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We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact
interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the
spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From
this financialmodel, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai
Stock Exchange Composite Index (SSECI) and Hang Seng Index (HSI) are also comparatively studied. Further, we investigate the
Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to
investigate the natures of fluctuations for the stock market.

1. Introduction

The analysis of market index and return is an active topic to
understand andmodel the distribution of financial price fluc-
tuation, which has long been a focus of economic research.
As the stock markets are becoming deregulated worldwide,
the modelling of the dynamics of the forwards prices is
becoming a key problem in the physical assets valuation, risk
management, and derivatives pricing [1–6]. By applying the
theory of interacting particle systems [7–11], some research
has been made by applying the statistical physics systems to
study the behaviors of fluctuations of price changes in the
stockmarket and the corresponding valuation and hedging of
contingent claims [12–23].Themotivation ofmodelling stock
price by using a contact model is to uncover the empirical
laws in stock price and better understand the dynamics of
financial systems. Stauffer [15] and Yu and Wang [21] devel-
oped financial price models by lattice percolation system
and lattice-oriented percolation system [8, 9], respectively,
the local interaction or influence among market participants
in a stock market is constructed, and an open cluster of
percolation is applied to define the cluster of investors sharing
the same opinion about themarket. In these financialmodels,
the main assumption is that the stock price fluctuation is

influenced by the information in a stock market, and the
investors decide the investment opinions by other investors’
attitudes, so the investors investment attitudes of the stock
market lead to the stock price fluctuation. Zhang and Wang
[22] invented the finite-range contact particle system to
model a stock price process for studying the behaviors of
returns by statistical analysis and computer simulation. The
epidemic spreading of the contact model is considered as the
spreading of the investors investment attitudes towards the
stock market, and we suppose that the investment attitudes
are represented by the viruses of the contact model. These
attitudes make the investors take buying stock positions,
selling stock positions, or holding stock positions.

The contact process, a model for epidemic spreading in a
continuous timeMarkov process, is one of interacting particle
systems [8, 10, 11]. The contact process was introduced by
Harris [24] and one interpretation of the contact process is
often regarded as a crude model for the spread of a biological
population or a disease. Healthy individuals become infected
at a rate proportional to the number of infected neighbors,
where infected individuals recover at a constant rate. To be
specific, let 𝜂

𝑠
denote the contact process on the configuration

space {0, 1}Z
𝑑

; if 𝜂
𝑠
(𝑥) = 0, the individual at the point 𝑥

is healthy and will be infected at a rate equal to 𝜆 times
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the number of infected neighbors; if 𝜂
𝑠
(𝑥) = 1, one

individual at the point 𝑥 is thought of as being infected
and recovers from its infection at rate one. In the present
paper, we study the statistical behaviors of fluctuations of
stock price changes by applying the contact system.We firstly
construct the financial time series model of the stock market.
Then we analyze the statistical behaviors of ensembles and
specifics of returns for the financial model by Zipf analysis
and multifractal detrended fluctuation analysis (MFDFA).
Further, the statistical properties of returns of Shanghai Stock
Exchange Composite Index (SSECI) and Hang Seng Index
(HSI) are also studied for comparison between the actual time
series and the simulated ones.

2. A Brief Description of Contact System

The contact system on Z𝑑 with infection parameter 𝜆 is
a continuous time Markov process 𝜂

𝑠
on the configuration

space {0, 1}Z
𝑑

[8, 10, 11]. A configuration 𝜂 ∈ {0, 1}
Z𝑑 is often

identified with subsets 𝐴 of Z𝑑 via 𝐴 = {𝑥 ∈ Z𝑑 : 𝜂(𝑥) = 1}.
Individuals in 𝐴 are thought of as being infected, while the
other individuals are regarded as being healthy.The transition
rates for 𝜂

𝑠
are given by

(a) 𝐴 → 𝐴 \ {𝑥} for all 𝑥 ∈ 𝐴 at rate 1,
(b) 𝐴 → 𝐴 ∪ {𝑥} for all 𝑥 ∈ 𝐴 at rate 𝜆|{𝑦 ∈ 𝐴 :

|𝑦 − 𝑥| ≤ 1}|,

where |𝐴| denote the cardinality of a finite set 𝐴 and |𝑦 − 𝑥|

is the minimal length of a path from 𝑥 to 𝑦. More formally,
the connection between the process 𝜂

𝑠
and the rate function

𝑐(𝑥, 𝜂) is made through the generator Ω of 𝜂
𝑠
. For functions

𝑓 on {0, 1}
Z𝑑 that depend on finitely many coordinates, the

generator has the form

Ω𝑓 (𝜂) = ∑

𝑥

𝑐 (𝑥, 𝜂) [𝑓 (𝜂
𝑥

) − 𝑓 (𝜂)] , (1)

where 𝜂𝑥(𝑦) = 𝜂(𝑦) if 𝑦 ̸= 𝑥 and 𝜂𝑥(𝑦) = 1 − 𝜂(𝑥) if 𝑦 = 𝑥, for
𝑥, 𝑦 ∈ Z𝑑. And 𝑐(𝑥, 𝜂) is given by (see [10])

𝑐 (𝑥, 𝜂) =

{{

{{

{

1, if 𝜂 (𝑥) = 1,

𝜆 ∑

𝑦:|𝑦−𝑥|≤1

𝜂 (𝑦) , if 𝜂 (𝑥) = 0. (2)

Let 𝜂𝐴
𝑠
denote the state at time 𝑠 with the initial state

𝜂
𝐴

0
= 𝐴, and let 𝜂{0}

𝑠
be the state of 𝑥 ∈ Z𝑑 at time 𝑠 with

the initial point {0}. The most important concept of weak
complete convergence for the contact model is given as 𝜂𝐴

𝑠
⇒

𝛼
𝐴
𝜐 + [1 − 𝛼

𝐴
]𝛿
0
, where 𝛼

𝐴
= 𝑃(𝜂

𝐴

𝑠
̸= 0, for all 𝑠 ≥ 0) is

the survival probability and 𝜐 and 𝛿
0
are the biggest invariant

measure and the smallest invariant measure, respectively, in
the sense of the partial order [10]. The key characteristic of
the contact process is that extinction and survival can be both
occur, whether extinction occurs or survival occurs depends
on the value of 𝜆. There is a critical value 𝜆

𝑐
, if 𝜆 < 𝜆

𝑐
, the

contact process is said to become extinct or die out; that is,
𝑃(𝜂
{0}

𝑠
̸= 0, for all 𝑠 ≥ 0) = 0; otherwise (for 𝜆 > 𝜆

𝑐
) it is

said to survive. For any finite lattice graph (−𝐿, 𝐿)
𝑑 (where

𝐿 ≥ 1 is a large positive integer) and for every finite 𝐴 and
every constant 𝐶 ≥ 1, there exists lim

𝑠→∞
lim
𝐿→∞

𝑃(|𝜂
𝐴

𝑠
| ≥

𝐶) = 𝑃(𝜂
𝐴

𝑠
̸= 0, for all 𝑠 ≥ 0) [11]. Furthermore, we define the

edge processes 𝑟
𝑠
= max{𝑦 : 𝜂

{0}

𝑠
(𝑦) = 1} and 𝑙

𝑠
= min{𝑦 :

𝜂
{0}

𝑠
(𝑦) = 1} on {0, 1}Z, 𝑟

0
= 𝑙
0
= 0. And let 𝜏 = inf{𝑠 ≥ 0 :

𝜂
{0}

𝑠
= 0}. For 𝜆 > 𝜆

𝑐
, lim
𝑠→∞

[∑
𝑟𝑠

𝑦=𝑙𝑠

𝜂
{0}

𝑠
(𝑦)]/𝑠 = 2𝛼(𝜆)𝜌(𝜆)

(a.s. on {𝜏 = ∞}), where 𝜌(𝜆) ≥ 0 is a nondecreasing
function of 𝜆 and 𝛼(𝜆) ≥ 0. And if 𝜆 < 𝜆

𝑐
, for some positive

𝜌(𝜆), we have 𝑃(𝜂{0}
𝑠

̸= 0) ≤ 𝑒
−𝜌𝑠, then the process dies out

exponentially fast.

3. Financial Price Model Form Contact System

In the following, we adopt the notations and settings of
Sections 1-2. Consider a model of auctions for a stock in
a stock market. Suppose that each trader can trade the
stock several times at each day 𝑡 ∈ {1, 2, . . . , 𝑇}, but at
most one unit number of the stock at each time. Let 𝑙 be
the time length of trading time in each trading day; we
denote the stock price at time 𝑠 in the 𝑡th trading day by
P
𝑡
(𝑠), where 𝑠 ∈ [0, 𝑙]. Suppose that this stock consists

of 𝑀 + 1 (𝑀 is large enough) investors, who are located
in a line {−𝑀/2, . . . , −1, 0, 1, . . . ,𝑀/2} ⊂ Z (similarly for
𝑑-dimensional lattice Z𝑑). At the beginning of trading in
each day, suppose that the investor at the origin receives
some news. We define a random variable 𝜉

𝑡
for this investor;

suppose that this investor takes buying positions (𝜉
𝑡
= 1),

selling positions (𝜉
𝑡
= −1), or neutral positions (𝜉

𝑡
= 0) with

probability 𝑝
1
, 𝑝
−1
, or 1 − (𝑝

1
+ 𝑝
−1
), respectively. Then this

investor sends bullish, bearish, or neutral signal to his neigh-
bors. According to the contact dynamic system, investors
can affect each other or the news can be spread, which is
assumed as the main factor of price fluctuations. Moreover,
here the investors can change their buying positions or selling
positions to neutral positions independently at a constant
rate. More specifically, (i) when 𝜉

𝑡
= 1 and if 𝜂{0}

𝑠
= 1, we

say that the investor at 𝑥 takes buying position at time 𝑠, and
this investor recovers to neutral position at rate 1; if 𝜂{0}

𝑠
= 0,

we think that the investor at 𝑥 takes neutral position at time
𝑠, and this investor is changed to take buying position by his
neighbors at rate 𝜆∑

𝑦:|𝑦−𝑥|≤1
𝜂
{0}

𝑠
(𝑦). In this case, the more

investors who take buying positions, themore possibility that
stock price goes up. (ii) When 𝜉

𝑡
= −1 and if 𝜂{0}

𝑠
= 1,

we say that the investor at 𝑥 takes selling position at time 𝑠,
and also this investor recovers to neutral position at rate 1; if
𝜂
{0}

𝑠
= 0, the investor is changed to take selling position by

his neighbors at rate 𝜆∑
𝑦:|𝑦−𝑥|≤1

𝜂
{0}

𝑠
(𝑦). (iii) When the initial

random variable 𝜉
𝑡
= 0, the process 𝜂{0}

𝑠
is ignored; thismeans

that the investors do not affect the fluctuation of the stock
price.

For a fixed 𝑠 ∈ [0, 𝑙] (𝑙 large enough), the aggregate excess
demand for the asset at time 𝑡 is defined by

B
𝑡
(𝑠) =

𝜉
𝑡


𝜂
{0}

𝑠



𝑀
, (3)



Abstract and Applied Analysis 3

where𝑀may depend on the trading days 𝑇. From the above
definitions and [3, 6], we define the formula of a discrete time
stock price as follows:

P
𝑡
(𝑠) = 𝑒

𝛼B𝑡(𝑠)P
𝑡−1

(𝑠) , 𝑡 = 1, 2, . . . , 𝑇, (4)

where 𝛼 > 0, represents the depth parameter of the market.
Then the stock price of the present paper is supposed to follow
the form

P
𝑡
(𝑠) = P

0
exp{𝛼

𝑡

∑

𝑘=1

B
𝑘
(𝑠)} , (5)

where P
0
is the initial stock price at time 0. The formula of

the single-period stock logarithmic returns from 𝑡 to 𝑡 + 1 is
given as follows:

R (𝑡) = lnP
𝑡+1

(𝑠) − lnP
𝑡
(𝑠) . (6)

In this paper, we analyze the logarithmic returns for the
daily price changes. In the light of theory of the contact
process and the above definitions, if 𝜆 < 𝜆

𝑐
, the virus will

die out at last; namely, the influence on the stock price by
the investors is limited. If 𝜆 > 𝜆

𝑐
, the virus will not die

out; namely, the news will spread widely, so this will affect
the investors’ positions and finally will affect the fluctuation
of the stock price. The contact system is a statistical physics
system, and it is comprised of a large number of interacting
units, which has the similarity with the financial markets
consisting of a large number of interacting “agents.”There are
random behaviors ingrained in the contact model, and then
we consider the financial market as a complicated evolving
system. Modeling stock price by using a contact model has
the motivation to uncover the empirical laws in real stock
markets and understand better the dynamics of financial
systems.

4. Zipf Analysis for Financial
Model and Real Stock Markets

4.1. Zipf Analysis of Time Series. Zipf analysis, as a way for
quantifying time series correlations, has been widely applied
to the literature, stock market, computer science, network,
economic management, and many other fields [25–29]. The
technique is based on translating a given time series into
a sequence of symbols and counting the frequency of any
word, that is, pattern of consecutive symbols. Ranking these
words by their frequencies from themost common to the least
common and plotting the logarithm of frequencies versus
the logarithm of rank give us a Zipf plot, which was firstly
introduced by George Kingsley Zipf, in order to study the
statistical occurrences in different languages. For the lowest
ranks, the plotted points usually appear to fall along a line.
The gradient of the best line fit corresponds to the Zipf
exponent 𝛽, which characterizes correlations in time series.
Let (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) denote a set of 𝑛 observations on a random

variable 𝑥, the corresponding cumulative distribution func-
tion is 𝐹(𝑥), and assume that the observations are ordered
from the largest to the smallest so that the index 𝑖 is the rank

of 𝑥
𝑖
. The Zipf plot of the sample is the graph of ln𝑥

𝑖
against

ln 𝑖. Because of the ranking, then 𝑖/𝑛 = 1−𝐹(𝑥
𝑖
) (𝑖 = 1, . . . , 𝑛)

and ln 𝑖 = ln[1 − 𝐹(𝑥
𝑖
)] + ln 𝑛. Thus, the log of the rank is

simply a transformation of cumulative distribution function.
In studying English word occurrence frequency, Zipf ’s law
reveals that while only a few words are used very often, many
or most are used rarely. It is found that if the words have the
descending orders of frequency, the frequency of occurrence
of each word and its symbol ranking has simple inverse
relations; that is 𝑃(𝑖) = 𝑐𝑖

−𝛽. Making a transformation, the
above equation can be converted into ln𝑃(𝑖) = ln 𝑐 − 𝛽 ln 𝑖,
where 𝑃(𝑖) is the frequency of the word whose rank is 𝑖 and 𝑐
is some positive constant. Plotting the graph by ln𝑃(𝑖) against
ln 𝑖, the graph is close to a line with the slope of −𝛽.

Let S(𝑡) (𝑡 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) denote the time series of daily
closing stock prices, and let 𝜏 be the given integer time scale;
then the 𝜏-step of logarithmic price changes in a stockmarket
is defined by

R
𝜏
(𝑡) = lnS (𝑡 + 𝜏) − lnS (𝑡) , (7)

where 𝑡 = 1, 2, . . . , 𝑛 − 𝜏. Next we consider a new time
series with a random environment which is derived from the
original 𝜏-step of logarithmic price changes of the model.
In a real stock market, various kinds of information will
affect the investing positions of the market participants, and
the investing environment is also ceaselessly changing. So
we introduce a random environment in the financial model
as the following. Let 𝜃 be a nonnegative random variable
on a probability space Ω (with the probability distribution
𝐹
𝜃
(𝑥)), which is called a random threshold of the model.

For example, 𝜃 can be a uniform on the interval (0, 2), or 𝜃
can also be a random variable |𝜉|, where 𝜉 follows a normal
distribution, and so forth. Then the new time series derived
from the original stock prices is given as

𝑦
𝜏
(𝑡, 𝜃) =

{{

{{

{

𝑢, if lnS (𝑡 + 𝜏) − lnS (𝑡) ≥ 𝜃,

𝑠, if |lnS (𝑡 + 𝜏) − lnS (𝑡)| < 𝜃,

𝑑, if lnS (𝑡 + 𝜏) − lnS (𝑡) ≤ −𝜃,

(8)

where 𝑢, 𝑠, and 𝑑 denote “price-up,” “price-stable,” and “price-
down,” respectively. In this model, the random threshold
𝜃 represents the expected returns for the market investors.
Then, for the different parameters 𝜏 and 𝜃, we investigate
the fluctuation behaviors of the time series 𝑦

𝜏
(𝑡, 𝜃) (𝑡 =

1, 2, . . . , 𝑛 − 𝜏).
Let 𝑛
𝑢
(𝜏, 𝜃), 𝑛

𝑠
(𝜏, 𝜃), and 𝑛

𝑑
(𝜏, 𝜃) denote the frequencies

of occurrences for price-up, price-stable, and price-down,
respectively. Then the corresponding absolute frequencies of
the time series 𝑦

𝜏
(𝑡, 𝜃) for these case are given as follows:

𝑓
𝑢
(𝜏, 𝜃) =

𝑛
𝑢
(𝜏, 𝜃)

𝑛 − 𝜏

1 − 𝐹
𝜃
(𝑥)

2
,

𝑓
𝑑
(𝜏, 𝜃) =

𝑛
𝑑
(𝜏, 𝜃)

𝑛 − 𝜏

1 − 𝐹
𝜃
(𝑥)

2
,

𝑓
𝑠
(𝜏, 𝜃) =

𝑛
𝑠
(𝜏, 𝜃)

𝑛 − 𝜏
𝐹
𝜃
(𝑥) ,

(9)
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where 𝑛
𝑢
(𝜏, 𝜃) + 𝑛

𝑑
(𝜏, 𝜃) + 𝑛

𝑠
(𝜏, 𝜃) = 𝑛 − 𝜏 and 𝐹

𝜃
(𝑥) =

𝑃(𝜃 ≤ 𝑥). In financial markets, the large fluctuation of
daily price changes usually occurs with the small probability.
Considering this property, the frequencies of occurrences
defined in the above depend on the probability distribution
𝐹
𝜃
(𝑥). Next the corresponding relative frequencies of the time

series 𝑦
𝜏
(𝑡, 𝜃) are given as follows:

𝑔
𝑢
(𝜏, 𝜃) =

𝑛
𝑢
(𝜏, 𝜃)

𝑛
𝑢
(𝜏, 𝜃) + 𝑛

𝑑
(𝜏, 𝜃)

[1 − 𝐹
𝜃
(𝑥)] ,

𝑔
𝑑
(𝜏, 𝜃) =

𝑛
𝑑
(𝜏, 𝜃)

𝑛
𝑢
(𝜏, 𝜃) + 𝑛

𝑑
(𝜏, 𝜃)

[1 − 𝐹
𝜃
(𝑥)] .

(10)

In the above definitions of the relative frequencies, we omit
the occurrences of stable-price; thus 𝑔

𝑢
(𝜏, 𝜃) and 𝑔

𝑑
(𝜏, 𝜃)

measure the total occurrences of price rising and price falling,
respectively.

4.2. Results of Empirical Research. In this section, we study
the statistical properties of absolute frequencies and rela-
tive frequencies of price changes for various values of two
parameters 𝜏 and 𝜃. Both the actual data of SSECI and the
simulation data of themodel will be considered.We select the
data for the daily closing prices of SSECI in the 9-year period
from August 23, 2002, to March 9, 2011; the database is from
Shanghai Stock Exchange; see http://www.sse.com.cn/. And
we also consider the simulation data of the model which is
derived from the contact system with the infection rate 𝜆 =

1.3 (with which the simulation data has similar fluctuations
with the real stock market). For the actual data and the
simulation data, wemake the empirical research for the abso-
lute frequency and the relative frequency. By the computer
simulation [30], we compute the absolute frequencies and the
relative frequencies for different values of 𝜏 and 𝜃, and the
corresponding plots are plotted in Figures 1 and 2. Figure 1
displays the empirical results of the actual data for SSECI,
the horizontal axis indicates the random expected return 𝜃,
and the vertical axis indicates the absolute frequencies of the
time series𝑦

𝜏
(𝑡, 𝜃). Figures 1(a) and 1(b) exhibit that the price-

up function 𝑓
𝑢
(𝜏, 𝜃) and price-down function 𝑓

𝑢
(𝜏, 𝜃) are

decreasing functions when 𝜃 is increasing. And for two 𝜏-
steps 𝜏

1
, 𝜏
2
, such that 𝜏

1
> 𝜏
2
, the curve of 𝑓

𝑢
(𝜏
1
, 𝜃) is over

the curve of 𝑓
𝑢
(𝜏
2
, 𝜃), and we have the similar results to the

price-down function 𝑓
𝑑
(𝜏, 𝜃). But for the absolute frequency

of price-stable, Figure 1(c) displays the opposite trend; that is,
the function 𝑓

𝑠
(𝜏, 𝜃) is increasing with 𝜃 increasing. Figure 1

shows that, for a given step 𝜏, the absolute frequencies reach
their inflection point as 𝜃 increases. In addition, when 𝜏

increases, the corresponding value of 𝜃 (where the inflection
of the absolute frequencies occur) becomes larger. We also
consider the Zipf distributions of the absolute frequencies
of price-up 𝑓

𝑢
(𝜏, 𝜃), price-down 𝑓

𝑢
(𝜏, 𝜃), and price-stable

𝑓
𝑠
(𝜏, 𝜃). For different interval times 𝜏, we compute and plot

the corresponding Zipf distributions in Figure 1 (the smaller
plots in (a), (b), and (c)); Figure 1 exhibits the power-law
distributions for the absolute frequencies. In Figure 2, we
obtain the similar empirical results of the simulation data for
the financial model with the infection rate 𝜆 = 1.3.
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Figure 1: The evolution trends of absolute frequencies of the actual
data for SSECI with the random variable 𝜃. Plots (a), (b), and (c) are
the absolute frequencies of price-up, price-down, and price-stable,
respectively. The insets are the corresponding double logarithmic
presentations.

Figures 3 and 4 show the distributions of the relative
frequencies for different time scales and different expected
returns. In Figure 3, when 𝜃 ∈ (0, 0.1], the relative frequencies
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Figure 2: The evolution trends of absolute frequencies of the actual
data for the simulation data for the financial model with the random
variable 𝜃. Plots (a), (b), and (c) are the absolute frequencies of
price-up, price-down, and price-stable, respectively. The insets are
the corresponding double logarithmic presentations.

are approximately equal to 0.5; when 𝜃 becomes larger, the
relative frequencies depart from the value 0.5 rapidly. Note
that the daily price fluctuation is limited in Chinese stock

markets; that is, the changing limits of the daily returns (i.e.,
𝜏 = 1) for stock prices and stock indices are between −10%
and 10%. This means that we should let 𝜃 ∈ [0, 0.1] for the
Chinese stock markets. According to the above discussion,
the relative frequencies are near to 0.5 for 𝜃 ∈ (0, 0.1]; then
we can reach a conclusion that 𝜃 (𝜃 ∈ (0, 0.1]) is a low risk
expected return. If a market participant hopes to obtain a
return which is larger than 0.1, he will face a high investing
risk. In Figure 4, according to the simulation data of the
model, we obtain the similar empirical results to those of
SSECI in Figure 3.

Table 1 gives the values of the inflection points for the
absolute frequencies and the relative frequencies.We can find
that the inflection points are larger when 𝜏 is increasing,
corresponding with the empirical results of Figures 1–4.
Furthermore, according to the definitions of𝑓

𝑢
(𝜏, 𝜃),𝑓

𝑑
(𝜏, 𝜃),

𝑓
𝑠
(𝜏, 𝜃), 𝑔

𝑢
(𝜏, 𝜃), and 𝑔

𝑑
(𝜏, 𝜃), it can be easily known that

the inflection points of 𝑓
𝑠
(𝜏, 𝜃), 𝑓

𝑑
(𝜏, 𝜃), and 𝑓

𝑠
(𝜏, 𝜃) are

interrelated. Suppose that 𝜃
1
is the inflection point of𝑓

𝑠
(𝜏, 𝜃),

then 𝑓
𝑢
(𝜏, 𝜃
1
) = 0 and 𝑓

𝑑
(𝜏, 𝜃
1
) = 0, and 𝜃

1
is also

inflection point of𝑓
𝑢
(𝜏, 𝜃) or𝑓

𝑑
(𝜏, 𝜃). We also obtain that the

inflection points of 𝑔
𝑢
(𝜏, 𝜃) and 𝑔

𝑑
(𝜏, 𝜃) are the same from

the definitions, the values are related to inflection points of
absolute frequencies, and all the estimates are displayed in
Table 1.

5. MF-DFA Analysis for Financial Time Series

5.1. MF-DFA Analysis. Recently, some research work has
been made for the multifractal characterization of nonsta-
tionary time series, which is based on a generalization of
detrended fluctuation analysis (DFA): multifractal detrended
fluctuation analysis (MF-DFA) [12, 13, 31–34]. It has been
concluded thatMF-DFA should be recommended for a global
detection of multifractal behavior [35, 36].

MF-DFA method can be summarized as follows [32]. (i)
Starting with a correlated time series {𝑥

𝑖
, 𝑖 = 1, . . . , 𝑁}, where

𝑁 is the length of the series, the corresponding profile is
determined by integration

𝑌 (𝑖) =

𝑖

∑

𝑘=1

(𝑥
𝑘
− ⟨𝑥
𝑘
⟩) , 𝑖 = 1, 2, . . . , 𝑁, (11)

where ⟨𝑥⟩ denotes the averaging over the whole time series.
(ii) The profile 𝑌(𝑖) is divided into 𝑁

𝑠
≡ int(𝑁/𝑠) nonover-

lapping windows of equal length 𝑠. Since the record length𝑁
does not need to be a multiple of the considered time scale
𝑠, a short part at the end of the profile will remain in most
cases. In order to have into account this part of the record,
the same procedure is repeated, starting from the other end
of the record.Thus, 2𝑁

𝑠
windows are obtained. (iii) Calculate

the local trend for each of the 2𝑁
𝑠
segments by a leastsquare

fit of the series and determine the variance

𝐹
2

(𝑠, ]) =
1

𝑠

𝑠

∑

𝑖=1

{𝑌 [(] − 1) 𝑠 + 𝑖] − 𝑦] (𝑖)}
2

,

𝐹
2

(𝑠, ]) =
1

𝑠

𝑠

∑

𝑖=1

{𝑌 [𝑁 − (] − 𝑁
𝑠
) 𝑠 + 𝑖] − 𝑦] (𝑖)}

2

(12)
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Table 1: The values of the inflection points.

SSECI 𝑓
𝑢
(𝜏, 𝜃) 𝑓

𝑑
(𝜏, 𝜃) 𝑓

𝑠
(𝜏, 𝜃) 𝑔

𝑢
(𝜏, 𝜃) 𝑔

𝑑
(𝜏, 𝜃)

𝜏 = 1 0.0907 0.0930 0.0930 0.0907 0.0907
𝜏 = 5 0.1928 0.1777 0.1928 0.1777 0.1777
𝜏 = 20 0.0300 0.2865 0.0300 0.2865 0.2865
𝜏 = 60 0.4988 0.5100 0.5100 0.4988 0.4988
𝜏 = 120 0.7763 0.7830 0.7830 0.7763 0.7763
𝜏 = 250 1.2555 1.2337 1.2555 1.2337 1.2337
Simulation data 𝑓

𝑢
(𝜏, 𝜃) 𝑓

𝑑
(𝜏, 𝜃) 𝑓

𝑠
(𝜏, 𝜃) 𝑔

𝑢
(𝜏, 𝜃) 𝑔

𝑑
(𝜏, 𝜃)

𝜏 = 1 0.0660 0.0720 0.0720 0.0660 0.0660
𝜏 = 5 0.1732 0.2055 0.2055 0.1732 0.1732
𝜏 = 20 0.4402 0.3465 0.4402 0.3465 0.3465
𝜏 = 60 0.7155 0.5062 0.7155 0.5062 0.5062
𝜏 = 120 0.9210 0.7620 0.9210 0.7620 0.7620
𝜏 = 250 0.9547 1.0328 1.0328 0.9547 0.9547
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Figure 3: The evolution trends of relative frequencies of the actual data for SSECI with the random variable 𝜃.

for each segment ] = 1, . . . , 𝑁
𝑠
. Here, 𝑦](𝑖) is the fitting

polynomial in segment ]. Linear, quadratic, cubic, or higher
order polynomials can be used in the fitting procedure. In this
part we denote the algorithm as MF-DFA-1. (iv) Averaging
all subsets and obtaining the 𝑞th order fluctuation function
𝐹
𝑞
(𝑠),

𝐹
𝑞
(𝑠) = {

1

2𝑁
𝑠

2𝑁𝑠

∑

]=1
[𝐹
2

(], 𝑠)]
𝑞/2

}

1/𝑞

. (13)

(v) Determine the scaling behavior of the fluctuation func-
tions by analyzing log-log plots 𝐹

𝑞
(𝑠) versus 𝑠 for each value

of 𝑞. If the series 𝑥
𝑖
are long-range power-law correlated,

𝐹
𝑞
(𝑠) increases, for large values of 𝑠, as a power-law 𝐹

𝑞
(𝑠) ∼

𝑞
ℎ(𝑞), where ℎ(𝑞) is called the generalized Hurst exponent.

The value of ℎ(0), which corresponds to the limit ℎ(𝑞) for
𝑞 → 0, cannot be determined directly using the averaging
procedure because of the diverging exponent. Instead, a
logarithmic averaging procedure has to be employed,

𝐹
0
(𝑠) ≡ exp{ 1

4𝑁
𝑠

2𝑁𝑠

∑

]=1
ln [𝐹2 (], 𝑠)]} ∼ 𝑠

ℎ(0)

. (14)

Note that ℎ(0) cannot be defined for time series with fractal
support, where ℎ(𝑞) diverges for 𝑞 ∼ 0.

For monofractal time series with compact support, ℎ(𝑞)
is independent of 𝑞, since the scaling behavior of the variance
𝐹
2

𝑠
(]) is identical for all segments ], and the averaging

procedure will give just this identical scaling behavior for
all values of 𝑞. Only if small and large fluctuations scale
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Figure 4: The evolution trends of relative frequencies of the simulation data for financial model with the random variable 𝜃.

differently, there will be a significant dependence of ℎ(𝑞) on 𝑞.
For positive values of 𝑞, ℎ(𝑞) describes the scaling behavior of
the segments with large fluctuations. For negative values of 𝑞,
ℎ(𝑞) describe the scaling behavior of the segments with small
fluctuations. Obviously, richer multifractality corresponds to
higher variability of ℎ(𝑞).Then, themultifractality degree can
be quantified by Δℎ = ℎ(𝑞min)−ℎ(𝑞max). As large fluctuations
are characterized by smaller scaling exponent ℎ(𝑞) than small
fluctuations, ℎ(𝑞) for 𝑞 < 0 are larger than those for 𝑞 > 0,
and Δ𝑞 is positively defined. The analytical relation between
the generalized Hurst exponent introduced previously and
the scaling exponent 𝜏(𝑞) defined by the standard partition
function multifractal formalism is given as [32]

𝜏 (𝑞) = 𝑞ℎ (𝑞) − 1. (15)

The singularity spectrum 𝑓(𝛼) is another way to char-
acterize the multifractality of the series. The parameter 𝛼 is
the Holder exponent or singularity strength, while 𝑓(𝛼) is
the fractal dimension of the subset of the time series with
singularities of strength equal to 𝛼. The spectrum 𝑓(𝛼) is
related with 𝜏(𝑞) via a Legendre transformation

𝛼 = 𝜏


(𝑞) , 𝑓 (𝛼) = 𝑞𝛼 − 𝜏 (𝑞) . (16)

Then it is straightforward to relate these quantities to the
generalized Hurst exponent

𝛼 = ℎ (𝑞) + 𝑞ℎ


(𝑞) , 𝑓 (𝛼) = 𝑞 [𝛼 − ℎ (𝑞)] + 1. (17)

An alternative quantifier for the multifractality degree is the
width Δ𝛼 of the singularity spectrum 𝑓(𝛼) [14, 22]. Δ𝛼 is the
width of the multifractal spectrum, Δ𝛼 = 𝛼max − 𝛼min. Δ𝛼

can statistically represent the variation ranges under scaling
invariance. While the variation of the stock price is larger,
the width of the multifractal spectrum is wider and the Δ𝛼
is larger, and vice verse.

5.2. Multifractal Analysis of Real Market and Financial Model.
In this part, we investigate the multifractal behaviors of time
series for SSECI, HSI, and the simulation data of the financial
model. We select the daily closing prices of SSECI from
August 23, 2002, toMarch 9, 2011, and the daily closing prices
of HSI from February 27, 2004, to February 17, 2012, and the
total number of observed data is about 2000 for Shanghai
Composite Index and Hang Seng Index, respectively. We also
consider the financial model with infection rate 𝜆 = 1.3, and
the corresponding simulation data with the same time length
of SSECI is selected. As mentioned above, the generalized
Hurst exponent ℎ(𝑞) can be obtained by analyzing log-log
plots of 𝐹

𝑞
(𝑠) versus 𝑠 for each 𝑞. To show this procedure,

we plot the log-log graphs of 𝐹
𝑞
(𝑠) versus 𝑠 for SSECI,

HSI, and the simulation data in Figure 5. Table 2 displays
the generalized Hurst exponents ℎ(𝑞), via the MF-DFA-2
procedure. In this analysis, 𝑞 ranges from −4 to 4 with a
step length of 0.2, the window lengths of 𝑠, are between 10

and 𝑁/1 with a step of 50, and 𝑁 is the length of the time
series. From ℎ(𝑞) and the equation in the above part, we can
obtain the corresponding singularity spectrum 𝑓(𝛼) versus 𝛼
in Figure 7(b), and the values of Δ𝛼 and Δ𝑓 are exhibited in
Table 2.

In Figure 7(a), we can see that there is a significant
dependence of ℎ(𝑞) on 𝑞 for both the real data and the
simulation data, ℎ(𝑞) for 𝑞 < 0 are larger than those for 𝑞 > 0,
and the values of Δℎ are displayed in Table 2. Since richer



8 Abstract and Applied Analysis

Table 2: Δℎ(𝑞) and Δ𝛼 for SSECI, HSI, simulation data, and their shuffled series.

Original data Shuffled data
SSECI HSI Simulation data SSECI HSI Simulation data

ℎ(𝑞)max 0.7049 0.6277 0.6195 0.7490 0.6124 0.6253
ℎ(𝑞)min 0.6238 0.4637 0.5195 0.5486 0.3980 0.4282
Δℎ(𝑞) 0.0811 0.1640 0.1000 0.2004 0.2144 0.1971
𝛼max 0.7562 0.6732 0.6538 0.7736 0.6314 0.6717
𝛼min 0.5793 0.3304 0.4555 0.4466 0.2636 0.3476
Δ𝛼 0.1768 0.3428 0.1983 0.3270 0.3678 0.3241
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Figure 5: Log-log plots of 𝐹
𝑞
(𝑠) versus 𝑠 for SSECI, HSI, and the simulation data with different 𝑞 between −4 (bottom line) and 4 (top line).

multifractality corresponds to higher variability of ℎ(𝑞), in
Table 2, we find that HSI has the multifractality degree with
Δℎ = 0.1640, where SSECI is of Δℎ = 0.0811, which indicate
that there is multifractal phenomenon in both Hang Seng
Index and Shanghai Composite Index, and themultifractality
in SHI is richer. We also compute the multifractality degree
for the simulation data of the model. From Figure 7(a)
and Table 2, we can see that ℎ(𝑞) of the simulation data is
changing with 𝑞; this shows that the simulation data has the
multifractal characteristic. The similar empirical results can
be found from the study of the corresponding singularity
spectrum 𝑓(𝛼) calculated from ℎ(𝑞). Figure 7(b) gives the
plot of 𝑓(𝛼) via 𝛼, and Table 2 displays the corresponding
values. It is known that, when the volatility of stock prices
is larger, the width of the multifractal spectrum is wider and
the Δ𝛼 is larger, and vice verse. HSI has the multifractal
spectrum with Δ𝛼 = 0.3428, while Δ𝛼 = 0.1768 for SSECI
and Δ𝛼 = 0.1983 for the simulation data. This indicates that
there is the multifractality in the real data and the simulation
data, corresponding with the study of ℎ(𝑞).

Evidence inmany existed works shows that Chinese stock
markets are multifractal. The empirical results [37–39] have
indicated that the long-range nonlinear correlations generate
multifractality. To give further evidences, we will compare
the multifractality between original series and randomly
shuffled series. We shuffle the return time series by Zipf ’s law,

which is introduced in Section 4.1 of the present paper, and
comparatively study the multifractality on the original return
time series and the shuffled return time series (by Zipf ’s law).
For an original return time series 𝑟 = {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑘
, . . .},

we shuffle this return time series into a new corresponding
return time series according to the ranges of small and large
fluctuations. In the details, let 𝑅

1
= {𝑟
1,1
, 𝑟
1,2
, . . . 𝑟
1,𝑘
, . . .} such

that |𝑟| < 0.01, 𝑅
1
is a subsequence of 𝑟, and assume that the

order of elements in𝑅
1
follows the order of the corresponding

elements in 𝑟.The length of the subsequence𝑅
1
is the number

of elements in 𝑅
1
. Similarly, we consider the subsequence 𝑅

2

with 0.01 ≤ |𝑟| < 0.015, 𝑅
3
with 0.015 ≤ |𝑟| < 0.03, and

𝑅
4
with |𝑟| ≥ 0.03. In the above procedure, we divide the

original return time series into four subsequences, and then
we arrange these four sequences by their length from the
longest to the shortest. Thus we invent the new time series,
which is shuffled by the method (or idea) of Zipf ’s law. For
example, an original return time series of SSECI is plotted in
Figure 6(a), and the shuffled return time series of SSECI by
the above method is exhibited in Figure 6(b), that is, 𝑅

1
, 𝑅
3
,

𝑅
2
, and 𝑅

4
.

From the empirical research in Figures 7(a) and 7(b), they
exhibit that there is the multifractility in the shuffled return
time series. In Table 2, we find that the multifractality in
shuffled time series is richer than that in the original ones,
which is probably that the long-range dependence of small
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Figure 6: (a) The plot of an original return time series of SSECI; (b) the plot of the shuffled series return time of SSECI, that is, 𝑅
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Figure 7: (a) The plot of Hurst exponent 𝐻(𝑞) versus 𝑞 for SSECI, HSI, the simulation data, and their shuffled series; (b) the plot of the
corresponding singularity spectrum 𝑓(𝛼) versus 𝛼.

and large fluctuations in the series shuffled by Zipf ’s law is
stronger. From these results, it may suggest that Zipf ’s law
contributes the long-range dependence of small and large
fluctuations of return time series.

6. Conclusion

In this present paper, we develop a random stock price
model by the interacting contact process. We apply MF-
DFA analysis and Zipf analysis to investigate the multifractal

characteristic and Zipf distribution of returns and price
changes for the financial model. Moreover, we also consider
the corresponding behaviors of daily returns for Shanghai
Composite Index andHang Seng Index, and the comparisons
of statistical behaviors of returns between the actual data
and the simulation data are exhibited. We analyze and
show the statistical properties of ensembles and specifics of
returns by Zipf method for different values of the param-
eters. And the empirical research shows an evidence that
there is the multifractal character for both the real market
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and the financial model by analyzing the Hurst exponent
and the singularity spectrum of returns time series. We
also show the multifractality of shuffled return time series
by Zipf ’s law. We find that the shuffled series have richer
multifractality than the original series. These all indicate that
there are multifractal phenomenon and Zipf distribution in
both Chinese stock markets and the financial model, which
also implies that the financial model of the present paper is
reasonable for the real stock market to some extent.
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