including those of the𝑄

𝑐
variety,

it is possible to construct a 𝑘 parameter optimization such
that the line of parameter variables P(𝑘) passes through the
minimum surface of the 𝑄 function. We develop a theory to
construct such a function below. However, method (i)a may
still be advantageous because of the greater simplicity of the
equations to be solved, and the fact that C1𝑓(𝑖) functions
were required, whereas here the 𝑓(𝑖) functions must be at
leastC2 continuous.

Theorem 7. For the 𝑄
𝑇
(P, 𝑘) function defined in (11), where

each of the 𝑓(𝑖) functions is C2 on an open set R𝑁𝑝+1 and
where 𝑄

𝑇
is convex, the solution at any point 𝑘 of 𝜕𝑄

𝑇
/𝜕𝑃
𝑗
=

0, (𝑗 = 1, 2, . . . , 𝑁
𝑝
) whenever det‖𝜕QT/𝜕Pi𝜕Pj‖ ̸= 0 at

(𝑑𝑄
𝑇
/𝑑𝑘)(𝑘󸀠) = 0 determines uniquely the line equation P(𝑘)

that passes the minimum of the function 𝑄
𝑇
when 𝑘 = 𝑘󸀠.

Proof. As before 𝑓(𝑖) = 𝑓(P, 𝑡
𝑖
, 𝑘), so that

𝑄
𝑇
= 𝑄 (P, 𝑘) =

𝑁
󸀠

∑
𝑖=1

(𝑌exp(𝑡
𝑖
)
− 𝑓 (𝑖))

2

. (42)

Define 𝜕𝑓(𝑖)/𝜕𝑃
𝑗
= 𝑓(𝑖, 𝑗), 𝛼

𝑘
= 𝑌exp(𝑡𝑘) − 𝑓(𝑘) and for an

independent variation of the variables (P, 𝑘) at the stationary
point, we have

𝜕𝑄
𝑇

𝜕𝑃
𝑗

= ℎ
𝑗 (P, 𝑘) = 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖)) 𝑓 (𝑖, 𝑗) = 0,

𝑗 = 1, 2, . . . , 𝑁
𝑝
,

(43)

𝜕𝑄
𝑇

𝜕𝑘
= 𝐼 (P, 𝑘) = 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑘
= 0. (44)

The above results for the functions ℎ
𝑗
(P, 𝑘) = 0 (𝑗 =

1, 2, . . . , 𝑁
𝑝
) having a unique implicit function of 𝑘, denoted

P(𝑘) by the IFT [3, Theorem 13.7, page 374], require that
det ‖𝜕ℎ

𝑖
(P, 𝑘)/𝜕𝑃

𝑗
‖ = det ‖𝜕𝑄

𝑇
/𝜕𝑃
𝑗
𝜕𝑃
𝑖
‖ ̸= 0 on an open

set 𝑆, 𝑘 ∈ 𝑆. More formally, the expansion of the preceding
determinant in (45) verifies that a symmetric matrix is
obtained for 𝜕ℎ

𝑖
(P, 𝑘)/𝜕𝑃

𝑗
due to the commutation of second-

order partial derivatives of 𝑃
𝑗

𝜕ℎ
𝑖 (P, 𝑘)
𝜕𝑃
𝑗

= 𝑐 ⋅

𝑁
󸀠

∑
𝑙

(𝛼
𝑘

𝜕2𝑓 (𝑙)

𝜕𝑃
𝑗
𝜕𝑃
𝑖

−
𝜕𝑓 (𝑙)

𝜕𝑃
𝑗

⋅
𝜕𝑓 (𝑙)

𝜕𝑃
𝑖

) . (45)

Defining𝑄
1
(𝑘) as a function of 𝑘 only by expanding𝑄

𝑇
yields

the total derivative with respect to 𝑘 as 𝑄󸀠
1
(𝑘), where

𝑄
1 (𝑘) =

𝑁
󸀠

∑
𝑖

(𝛼
𝑖
)
2
, (46)

𝑄
󸀠

1
(𝑘) = 𝑐 ⋅

𝑁
𝑝

∑
𝑗=1

𝑑𝑃
𝑗

𝑑𝑘
⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

+ 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑘
. (47)

Then ℎ
𝑖
(P, 𝑘) = 0 by construction (43) so that 𝜕𝑄

𝑇
/𝜕𝑃
𝑗
=

0 (𝑗 = 1, 2, . . . , 𝑁
𝑝
) and (43) implies ∑𝑁

󸀠

𝑖=1
𝛼
𝑖
(𝜕𝑓(𝑖)/𝜕𝑃

𝑗
) = 0

(for all 𝑗) and hence

(
𝑑𝑃
𝑗

𝑑𝑘
⋅

𝑁
󸀠

∑
𝑖=1

𝛼
𝑖

𝜕𝑓 (𝑖)

𝜕𝑃
𝑗

) = 0. (48)

Substituting (48) derived from (43) and (44) into (47)
together with the condition 𝑄󸀠

1
(𝑘) = 0 implies that 𝑐 ⋅

∑
𝑁
󸀠

𝑖=1
𝛼
𝑖
(𝜕𝑓(𝑖)/𝜕𝑘) = 0, which satisfies (44) for the free

variation in 𝑘. Thus, 𝑄󸀠
1
(𝑘) = 0 ⇒ 𝛿𝑄

𝑇
= 0 for independent

variation of (P, 𝑘). So 𝑄
𝑇
fulfills the criteria of a stationary

point at say 𝑘 = 𝑘
0
, since ∇P,𝑘𝑄𝑇 = 0 ([2, Proposition 16,

page 112]). Suppose that 𝑄
𝑇
is convex, where 𝑃

𝑇
= {P
0
, 𝑘
0
} is

a minimum point, 𝑃
𝑇
∈ 𝐷, a convex subdomain of 𝑄

𝑇
. Then

at 𝑃
𝑇
, ∇P,𝑘𝑄𝑇 = 0, and 𝑃𝑇 is also the unique global minimum

over 𝐷 according to [1, Theorem 3.2, page 46]. Thus 𝑃
𝑇
is

unique, whether derived from a free variation of (P, 𝑘) or via
𝑃(𝑘) dependent parameters with the 𝑄

1
function.

Note. As before, 𝑄
𝑇

and 𝑄
1
may be replaced with the

summation of indexes as for 𝑄
𝑐
in (30) to derive a physically

more accurate fit.

4. Method (ii) Theory

Methods (i)a and (i)b which are mutual variants of each
other are applications of the implicit method to modeling
problems to provide a best fit to a function. Here, another
variant of the implicit methodology for optimization of a
target or cost function 𝑄

𝐸
is presented. One can for instance

consider 𝑄
𝐸
(P, 𝑘) to be an energy function with coordinates

R = {P, 𝑘}, where as before the components of P are 𝑃
𝑗
, 𝑗 =

1, 2, . . . , 𝑁
𝑝
, 𝑘 ∈ R is another coordinate so that R ∈ R𝑁𝑝+1.
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For bounded systems, (such as the molecular coordinates),
one can write

𝑙min,𝑖 ≤ 𝑃𝑖 ≤ 𝑙max,𝑖, 𝑖 = 1, 2, . . . , 𝑁
𝑝
;

𝑙min,𝑘 ≤ 𝑘 ≤ 𝑙max,𝑘.
(49)

Thus, R ∈ D ⊂ R𝑁𝑝+1 is in a compact spaceD. Define

𝜕𝑄
𝐸

𝜕𝑃
𝑗

= 𝑜
𝑗 (P, 𝑘) , 𝑗 = 1, 2, . . . , 𝑁

𝑝
, (50)

𝜕𝑄
𝐸

𝜕𝑘
= 𝜅 (P, 𝑘) . (51)

Then the equilibrium conditions become

𝑜
𝑗 (P, 𝑘) = 0,

𝜅 (P, 𝑘) = 0.
(52)

Take (50) as the defining equations for 𝑜
𝑗
(P, 𝑘) which is

specified by 𝑄
𝐸
in (50) which casts it in a form compatible

with the IFT where some further qualification is required for
(P, 𝑘). Assume 𝑄

𝐸
is C2 onD, and det ‖𝜕𝑜

𝑖
/𝜕𝑃
𝑗
‖ ̸= 0, where

𝜕𝑜
𝑖
/𝜕𝑃
𝑗
≡ 𝜕2𝑄

𝐸
/𝜕𝑃
𝑗
𝜕𝑃
𝑖
. The matrix of the aforementioned

determinant is symmetric, partaking of the properties due to
this fact. Then by the IFT [3, Theorem 13.7, page 374], ∃ is a
unique P(𝑘) function where for some 𝑘

0
, 𝑜
𝑗
(P(𝑘
0
), 𝑘
0
) = 0,

𝑜
𝑗
∈ C1 on T

0
with (T

0
× R) ⊆ D and 𝑘

0
∈ T
0
such

that 𝑜
𝑗
(P(𝑘), 𝑘) = 0 for all 𝑘 ∈ T

0
. For 𝑘 an isolated point

𝑘 = 𝑘
𝑜
, from analysis, we find 𝑘 to be still open. Write

𝑄
𝐸,1
(𝑘) = 𝑄

𝐸
(P(𝑘), 𝑘), and 𝑄󸀠

𝐸,1
(𝑘) = 𝑑𝑄

𝐸,1
/𝑑𝑘, so that

𝑑𝑄
𝐸,1

𝑑𝑘
=

𝑁
𝑝

∑
𝑗=1

(
𝜕𝑄
𝐸

𝜕𝑃
𝑗

⋅
𝑑𝑃
𝑗

𝑑𝑘
+
𝜕𝑄
𝐸

𝜕𝑘
) =

𝑁
𝑝

∑
𝑗=1

(𝑜
𝑗
⋅
𝑑𝑃
𝑗

𝑑𝑘
+
𝜕𝑄
𝐸

𝜕𝑘
) .

(53)

Denote 𝑘
𝑖
as a solution to 𝑄󸀠

𝐸,1
(𝑘) = 0, where 𝑘

𝑖
∈ T
0
in the

indicated range above in (49).

Theorem 8. The stationary points 𝑘
𝑖
(𝑖 = 1, 2, . . . , 𝑁

𝑘
) where

𝑄
𝐸,1
(𝑘) = 0 for 𝑘 = 𝑘

𝑖
exist for the range {𝑘

𝑖
: 𝑘min ≤

𝑘 ≤ 𝑘max} of coordinate 𝑘 if and only if for each of these 𝑘
𝑖
,

(i) 𝑄
𝐸
(P, 𝑘) ∈ C2 and (ii) det‖𝜕QE(P, ki)/𝜕Pj𝜕Pi‖ ̸= 0 (for

all 𝑘
𝑖
, 𝑖 = 1, 2, . . . , 𝑘max). Each of these points 𝑘

𝑖
∈ R1 space

corresponds uniquely in a local sense in the open setT
0
to some

equilibrium (stationary) point of the target function𝑄
𝐸
(P, 𝑘) in

R𝑁𝑝+1 space.

Proof. If 𝑄󸀠
𝐸,1
(𝑘) = 0 where 𝑘 ∈ T

0
, then it also follows from

the IFT that 𝑜
𝑗
= 0, and therefore 𝜕𝑄

𝐸
/𝜕𝑘 = 0 from (53),

which satisfies (50) and (51) for the equilibrium point. The
conditions (i) and (ii) of the theorem are a requirement of the
IFT. Conversely, if 𝑜

𝑗
= 0, (𝑗 = 1, 2, . . . , 𝑁

𝑝
) and 𝜕𝑄

𝐸
/𝜕𝑘 = 0

(a stationary or equilibrium point), then by (53) 𝑄󸀠
𝐸,1
(𝑘) = 0.

Hence, the coordinates {𝑘
𝑖
} for which 𝑄󸀠

𝐸,1
(𝑘
𝑖
) = 0 refer to

the condition, where 𝛿𝑄
𝐸
(P, 𝑘
𝑖
) = 0, and uniqueness follows

from the IFT reference to the local uniqueness of the P(𝑘)
function.

Note. In a bounded system, one can choose any of the 𝑁
𝑝

components 𝑃
𝑗
of P as the 𝑘 coordinate (denoted 𝑘

𝑖
), partly

based on the convenience of solving the implicit equations
to determine the 𝑘

𝑖
minima and thus determine by the

uniqueness criterion the coordinates of the minima inR𝑁𝑝+1

space (spanning the𝑁
𝑝
independent variables and 𝑘).

For nondegenerate coordinate choice, meaning that for
a particular 𝑘 coordinate choice, there does not exist an
equilibrium structure (meaning a set of coordinate values)
where for any two structures 𝐴 and 𝐵, 𝑘

𝐴
= 𝑘
𝐵
. For such

structures, the total number of minima that exists within
the bounded range in the 𝑘 coordinate is equal to the total
number of minima of the target function𝑄

𝐸
(P, 𝑘) within the

bounded range. Hence, a method exists for the very challeng-
ing problem of locating and enumerating minima [9, Section
5.1, page 242 “How many stationary points are there?”].
From the uniqueness theorem of IFT, one could infer points
in the 𝑘-axis where nonuniqueness is obtained; that is,
whenever det ‖𝜕2𝑄

𝐸
/𝜕𝑃
𝑖
𝜕𝑃
𝑗
‖ = 0. In such cases, for particles

with the same intermolecular potentials, permutation of the
coordinates in conjunction with symmetry considerations
could be of use in selecting the appropriate coordinate system
to overcome these systems with degeneracies [9, Section
4.2.5, page 205, “Appearance and disappearance of symmetry
elements”]. Other methods that might address this situation
include scanning different one dimensional (1D) choices 𝑘 =
𝑃
𝑖
graphs or profiles, where if degeneracies exist for choice

𝑘 = 𝑃
𝑗
, they may not exist for the choice 𝑘 = 𝑃

𝑖
in the graph

for a specific point (𝑃
𝑖

̸= 𝑃
𝑗
). Thus, by scanning through

all or selecting a number of the (1D) 𝑃
𝑗
profiles for 𝑄

𝐸,1
, it

would be possible to make an assignment of the location of a
minimum in R𝑁𝑝+1 space. One is reminded of the methods
that spectroscopists use in assigning different energy bands
based on selection rules to uniquely characterize, for instance,
vibrational frequencies. A similar analogy is obtained for
X-ray reflections, where the amplitude variation of the X-
ray intensity in reciprocal space can be used to elucidate
structure. The minima of the 1D, 𝑘 coordinate scan must
correspond to the minima inR𝑁𝑝+1 space of the𝑄

𝐸
function

given that all such minima in 𝑄
𝐸
are locally strict and global

within a small open set about the minima for by continuity,
𝑄
𝐸,1
(𝑘)−𝑄

𝐸,1
(𝑘
0
) > 0 for |𝑘−𝑘

0
| < 𝛿 and for |𝑃(𝑘)−𝑃(𝑘

0
)| <

𝛿
2
, which violates the condition for a maximum.

5. Specic Algorithms and Pseudocode for
Solution to Optimization Problem Utilizing
Method (i)(a), Method (i)(b) and Method (ii)

We provide suggestions in pseudocode form for the above
3 proven methodologies. Real world applications of these
methods are very involved undertakings that are separate
research topics in their own right. Nevertheless, we provide a
detailed and extended application of method (i)a suitable for
a real world chemical kinetics problem where experimental
data from the published literature are used for method
(i)a in Section 5.3.1 and the results obtained compared to
conventional techniques.
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5.1. Pseudocode Algorithm for Method (i)a. Of the many
variations possible, the following approach conforms to the
theoretical development.

(1) For any physical law, for a total of 𝑁󸀠 datapoints,
choose𝑁

𝑝
datapoints (set 𝛼) and solve for parameters

𝑃
𝑗
, 𝑗 = 1, 2, . . . , 𝑁

𝑝
according to (7) for each of

the sets 𝛼, 𝑁
𝑐
in number for a known value of 𝑘.

The solution set {P(𝑘)}
𝛼
may be derived analytically

(as in the example below) or by appropriate linear
approximations.

(2) Determine from the above set P(𝑘) either the geo-
metric or statistical average (as used here) for the𝑁

𝑐

solutions; that is, P(𝑘) = ∑𝑁𝑐
𝛼=1

P
𝛼
(𝑘).

(3) Determine 𝑄(𝑘) (9) as

𝑄 (𝑘) =

𝑁
󸀠

∑

𝑖=1
󸀠

(𝑌exp(𝑡𝑖) − 𝑌th(𝑘, 𝑡𝑖))
2

. (54)

(4) Solve the 1D equation at 𝑘 = 𝑘
0
when 𝑄󸀠(𝑘) = 0.

The solution set is {P(𝑘
0
), 𝑘
0
} for the optimization

problem.

5.2. Pseudocode Algorithm for Method (i)b. This is an “exact”
method relative to LS variation of all parameters. A suitable
algorithm based on the theory could be as follows.

(1) Solve

ℎ
𝑗 (P, 𝑘) = 𝑐 ⋅

𝑁
󸀠

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑓 (𝑖)) 𝑓 (𝑖, 𝑗) = 0,

𝑗 = 1, 2, . . . , 𝑁
𝑝
,

(55)

for a particular value of 𝑘. Since there are 𝑁
𝑝
equa-

tions for ℎ
𝑗
, a solution P(𝑘) exists. The solution may

be exact or some linear approximation, depending on
nature of the problem and convergence criteria.

(2) Form the function𝑄
1
(𝑘) = ∑

𝑁
󸀠

𝑖
(𝛼
𝑖
)
2, (46), where𝛼

𝑖
=

𝑌exp(𝑡𝑖) − 𝑓(P, 𝑡𝑖, 𝑘).

(3) Solve 𝑄󸀠
1
(𝑘) = 0 for some 𝑘

0
; that is, 𝑄󸀠

1
(𝑘
0
) = 0.

(4) The solution set to the problem is {P(𝑘
0
), 𝑘
0
} for

optimizing the LS function 𝑄
𝑇

= 𝑄(P, 𝑘) =

∑
𝑁
󸀠

𝑖=1
(𝑌exp(𝑡

𝑖
)
− 𝑓(P, 𝑡

𝑖
, 𝑘))
2.

5.3. Pseudocode Algorithm for Method (ii). Here 𝑄
𝐸
(P, 𝑘) is

a general function, not necessarily of form 𝑄
𝑇
in (42). Then

for 𝑁
𝑝
variables {P}, define functions 𝑜

𝑗
(P, 𝑘) = 𝜕𝑄

𝐸
/𝜕𝑃
𝑗
,

𝑗 = 1, 2, . . . , 𝑁
𝑝
[22], 𝜅(P, 𝑘) = 𝜕𝑄

𝐸
/𝜕𝑘 as in (51).

(1) For a particular 𝑘, solve [22] for P. P(𝑘) exists
since there are𝑁

𝑝
equations. Approximate linearized

solutionsmight also be attempted in the vicinity of the
station point of 𝑘.

(2) Form the function 𝑄
𝐸,𝑘
(𝑘) = 𝑄

𝐸
(P, 𝑘).

(3) Solve for 𝑘
0
, such that 𝑄󸀠

𝐸,𝑘
(𝑘) = 0.

(4) Solution to the optimization problem of 𝑄
𝐸
(P, 𝑘) by

varying independently all the domain variables is
{P(𝑘
0
), 𝑘
0
}.

5.3.1. Application of Method (i)a Algorithm (Section 5.1) in
Chemical Kinetics. The utility of one of the above triad of
methods is illustrated in the determination of two parameters
in chemical reaction rate studies, of 1st and 2nd order,
respectively, using data from published literature, where
method (i)a yields values close within experimental error to
those quoted in the literature.Themethod can directly derive
certain parameters like the final concentration terms (e.g.,
𝜆
∞

and 𝑌
∞
) if 𝑘, the rate constant, is the single optimizing

variable in this approximation, which is not the case in most
conventional methodologies. We assume here that the rate
laws and rate constants are not slowly varying functions of
the reactant or product concentrations, which have recently,
from simulation, been shown to be generally not the case
[29]. Under this standard assumption, the rate equations
below are all obtained. The first-order reaction studied here
is (i) the methanolysis of ionized phenyl salicylate with data
derived from the literature [30, Table 7.1, page 381] and the
second-order reaction analyzed is (ii) the reaction between
plutonium(VI) and iron(II) according to the data in [31, Table
II, page 1427] and [32, Tables 2–4, page 25].

5.3.2. First-Order Results. Reaction (i) above corresponds to

PS− + CH
3
OH
𝑘
𝑎

󳨀→ MS− + PhOH (56)

where the rate law is pseudo first-order expressed as

rate = 𝑘
𝑎[PS]
−
= 𝑘
𝑐
[CH
3
OH] [PS−] (57)

with the concentration of methanol held constant (80% v/v)
and where the physical and thermodynamical conditions of
the reaction appear in [30, Table 7.1, page 381]. The change in
time 𝑡 for any material property 𝜆(𝑡), which in this case is the
absorbance 𝐴(𝑡) (i.e., 𝐴(𝑡) ≡ 𝜆(𝑡)) is given by

𝜆 (𝑡) = 𝜆∞ − (𝜆∞ − 𝜆0) exp (−𝑘𝑎𝑡) (58)

for a first-order reaction where 𝜆
0
refers to the measurable

property value at time 𝑡 = 0 and 𝜆
∞

is the value at 𝑡 = ∞

which is usually treated as a parameter to yield the best least
squares fit even if its optimized value is less formonotonically
increasing functions (for positive 𝑑𝜆/𝑑𝑡 at all 𝑡) than an
experimentally determined 𝜆(𝑡) at time 𝑡. In Table 7.1 of [30],
for instance, 𝐴(𝑡 = 2160 s) = 0.897 > 𝐴opt,∞ = 0.882 and
this value of𝐴

∞
is used to derive the best estimate of the rate

constant as 16.5 ± 0.1 × 10−3 sec−1 in that work.
For this reaction, the 𝑃

𝑖
of (5) refers to 𝜆

∞
so that P ≡

𝜆
∞

with 𝑁
𝑝
= 1 and 𝑘 ≡ 𝑘

𝑎
. To determine the parameter

𝜆
∞

as a function of 𝑘
𝑎
according to (9) based on the entire

experimental {(𝜆exp, 𝑡𝑖)} dataset we invert (58) and write

𝜆
∞ (𝑘) =

1

𝑁󸀠

𝑁
󸀠

∑

𝑖=1
󸀠

(𝜆exp (𝑡𝑖) − 𝜆0 exp−𝑘𝑡𝑖)
(1 − exp−𝑘𝑡

𝑖
)

, (59)
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where the summation is for all terms with the i subscript
of the experimental dataset that does not lead to zeros
nor singularities, such as when 𝑡

𝑖
= 0. We define the

nonoptimized, continuously deformable theoretical curve
𝜆th, where 𝜆th ≡ 𝑌th(𝑡, 𝑘) in (6) as

𝜆th (𝑡, 𝑘) = 𝜆∞ (𝑘) − (𝜆∞ (𝑘) − 𝜆0) exp (−𝑘𝑎𝑡) . (60)
With such a relationship of the 𝜆

∞
parameter 𝑃 to 𝑘, we seek

the least square minimum of 𝑄
1
(𝑘), where 𝑄

1
(𝑘) ≡ 𝑄 of (9)

for this first-order rate constant 𝑘 in the form

𝑄
1 (𝑘) =

𝑁

∑
𝑖=1

(𝜆exp (𝑡𝑖) − 𝜆th (𝑡𝑖, 𝑘))
2

, (61)

where the summation is over all the experimental (𝜆exp(𝑡𝑖), 𝑡𝑖)
values. The solution of the rate constant 𝑘 corresponds to the
zero value of the function, which exists for both orders. The
P parameters (𝜆

∞
and 𝑌

∞
) are derived by back substitution

into (59) and (65), respectively. The Newton-Raphson (NR)
numerical procedure [4, page 456] was used to find the roots
to 𝑃
𝑘
. For each dataset, there exists a value for 𝜆

∞
and so

the error expressed as a standard deviationmay be computed.
The error tolerance for theNRprocedurewas set to 1.0×10−10.
We define the function deviation𝑓𝑑 as the standard deviation
of the experimental results with the best fit curve where 𝑓𝑑 =
√(1/𝑁){∑

𝑁

𝑖=1
(𝜆exp(𝑡𝑖) − 𝜆th(𝑡𝑖))

2
}. Our results are as follows:

𝑘
𝑎
= 1.62 ± .09 × 10−2 s−1; 𝜆

∞
= 0.88665 ± .006; and

𝑓𝑑 = 3.697 × 10−3.
The experimental estimates are 𝑘

𝑎
= 1.65 ± .01 × 10−2 s−1;

𝜆
∞
= 0.882 ± 0.0; and 𝑓𝑑 = 8.563 × 10−3.
The experimental method involves adjusting the 𝐴

∞
≡

𝜆
∞

to minimize the 𝑓𝑑 function and hence no estimate of
the error in 𝐴

∞
could be made. Method (i)a allows direct

calculation of 𝜆
∞
and its error without the extraneous fittings

required in the conventional methods. It is clear that our
method has a lower 𝑓𝑑 value and is thus a better fit, and
the parameter values can be considered to coincide with the
experimental estimates within experimental error. Figure 2
shows the close fit between the curve due to our optimization
procedure and experiment. The resulting 𝑅

𝑘
function (10)

for the first-order reaction based on the published dataset is
given in Figure 3. The very slight variation between the two
curves could be due to experimental uncertainties as shown
in Figure 1.

5.3.3. Second-Order Results. To further test our method, we
also analyze the second-order reaction

Pu (VI) + 2Fe (II)
𝑘
𝑏

󳨀→ Pu (IV) + 2Fe (III) (62)

whose rate V is given by V = 𝑘
0
[PuO2+
2
][Fe2+] where 𝑘

0
is

relative to the constancy of other ions in solution such as
H+. The equations are very different in form to the first-order
expressions and serves to confirm the viability of the current
method.

For Espenson, the above stoichiometry is kinetically
equivalent to the reaction scheme [32, equation (2-36)]

PuO2+
2
+ Fe2+aq

𝑘
𝑏

󳨀→ PuO+
2
+ Fe3+aq (63)
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Figure 2: Plot of the experimental and curvewith optimized param-
eters showing the very close fit between the two.The slight difference
between the two can probably be attributed to experimental errors.

which also follows from the work of Newton and Baker [31,
equations (8), (9), page 1429] whose data [31, Table II, page
1427] we use and analyze to verify the principles presented
here. Espenson had also used the same data as we have to
derive the rate constant and other parameters [32, pages 25-
26] which are used to check the accuracy of ourmethodology.
The overall absorbance in this case 𝑌(𝑡) is given by [32,
equation (2-35)]

𝑌 (𝑡) =
𝑌
∞
+ {𝑌
0 (1 − 𝛼) − 𝑌∞} exp (−𝑘Δ 0𝑡)
1 − 𝛼 exp (−𝑘Δ

0
𝑡)

, (64)

where 𝛼 = [A]
0
/[B]
0
is the ratio of initial concentrations

where [B]
0
> [A]

0
and [B] = [Pu(VI)], [A] = [Fe(II)]

and [B]
0
= 4.47 × 10−5M and [A]

0
= 3.82 × 10−5M. A

rearrangement of (64) leads to the equivalent expression [32,
equation (2-34)]

ln{1 +
Δ
0
(𝑌
0
− 𝑌
∞
)

[A]0 (𝑌𝑡 − 𝑌∞)
} = ln [

B]0
[A]0

+ 𝑘Δ
0
𝑡. (65)

According to Espenson, one cannot use this equivalent form
[32, page 25] “because an experimental value of 𝑌

∞
was not

reported” and he further asserts that if 𝑌
∞

is determined
autonomously, then 𝑘, the rate constant, may be determined.
Thus, central to all conventional methods is the autonomous
and independent status of both 𝑘 and 𝑌

∞
. We overcome

this interpretation by defining 𝑌
∞

as a function of the total
experimental spectrum of 𝑡

𝑖
values and 𝑘 by inverting (64) to

define 𝑌
∞
(𝑘) as

𝑌
∞ (𝑘) =

1

𝑁󸀠

𝑁
󸀠

∑

𝑖=1
󸀠

𝑌exp (𝑡𝑖) {exp (𝑘Δ 0𝑡𝑖) − 1} + 𝑌0 (𝛼 − 1)
(exp (𝑘Δ

0
𝑡
𝑖
) − 1)

,

(66)
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Figure 3: 𝑅(𝑘) functions (10) for reactions (i) and (ii) of order one
and two in reaction rate. The horizontal bars correspond to the zero
values of the 𝑅(𝑘) functions.

where the summation is over all experimental values that
does not lead to singularities such as at 𝑡

𝑖
= 0. In this case, the

P parameter is given by𝑌
∞
(𝑘) = 𝑃

1
(𝑘), 𝑘
𝑏
= 𝑘 is the varying 𝑘

parameter of (5).We likewise define a function𝑌th of 𝑘 that is
also a function of 𝑡, but where the 𝑘 parameter is interpreted
as a “distortion” parameter in the following manner:

𝑌(𝑡, 𝑘)th =
𝑌
∞ (𝑘) + {𝑌0 (1 − 𝛼) − 𝑌∞ (𝑘)} exp (−𝑘Δ 0𝑡)

1 − 𝛼 exp (−𝑘Δ
0
𝑡)

.

(67)

In order to extract the parameters 𝑘 and 𝑌
∞
, we minimize

the square function𝑄
2
(𝑘) for this second-order rate constant

with respect to 𝑘 given as

𝑄
2 (𝑘) =

𝑁

∑
𝑖=1

(𝑌exp (𝑡𝑖) − 𝑌th (𝑡𝑖, 𝑘))
2

, (68)

where the summation is over the 𝑁 experimental 𝑡
𝑖
coor-

dinates. Then the solution to the minimization problem is
when the corresponding 𝑅(𝑘) function (10) is zero. The NR
method was used to solve 𝑅(𝑘) = 0 with the error tolerance
of 1.0 × 10−10. With the same notation as in the first-order
case, the second order results are 𝑘

𝑏
= 938.0 ± 18 (Ms)−1;

𝑌
∞
= 0.0245 ± 0.003; and 𝑓𝑑 = 9.606 × 10−4.
The experimental estimates from the conventional meth-

ods are [32, page 25]: 𝑘
𝑏
= 949.0 ± 22 (Ms)−1; 𝑌

∞
= 0.025 ±

0.003.
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Figure 4: Graph of the experimental and calculated curve based on
the current induced parameter-dependent optimization method.

Again the two results are in close agreement.The graph of
the experimental curve and the one that is derived from our
optimization method are given in Figure 4.

6. Conclusions

The triad of associated implicit function optimization covers
both the topics of modeling of data and the optimization
of arbitrary functions where experimental or theoretical
considerations require that a single variable is tagged to a
process variable that is iteratively relaxing to an equilibrium
stationary point. Applying method (i)a to chemical kinetics
allows for the direct determination of parameters that is
not possible by application of the standard methodologies.
The results presented here show that for linked variables,
it is possible to derive all the parameters associated with a
curve by considering only one independent variable which
serves as the independent variable for other functions in the
optimization process as illustrated by methods (i)a,b. Apart
from possible reduced errors in the computations, it might
also be a more accurate way of deriving parameters that are
more influenced or conditioned (on physical grounds) by
the value of one parameter (such as 𝑘 here) than others; the
current methods that give equal weight to all the variables
might in some cases lead to results that would be considered
“unphysical.” In complex dynamical systems with multipro-
cesses, the physical considerations are such that for scientific
purposes, it would be advantageous if optimization would be
conducted on just one primary coordinate variable, such as
in attempting to derive the most general stable conformer in
a large molecule, where there are thousands of local min-
ima present if all free coordinate variables are considered
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[9, Section 6.7, page 330]. For such systems,method (ii)might
be applicable. This generalized potential surface might be
found suitable for reaction trajectory calculations [9, Chapter
4, page 192 on “Features of a landscape”] that require a single
path variable, where the general optimized conformer would
be relevant to the study of the potential surfaces and force
fields present.

List of Variables

(P, 𝑡, 𝑘): the entire domain space of a function such
as 𝑓(P, 𝑡, 𝑘) where 𝑘 is the variable
associated with a sequence of
measurements, such as along the time
coordinate. The vector P with components
𝑃
𝑖
is the normal parameter that must be

optimized, and 𝑘 is the specially chosen
variable on experimental grounds that is
optimized whilst constructing functions
such that P = P(𝑘) (6)

𝑓(P, 𝑡, 𝑘): refers to a function that is proposed to be a
“law of nature” whose parameters {P, 𝑘}
are to be optimized (7)

𝑌law(𝑡, 𝑘): 𝑌law(𝑡, 𝑘) = 𝑓(P, 𝑡, 𝑘) (5)
𝑌th(𝑡, 𝑘): the theoretical law of nature if P = P(𝑘) is

determined. That is, 𝑌th(𝑡, 𝑘) = 𝑓(P, 𝑡, 𝑘)
(6)

𝑌exp(𝑡𝑖): an experimentally determined datapoint
that ideally represents the range of
𝑓(P, 𝑡, 𝑘) if there was no error; that is,
𝑌exp(𝑡𝑖) = 𝑓(P󸀠, 𝑡, 𝑘󸀠) for a perfect fit for all
𝑡
𝑖
, for fixed (P󸀠, 𝑘󸀠) (7)

𝑃
𝑖
(𝑘): an averaged value for 𝑃

𝑖
(𝑘) based on some

specified algorithm (8)
𝑄
𝑋
, 𝑄(𝑘): least squares (LS) function to optimize

𝑌law(𝑡, 𝑘) in the case of 𝑄 (𝑘) (9). In
general, all 𝑄

𝑋
functions are LS functions

specified by𝑋 (e.g., (9), (11), (42), etc.)
𝑄
𝐸
: General cost or object function to be

optimized, not necessarily in LS form (50)
𝑅(𝑘): = 𝑄

󸀠
(𝑘) (10)

𝜆
𝑖
: Lagrange multipliers associated with the

𝑄
𝑋
optimization (14)

L: Lagrangian to the optimization problem
(17)

𝑘
𝑞
: chemical kinetics rate constant for

reaction 𝑞 (e.g., (56))
𝜆(𝑡), 𝜆

∞
: absorbance measurements for first-order
chemical kinetics reactions at time 𝑡 and
infinity (e.g., (58) and (59))

𝑌(𝑡), 𝑌
∞
: absorbance measurements for
second-order chemical kinetics reactions
at time 𝑡 and infinity (e.g., (64) and (66)).
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