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We study the analytic property of the (generalized) quadratic derivative Ginzburg-Landau equation (1/2 ⩽ 𝛼 ⩽ 1) in any spatial
dimension 𝑛 ⩾ 1 with rough initial data. For 1/2 < 𝛼 ⩽ 1, we prove the analyticity of local solutions to the (generalized) quadratic
derivative Ginzburg-Landau equation with large rough initial data in modulation spaces 𝑀1−2𝛼

𝑝,1
(1 ⩽ 𝑝 ⩽ ∞). For 𝛼 = 1/2,

we obtain the analytic regularity of global solutions to the fractional quadratic derivative Ginzburg-Landau equation with small
initial data in 𝐵̇0

∞,1
(R𝑛) ∩𝑀0

∞,1
(R𝑛). The strategy is to develop uniform and dyadic exponential decay estimates for the generalized

Ginzburg-Landau semigroup 𝑒−(𝑎+𝑖)𝑡(−Δ)
𝛼

to overcome the derivative in the nonlinear term.

1. Introduction

In this paper, we are interested in the Cauchy problem
of the following generalized quadratic derivative complex
Ginzburg-Landau equation (GDGL):

𝑢
𝑡
+ (𝑎 + 𝑖) (−Δ)

𝛼
𝑢 − ⃗𝛾 ⋅ ∇ (𝑢

2
) = 0, 𝑢 (0, 𝑥) = 𝑢

0
(𝑥) ,

(1)

where 𝑢 is a complex valued function of (𝑡, 𝑥) ∈ R+ × R𝑛,
R+ = [0,∞), 𝑛 ⩾ 1. 𝑎 > 0 is the dissipative coefficient,
1/2 ⩽ 𝛼 ⩽ 1. ⃗𝛾 is a given complex vector inR𝑛. 𝑢

0
(𝑥) is a given

complex valued function of 𝑥 ∈ R𝑛. 𝑢
𝑡
= 𝜕𝑢/𝜕𝑡 and (−Δ)𝛼

denotes the fractional Laplacian defined by (̂−Δ)𝛼𝑢(𝑡, 𝜉) =
|𝜉|2𝛼𝑢̂(𝑡, 𝜉). It is well known that (1) can be rewritten into an
integral equation as follows:

𝑢 (𝑡) = 𝐺
2𝛼
(𝑡) 𝑢

0
+A

2𝛼
( ⃗𝛾 ⋅ ∇ (𝑢

2
)) , (2)

where

𝐺
2𝛼
(𝑡) := 𝑒

−(𝑎+𝑖)𝑡(−Δ)
𝛼

= F
−1
𝑒
−(𝑎+𝑖)𝑡|𝜉|

2𝛼

F,

(A
2𝛼
𝑓) (𝑡) := ∫

𝑡

0

𝐺
2𝛼
(𝑡 − 𝜏) 𝑓 (𝜏, 𝑥) 𝑑𝜏.

(3)

Complex Ginzburg-Landau type equation is one of the
most-studied equations in physics. It describes a lot of phe-
nomena including nonlinear waves and the evolution of
amplitudes of unstable modes for any process exhibiting a
Hopf bifurcation. GDGL (1) is also called derivative fractional
Ginzburg-Landau equation. For details of physical back-
grounds of the fractional Ginzburg-Landau equation (1),
one can refer to [1–3]. Equation (1) is both dissipative and
dispersive. If 𝛼 = 1, (1) is the quadratic derivative Ginzburg-
Landau equation (QDGL):

𝑢
𝑡
− (𝑎 + 𝑖) Δ𝑢 − ⃗𝛾 ⋅ ∇ (𝑢

2
) = 0, 𝑢 (0, 𝑥) = 𝑢

0
(𝑥) . (4)

If 𝛼 = 1, 𝑎 = 0, (1) reduces to the well-known quadratic deri-
vative Schrödinger equation (DNLS):

𝑢
𝑡
− 𝑖Δ𝑢 − ⃗𝛾 ⋅ ∇ (𝑢

2
) = 0, 𝑢 (0, 𝑥) = 𝑢

0
(𝑥) . (5)

For DNLS (5), Christ [4] proved that when space dimen-
sion 𝑛 = 1, the flow map 𝑢

0
→ 𝑢 is not continuous in any

Sobolev space 𝐻𝑠(R1) with any exponent 𝑠 for any short
time in the sense that ‖𝑢

0
‖
𝐻
𝑠 ≪ 1 but ‖𝑢(𝑡)‖

𝐻
𝑠 ≫ 1 after

an arbitrarily short time. For (5), Stefanov [5] established in
one space dimension the existence of local solution in 𝐻1

with small total disturbance 𝑢
0
in 𝐻1(R1) ∩ 𝐿1(R1) ∩ {𝑓 :
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sup
𝑥
| ∫

𝑥

−∞
𝑓(𝑦)𝑑𝑦| ⩽ 𝜀}. Han et al. [6] showed that (4) and (5)

are locally well-posed in modulation space 𝑀3

1,1
(R𝑛) under

the small condition of ‖𝑢
0
‖
𝐿
1 norm and they obtained the

inviscid limit behavior between the solutions of (4) and (5)
with initial data in𝑀3

1,1
(R𝑛) as the dissipative parameter 𝑎 →

0. For general 𝛼, to the knowledge of the author, there are few
results on (1). In this paper, we will study the analyticity of
solutions of (1) for 1/2 ⩽ 𝛼 ⩽ 1 with rough initial data in
certain modulation space. In the case 1/2 < 𝛼 ⩽ 1, we prove
that the local solution of (1) is real analytic with initial data
in𝑀1−2𝛼

𝑝,1
(1 ⩽ 𝑝 ⩽ ∞); in the case 𝛼 = 1/2, we show that (1)

is globally well-posed with small initial data in𝑀0

∞,1
∩ 𝐵̇0

∞,1

andmoreover the global solution of (1) is real analytic for any
𝑡 > 0.

We now briefly sketch the idea of the proof. The basic
strategy is to choose the working space to be some time dep-
endent type exponential modulation space, say 𝐿̃∞

(𝐼; 𝐸
𝑠

𝑝,𝑞
)

with 𝑠 > 0, and consider the map:

T : 𝑢 (𝑡) 󳨀→ 𝐺
2𝛼
(𝑡) 𝑢

0
+A

2𝛼
( ⃗𝛾 ⋅ ∇) 𝑢

2
; (6)

then use the standard contraction mapping method to prove
that there exists a unique solution in this space. Due to the
nice property of 𝐸𝑠

𝑝,𝑞
, the solution is naturally analytic for any

𝑠 > 0. However, the main obstacle comes from the derivative
in the nonlinear term. To resolve this difficulty, our idea is
to make full use of the strong dissipative property of GDGL
(1) when 𝑎 > 0. Motivated by the work in [7, 8], we prove
two exponential decay estimates of the generalizedGinzburg-
Landau semigroup 𝐺

2𝛼
(𝑡) = 𝑒−(𝑎+𝑖)𝑡(−Δ)

𝛼

combined with freq-
uency uniform decomposition operator ◻

𝑘
and frequency

dyadic decomposition operator Δ
𝑗
:

󵄩󵄩󵄩󵄩◻𝑘
𝐺

2𝛼
(𝑡)𝑓

󵄩󵄩󵄩󵄩𝑝 ≲ 𝑒
−2𝑐𝑎𝑡|𝑘|

2𝛼󵄩󵄩󵄩󵄩◻𝑘
𝑓
󵄩󵄩󵄩󵄩𝑝,

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

2𝛼
(𝑡) 𝑓

󵄩󵄩󵄩󵄩󵄩𝑝
≲ 𝑒

−𝑐𝑎𝑡2
2𝛼𝑗󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝
, 1 ⩽ 𝑝 ⩽ ∞,

(7)

for all 𝑓 ∈ 𝐿
𝑝. Then we gain 2𝛼 derivative in space from (7)

in suitable space time norm which is sufficient to balance the
one order derivative in the nonlinear term. More precisely,
when 1/2 < 𝛼 ⩽ 1, we choose the resolution space asD = {𝑢 :

𝐿̃2𝛼/(2𝛼−1)(𝐼; 𝐸𝑐𝑎𝑡

𝑝,1
) ⩽ 𝛿} and establish some linear estimates of

𝐺
2𝛼
(𝑡) andA

2𝛼
𝑓 in this space like

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,A;𝐸
𝑐𝑎𝑡

𝑝,1
)
≲ ∑

𝑘∈A

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝,

A ⊂ Z
𝑛
\ {0} ,

󵄩󵄩󵄩󵄩◻0
𝐺

2𝛼
(𝑡)𝑢

0

󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

𝐿
𝑝

𝑥

≲ |𝐼|
(2𝛼−1)/(2𝛼)󵄩󵄩󵄩󵄩◻0

𝑢
0

󵄩󵄩󵄩󵄩𝑝.

(8)

AndA
2𝛼
𝑓 satisfies similar estimates. Since

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,{𝑘:|𝑘|<𝐽};𝐸
𝑐𝑎𝑡

𝑝,1
)

⩽ 𝐶|𝐼|
(2𝛼−1)/2𝛼

⟨𝐽⟩
2𝛼−1󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

,
(9)

one can choose |𝐼| sufficiently small to make sure that

𝐶|𝐼|
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

⩽
𝛿

4
, (10)

and finally verify that T is a contractive map on D
which ensures that (1) has a local solution satisfying
‖𝑢‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽ 𝛿. Moreover, we can prove that

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼

𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+ 𝛿
2
, (11)

which implies that (𝐼 − Δ)(1−2𝛼)/2
𝑢 ∈ 𝐿̃∞(𝐼, 𝐸𝑐𝑎𝑡

𝑝,1
) and hence

the local solution is analytic for any 𝑡 > 0. However, when 𝛼 =
1/2, it is impossible to choose 𝐼 satisfying (10). To make this
bound valid, one needs to impose additional small condition
on ‖𝑢

0
‖
𝑀
0

𝑝,1

. Then we will only obtain the existence of local
solution with small initial data which is not ideal. So we
intend to seek for different approach in this critical situation.
The preferred working space would be {𝑢 : ‖𝑢‖

𝐿̃
∞

(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
⩽ 𝛿}.

But when we bound
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

≲

𝑛

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑗

𝑢
󵄩󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛

⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

‖𝑢‖
𝐿̃
∞

(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)
,

(12)

it is easy to see that to control the right-hand side of (12),
∑

𝑛

𝑗=1
‖𝜕

𝑥
𝑗

𝑢‖
𝐿̃
1
(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

should be involved in the working
space. So, the natural working space would be D = {𝑢 :

‖𝑢‖
𝑌
⩽ 𝛿} where ‖𝑢‖

𝑌
= ∑

𝑛

𝑖=1
‖𝜕

𝑥
𝑖

𝑢‖
𝐿̃
1
(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
+ ‖𝑢‖

𝐿̃
∞

(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
.

However, the obstacle comes again. The following low fre-
quency projection term could not be bounded in this working
space:
󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

A
1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼

𝐿
∞

𝑥

+
󵄩󵄩󵄩󵄩󵄩
◻

0
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼

𝐿
∞

𝑥

. (13)

To overcome this difficulty, our idea is to make use of the
property ‖◻

0
𝑓‖

∞
≲ ‖𝑓‖

∞
≲ ‖𝑓‖

𝐵̇
0

∞,1

and bound (13) by

󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)
+
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;𝐵̇
0

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇0
∞,1

)
≲
󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)

≲ ‖𝑢‖
𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
‖𝑢‖

𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)
.

(14)

Then the time dependent type Besov norm ‖𝑢‖
𝑋

=

‖𝑢‖
𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)∩𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
should be included in the working

space. So, finally we choose the resolution space as

D = {𝑢 : ‖𝑢‖
𝑋
+ ‖𝑢‖𝑌 ⩽ 𝛿} . (15)

The corresponding condition imposed on the initial data
would be stronger, 𝑢

0
∈ 𝑀0

∞,1
∩ 𝐵̇0

∞,1
, and sufficiently small.
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In Section 4, we develop estimates in this resolution space
and combine them with the contraction mapping argument;
finally we show that there exists a unique global solution to
(1) inD which is naturally analytic for 𝑡 > 0.

Now let us recall some notations and basic facts that will
be used in the sequel. 𝐶 ⩾ 1, 𝑐 ⩽ 1 will denote universal
positive constants which can be different at different places.
𝑋 ≲ 𝑌 (for 𝑋,𝑌 > 0) means that 𝑋 ⩽ 𝐶𝑌. For any 𝑥 ∈ R𝑛,
we write |𝑥|

𝑝
= (|𝑥

1
|𝑝 + ⋅ ⋅ ⋅ + |𝑥

𝑛
|𝑝)

1/𝑝 and |𝑥| = |𝑥|
2
. Now

we introduce some spaces. We denote by 𝐿𝑝 = 𝐿𝑝(R𝑛) the
Lebesgue space on which the norm is written as ‖ ⋅ ‖

𝑝
. Let 𝑋

be a Banach space. For any 𝐼 ⊂ R+, we define

‖𝑢‖𝐿𝛾(𝐼;𝑋)
= (∫

𝐼

‖𝑢 (𝑡, ⋅)‖
𝛾

𝑋
𝑑𝑡)

1/𝛾

(16)

for 1 ⩽ 𝛾 < ∞ and with usual modification for 𝛾 = ∞. If
𝑋 = 𝐿𝑝, wewill write ‖𝑢‖

𝐿
𝛾

𝑡∈𝐼
𝐿
𝑝

𝑥

= ‖𝑢‖
𝐿
𝛾
(𝐼;𝐿
𝑝
)
and simply denote

‖𝑢‖
𝐿
𝛾

𝑡
𝐿
𝑝

𝑥

if 𝐼 = [0, +∞). Now let us recall the notation and defi-
nitions in Littlewood-Paley theory [9]. Let 𝜓 : R𝑛 → [0, 1]

be a smooth radial cutoff function satisfying

𝜓 (𝜉) =

{{

{{

{

1,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⩽ 1,

smooth, 1 <
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 < 2,

0,
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨 ⩾ 2.

(17)

Denote 𝜑(𝜉) := 𝜓(𝜉) − 𝜓(2𝜉) and we introduce the function
sequence 𝜑

𝑘
(𝜉) = 𝜑(2

−𝑘
𝜉), 𝑘 ∈ Z. Then Δ

𝑘
:= F−1

𝜑
𝑘
F,

𝑘 ∈ Z, are said to be the homogeneous dyadic decomposition
operators and satisfying the operator identity: 𝐼 = ∑+∞

𝑘=−∞
Δ

𝑘
.

The low frequency projection operators 𝑆
𝑘
are defined by

𝑆
𝑘
:= ∑

𝑘

𝑗=−∞
Δ

𝑗
. It is easy to see that 𝑆

𝑘
𝑢 → 𝑢 as 𝑘 → ∞

in the sense of distributions. With this decomposition, the
norms in homogeneous Besov spaces are defined as follows:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑠
𝑝,𝑞

=

{{{{{

{{{{{

{

(

+∞

∑
𝑗=−∞

2
𝑗𝑠𝑞󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑞

𝑝
)

1/𝑞

, if 𝑞 < ∞,

sup
−∞<𝑗<+∞

2𝑗𝑠󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝
, if 𝑞 = ∞.

(18)

And the space time homogenous Besov norms are defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾(𝐼;𝐵̇𝑠

𝑝,𝑞
)
= (

+∞

∑
𝑗=−∞

2
𝑗𝑠𝑞󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝛾

𝑡∈𝐼
𝐿
𝑝

𝑥

)

1/𝑞

< ∞ (19)

with the usual modification for 𝑞 = ∞. Such a kind of space
was first used in Chemin [10]. It is easy to see by Minkowski
inequality that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾(𝐼;𝐵̇𝑠

𝑝,𝑞
)

{

{

{

⩽
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝛾(𝐼;𝐵̇𝑠

𝑝,𝑞
)
, if 𝛾 ⩽ 𝑞,

⩾
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝛾(𝐼;𝐵̇𝑠

𝑝,𝑞
)
, if 𝛾 ⩾ 𝑞.

(20)

We now recall the definition of Modulation space which
was first introduced by Feichtinger [11] in 1983 (see also

Gröchenig [12]). Let 𝜎 be a smooth cutoff function with
supp 𝜎 ⊂ [−3/4, 3/4]

𝑛, 𝜎
𝑘
= 𝜎(⋅ − 𝑘), and

∑
𝑘∈Z𝑛

𝜎
𝑘
(𝜉) ≡ 1, ∀𝜉 ∈ R

𝑛
. (21)

Then the frequency uniform decomposition operator ◻
𝑘
is

defined as

◻
𝑘
= F

−1
𝜎

𝑘
F, 𝑘 ∈ Z

𝑛
. (22)

Using this decomposition operator, for any 0 < 𝑝, 𝑞 ⩽ ∞,
𝑠 ∈ R, we define

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝑠
𝑝,𝑞

= ( ∑
𝑘∈Z𝑛

⟨𝑘⟩
𝑠𝑞󵄩󵄩󵄩󵄩◻𝑘

𝑓
󵄩󵄩󵄩󵄩
𝑞

𝑝
)

1/𝑞

, (23)

with usual modification for 𝑞 = ∞. 𝑀𝑠

𝑝,𝑞
is said to be a

modulation space and it has been successfully applied to
study nonlinear evolutions in recent years [8, 13–16]. Let 0 <
𝑝, 𝑞 ⩽ ∞, 𝑠 ⩾ 0; the exponential modulation space 𝐸𝑠

𝑝,𝑞
was

introduced in [8] with the following norm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐸𝑠
𝑝,𝑞

= (∑
𝑘

2
𝑞𝑠|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓
󵄩󵄩󵄩󵄩
𝑞

𝑝
)

1/𝑞

. (24)

We remark that when 𝑠 > 0, this space can be viewed as
modulation space with analytic regularity and when 𝑠 = 0,
it reduces to normal modulation space𝑀0

𝑝,𝑞
.

Let 𝛼 = (𝛼
1
, . . . , 𝛼

𝑛
), 𝛼! = 𝛼

1
! . . . 𝛼

𝑛
! and 𝜕𝛼 = 𝜕𝛼

1

𝑥
1

. . . 𝜕𝛼
𝑛

𝑥
𝑛

.
Recall that the Gevrey class is defined as follows:

𝐺
1,𝑝
= {𝑓 ∈ 𝐶

∞
(R

𝑛
) :

∃
𝜌,𝑀 > 0

s.t. 󵄩󵄩󵄩󵄩𝜕
𝛼
𝑓(𝑥)

󵄩󵄩󵄩󵄩𝑝 ⩽
𝑀𝛼!

𝜌|𝛼|
, ∀𝛼 ∈ Z

𝑛

+
, 𝑥 ∈ R

𝑛
} .

(25)

It is proved that 𝐺
1,∞

is the Gevrey 1-class and any function
in this space is real analytic [17]. One can easily check that
𝐺

1,𝑝
1

⊂ 𝐺
1,𝑝
2

for𝑝
1
⩽ 𝑝

2
.Therefore, any function in𝐺

1,𝑝
(0 <

𝑝 ⩽ ∞) is real analytic. There is a very nice relationship
between Gevrey class and exponential modulation spaces
which is shown in Huang and Wang [7].

Lemma 1. Let 0 < 𝑝, 𝑞 ⩽ ∞. Then

𝐺
1,𝑝
= ⋃

𝑠>0

𝐸
𝑠

𝑝,𝑞
. (26)

Remark 2. From this property we easily see that if we can
prove the solution in exponential modulation space 𝐸𝑠

𝑝,𝑞
with

positive regularity, then it is naturally analytic.

Inspired by (19), we define the following space time expo-
nential modulation norm:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾(𝐼;𝐸𝑠

𝑝,𝑞
)
= ( ∑

𝑘∈Z𝑛

󵄩󵄩󵄩󵄩󵄩
2
𝑠|𝑘|
◻

𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝛾

𝑡∈𝐼
𝐿
𝑝

𝑥

)

1/𝑞

(27)

with usual modification if 𝑞 = ∞.
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In the end, let us recall the definition of multiplier space
𝑀

𝑝
[18, 19]. Let 𝜌 ∈ S󸀠. If there exists a 𝐶 > 0 such that

‖F−1𝜌F𝑓‖
𝐿
𝑝 ⩽ 𝐶‖𝑓‖

𝐿
𝑝 holds for all 𝑓 ∈ S, then 𝜌 is called

a Fourier multiplier on 𝐿𝑝. The linear space of all multipliers
on 𝐿𝑝 is denoted by𝑀

𝑝
and the norm on which is defined as

‖𝜌‖
𝑀
𝑝

= sup{‖F−1𝜌F𝑓‖
𝐿
𝑝 : 𝑓 ∈ S, ‖𝑓‖

𝐿
𝑝 = 1}. Concerning

the multipliers, there holds the following famous inequality
which is also called the multiplier theorem.

Proposition 3 (see [9], Nikol’skij’s inequality). LetΩ ⊂ R𝑛 be
a compact set, 0 < 𝑟 ⩽ ∞. Denote 𝜎

𝑟
= 𝑛(1/(𝑟 ∧ 1) − 1/2) and

assume that 𝑠 > 𝜎
𝑟
. Then there exists a constant 𝐶 > 0 such

that
󵄩󵄩󵄩󵄩󵄩
F

−1
𝜑F𝑓

󵄩󵄩󵄩󵄩󵄩𝑟
⩽ 𝐶

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩𝐻𝑠

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑟 (28)

holds for all 𝑓 ∈ 𝐿𝑟

Ω
:= {𝑓 ∈ 𝐿𝑟 : supp𝑓 ⊂ Ω} and 𝜑 ∈ 𝐻𝑠. In

particular, if 𝑟 ⩾ 1, then (28) holds for all 𝑓 ∈ 𝐿𝑟.

The remaining part of this paper is organized as follows.
In Section 2, we develop two decay estimates (7) associ-
ated with the generalized Ginzburg-Landau semigroup. In
Section 3, we prove the analytic regularity property of the
solutions to (1) when 1/2 < 𝛼 ⩽ 1. In Section 4, we deal with
the analytic property of (1) in the critical case𝛼 = 1/2. Finally,
a short conclusion is given in Section 5.

2. Decay Estimates for GCGL Semigroup

In this part, we will set up some decay estimates for the gen-
eralized Ginzburg-Landau semigroup 𝐺

2𝛼
(𝑡) = 𝑒−(𝑎+𝑖)𝑡(−Δ)

𝛼

together with the frequency uniformdecomposition operator
◻

𝑘
and the dyadic operators Δ

𝑗
. As explained in the intro-

duction, these estimates are crucial to the proof of the main
theorems.

Proposition 4 (uniform decay estimate). Suppose that 1 ⩽

𝑝 ⩽ ∞, 1/2 ⩽ 𝛼 ⩽ 1, 𝑎 > 0. Then there exists 𝑐 > 0 (say
0 < 𝑐 ⩽ 2−10) such that

󵄩󵄩󵄩󵄩◻𝑘
𝐺

2𝛼
(𝑡)𝑓

󵄩󵄩󵄩󵄩𝑝 ≲ 𝑒
−2𝑐𝑎𝑡|𝑘|

2𝛼󵄩󵄩󵄩󵄩◻𝑘
𝑓
󵄩󵄩󵄩󵄩𝑝 (29)

holds for all 𝑓 ∈ 𝐿𝑝 and 𝑘 ∈ Z𝑛.

Proof. First, we choose a smooth cutoff function 𝜎̃ : R𝑛 →

[0, 1] satisfying 𝜎̃(𝜉) = 1 for |𝜉|
∞
⩽ 3/4 and 𝜎̃(𝜉) = 0 for

|𝜉|
∞
> 7/8. It is easy to see that 𝜎̃ equals 1 on the support of 𝜎

and has similar property as 𝜎. Applying this fact, we deduce
that
󵄩󵄩󵄩󵄩◻𝑘

𝐺
2𝛼
(𝑡) 𝑓

󵄩󵄩󵄩󵄩𝑝

=
󵄩󵄩󵄩󵄩󵄩󵄩
F

−1
𝜎 (𝜉 − 𝑘) 𝜎̃ (𝜉 − 𝑘) 𝑒

−𝑡(𝑎+𝑖)|𝜉|
2𝛼

F𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝑝

=
󵄩󵄩󵄩󵄩󵄩󵄩
F

−1
𝜎̃ (𝜉 − 𝑘) 𝑒

−𝑡(𝑎+𝑖)|𝜉|
2𝛼

FF
−1
𝜎 (𝜉 − 𝑘)F𝑓

󵄩󵄩󵄩󵄩󵄩󵄩𝑝

≲
󵄩󵄩󵄩󵄩󵄩󵄩
𝜎̃(𝜉 − 𝑘)𝑒

−𝑡(𝑎+𝑖)|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝑀

𝑝

󵄩󵄩󵄩󵄩◻𝑘
𝑓
󵄩󵄩󵄩󵄩𝑝.

(30)

In view of Nikol’skij’s inequality,
󵄩󵄩󵄩󵄩󵄩󵄩
𝜎̃(𝜉 − 𝑘)𝑒

−𝑡(𝑎+𝑖)|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝑀

𝑝

≲
󵄩󵄩󵄩󵄩󵄩󵄩
𝜎̃ (𝜉) 𝑒

−𝑡(𝑎+𝑖)|𝜉+𝑘|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝐻𝐿

,

𝐿 >
𝑛

2
.

(31)

Since for |𝑘| ⩾ 1, applying Leibniz’s Rule, we infer that

𝜕
𝐿

𝜉
𝑖

(𝜎̃ (𝜉) 𝑒
−𝑡(𝑎+𝑖)|𝜉+𝑘|

2𝛼

)

= ∑
𝐿
1
+𝐿
2
=𝐿

𝐶
𝐿𝛽𝛾
𝜕
𝐿
1

𝜉
𝑖

𝜎̃ (𝜉) 𝜕
𝐿
2

𝜉
𝑖

𝑒
−𝑡(𝑎+𝑖)|𝜉+𝑘|

2𝛼

,
(32)

where
󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝐿
2

𝜉
𝑖

𝑒
−(𝑎+𝑖)𝑡|𝜉+𝑘|

2𝛼 󵄨󵄨󵄨󵄨󵄨󵄨

≲
󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−(𝑎+𝑖)𝑡|𝜉+𝑘|

2𝛼 󵄨󵄨󵄨󵄨󵄨󵄨

× ∑
𝛽
1
+⋅⋅⋅+𝛽𝑞=𝐿2

1⩽𝑞⩽𝛾

󵄨󵄨󵄨󵄨󵄨󵄨
𝜕
𝛽
1

𝜉
𝑖

[(𝑎 + 𝑖) 𝑡
󵄨󵄨󵄨󵄨𝜉 + 𝑘

󵄨󵄨󵄨󵄨
2𝛼

]

⋅ ⋅ ⋅ 𝜕
𝛽
𝑞

𝜉
𝑖

[(𝑎 + 𝑖) 𝑡
󵄨󵄨󵄨󵄨𝜉 + 𝑘

󵄨󵄨󵄨󵄨
2𝛼

]
󵄨󵄨󵄨󵄨󵄨󵄨

≲ 𝑒
−𝑎𝑡|𝜉+𝑘|

2𝛼

/2
.

(33)

Due to the support property supp 𝜎̃(𝜉) ⊂ [−7/8, 7/8]𝑛, (30)–
(33), we conclude that, for |𝑘| ⩾ 1,

󵄩󵄩󵄩󵄩󵄩󵄩
𝜎̃(𝜉 − 𝑘)𝑒

−𝑡(𝑎+𝑖)|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝑀

𝑝

≲ 𝑒
−𝑎𝑡|𝑘|

2𝛼

/64
. (34)

Note that (34) also holds for 𝑘 = 0. Hence, we complete the
proof of (29).

Proposition 5 (dyadic decay estimate). Suppose that 1 ⩽ 𝑝 ⩽
∞, 1/2 ⩽ 𝛼 ⩽ 1, 𝑎 > 0. Then there exists 𝑐 > 0 (say 0 < 𝑐 ⩽
2−10) such that

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

2𝛼
(𝑡)𝑓

󵄩󵄩󵄩󵄩󵄩𝑝
≲ 𝑒

−𝑐𝑎𝑡2
2𝛼𝑗󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝

(35)

holds for all 𝑓 ∈ 𝐿𝑝.

Proof. When 𝑎 > 0, Ginzburg-Landau semigroup
𝑒−𝑡(𝑎+𝑖)(−Δ)

2𝛼

is strong dissipative. Using the exponential decay
property of 𝑒−𝑎𝑡|𝜉|

2𝛼

andNikol’skij’s inequality, we deduce that,
for 𝐿 > 𝑛/2,

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

2𝛼
(𝑡) 𝑓

󵄩󵄩󵄩󵄩󵄩𝑝
⩽
󵄩󵄩󵄩󵄩󵄩󵄩
𝜑

𝑗
(𝜉) 𝑒

−(𝑎+𝑖)𝑡|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝑀

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝜉) 𝑒

−(𝑎+𝑖)𝑡2
2𝛼𝑗

|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝑀

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

≲
󵄩󵄩󵄩󵄩󵄩󵄩
𝜑 (𝜉) 𝑒

−(𝑎+𝑖)𝑡2
2𝛼𝑗

|𝜉|
2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝐻𝐿

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

≲ 𝑒
−𝑐𝑎𝑡2

2𝛼𝑗󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝.

(36)
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By the support property of dyadic decomposition operator
Δ

𝑗
, there holds the following identity:

Δ
𝑗
= Δ

𝑗
(Δ

𝑗−1
+ Δ

𝑗
+ Δ

𝑗+1
) , (37)

so
󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

2𝛼
(𝑡)𝑓

󵄩󵄩󵄩󵄩󵄩𝑝
≲ 𝑒

−𝑐𝑎𝑡2
2𝛼𝑗󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝
. (38)

This completes the proof as desired.

3. Analytic Regularity for GDGL: 1/2<𝛼 ⩽ 1

Themain results of this paper are the following theorems.

Theorem 6 (analyticity for QDGL). Let 𝛼 = 1, 1 ⩽ 𝑝 ⩽ ∞,
𝑎 > 0, and 𝑛 ⩾ 1. Assume that 𝑢

0
∈ 𝑀−1

𝑝,1
. Then there exists

a 𝑇max = 𝑇max(𝑢0
) > 0 such that (1) has a unique solution

𝑢 ∈ 𝐿̃2

𝑙𝑜𝑐
(0, 𝑇max; 𝐸

𝑐𝑎𝑡

𝑝,1
), 𝑐 = 2−10. Moreover, the solution enjoys

the following properties.

(i) (𝐼 − Δ)−1/2
𝑢 ∈ 𝐿̃∞([0, 𝑇max); 𝐸

𝑐𝑎𝑡

𝑝,1
).

(ii) If 𝑇max < ∞, we have ‖𝑢‖
𝐿̃
2
(0,𝑇max ;𝐸

𝑐𝑎𝑡

𝑝,1
)
= ∞.

Theorem 7 (analyticity for GDGL (I)). Let 1/2 < 𝛼 < 1, 1 ⩽
𝑝 ⩽ ∞, 𝑎 > 0, 𝑛 ⩾ 1. Suppose that 𝑢

0
∈ 𝑀1−2𝛼

𝑝,1
. There exists

a 𝑇max = 𝑇max(𝑢0
) > 0 such that (1) has a unique solution

𝑢 ∈ 𝐿̃
2𝛼/(2𝛼−1)

𝑙𝑜𝑐
(0, 𝑇max; 𝐸

𝑐𝑎𝑡

𝑝,1
), 𝑐 = 2−10. Moreover, the solution

satisfies the following properties.

(i) (𝐼 − Δ)(1−2𝛼)/2
𝑢 ∈ 𝐿̃∞([0, 𝑇max); 𝐸

𝑐𝑎𝑡

𝑝,1
).

(ii) If 𝑇max < ∞, then ‖𝑢‖
𝐿̃
2𝛼/(2𝛼−1)

(0,𝑇max ;𝐸
𝑐𝑎𝑡

𝑝,1
)
= ∞.

Theorems 6 and 7 tell us that when 1/2 < 𝛼 ⩽ 1, (1)
is locally well-posed with any initial data in 𝑀1−2𝛼

𝑝,1
and

moreover the local solution is analytic. However, the method
used forTheorems 6 and 7 does not work for the critical case:
𝛼 = 1/2. We need to impose stronger conditions on the initial
data, that is, 𝑢

0
∈ 𝐵̇0

∞,1
∩ 𝑀0

∞,1
and be sufficiently small.

We remark that there is no inclusion between 𝐵̇0

∞,1
and𝑀0

∞,1

since 𝑆
1
𝐵̇−1

∞,1
⊂ 𝑆

1
𝑀−1

∞,1
while (𝐼 − 𝑆

1
)𝑀−1

∞,1
⊂ (𝐼 − 𝑆

1
)𝐵̇−1

∞,1
.

Theorem 8 (analyticity for GDGL (II)). Let 𝛼 = 1/2, 𝑎 > 0,
and 𝑛 ⩾ 1. Assume that 𝑢

0
∈ 𝐵̇0

∞,1
∩ 𝑀0

∞,1
is sufficiently small;

then there exists a unique global solution 𝑢 to (1) satisfying 𝑢 ∈
𝐿̃∞(R+; 𝐸

𝑠(𝑡)

∞,1
) and 𝜕

𝑥
𝑖

𝑢 ∈ 𝐿̃1(R+; 𝐸
𝑠(𝑡)

∞,1
)with 𝑠(𝑡) = 2−5(𝑎∧𝑎𝑡).

Theorem 8 states that (1) is globally well-posed with small
initial data in 𝑢

0
∈ 𝐵̇0

∞,1
∩ 𝑀0

∞,1
and the solution 𝑢(𝑡) is

actually real analytic for any 𝑡 > 0.
In this section, we unify the proof of Theorems 6 and 7

in one part. The proof of Theorem 8 is left to Section 4. For
convenience, we denote, for any A ⊂ Z𝑛,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝑞(𝐼,A;𝐸

𝑠

𝑝,𝑞
)
= (∑

𝑘∈A

󵄩󵄩󵄩󵄩󵄩
2
𝑠|𝑘|
◻

𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑞

𝑡∈𝐼
𝐿
𝑝

𝑥

)

1/𝑞

. (39)

We first build up some linear estimates for 𝐺
2𝛼
(𝑡) and

A
2𝛼
𝑓(𝑡, 𝑥) = ∫

𝑡

0
𝐺

2𝛼
(𝑡 − 𝜏)𝑓(𝜏, 𝑥)𝑑𝜏.

Proposition 9. Let 1 ⩽ 𝑝 ⩽ ∞, 1/2 < 𝛼 ⩽ 1, and 𝑎 > 0.There
exists a constant 𝑐 > 0 (0 < 𝑐 ⩽ 2−10) such that, for 0 < 𝑡

0
< ∞

and 𝐼 = [0, 𝑡
0
],

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,A;𝐸
𝑐𝑎𝑡

𝑝,1
)
≲ ∑

𝑘∈A

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝,

A ⊂ Z
𝑛
\ {0} ,

(40)

󵄩󵄩󵄩󵄩◻0
𝐺

2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

𝐿
𝑝

𝑥

≲ |𝐼|
(2𝛼−1)/(2𝛼)󵄩󵄩󵄩󵄩◻0

𝑢
0

󵄩󵄩󵄩󵄩𝑝, (41)

holds for all 𝑢
0
∈ 𝑀1−2𝛼

𝑝,1
.

Proof. For any A ⊂ Z𝑛
\ {0}, multiplying (29) by 2𝑐𝑎𝑡|𝑘| and

taking 𝐿2𝛼/(2𝛼−1)

𝑡
norm, we get

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝐺

2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩
2
−𝑐𝑎𝑡|𝑘|

2𝛼

2
𝑐𝑎𝑡(|𝑘|−|𝑘|

2𝛼

)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

󵄩󵄩󵄩󵄩◻𝑘
𝑢

0

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩
2
−𝑐𝑎𝑡|𝑘|

2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

󵄩󵄩󵄩󵄩◻𝑘
𝑢

0

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ ⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

.

(42)

Taking the sequence 𝑙1 norm on set A to inequality (42), we
obtain the estimate in (40). For 𝑘 = 0, from (29), we see that

󵄩󵄩󵄩󵄩◻0
𝐺

2𝛼
𝑢

0

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲
󵄩󵄩󵄩󵄩◻0

𝑢
0

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

, (43)

taking 𝐿2𝛼/(2𝛼−1)

𝑡
(𝐼) norm on (43) which implies (41).

Now let 0 < 𝑡
0
⩽ ∞. We consider the estimate of A

2𝛼
𝑓.

Again using uniform decay estimate (29), we have

󵄩󵄩󵄩󵄩◻𝑘
A

2𝛼
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ ∫
𝑡

0

2
−2𝑐𝑎(𝑡−𝜏)|𝑘|

2𝛼󵄩󵄩󵄩󵄩◻𝑘
𝑓(𝜏)

󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏. (44)

It follows from (44) that for |𝑘| ̸= 0

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩◻𝑘

A
2𝛼
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ ∫
𝑡

0

2
−2𝑐𝑎(𝑡−𝜏)|𝑘|

2𝛼

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓 (𝜏)
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏

≲ ∫
𝑡

0

2
−𝑐𝑎(𝑡−𝜏)|𝑘|

2𝛼

2
−𝑐𝑎(𝑡−𝜏)|𝑘|

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓(𝜏)
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏

= ∫
𝑡

0

2
−𝑐𝑎(𝑡−𝜏)|𝑘|

2𝛼

2
𝑐𝑎𝜏|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓(𝜏)
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏.

(45)

Taking 𝐿2𝛼/(2𝛼−1)

𝑡
norm on (45) and applying Young’s inequal-

ity, we get
󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
A

2𝛼
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈[0,𝑡
0
]

𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩
2
−𝑐𝑎𝑡|𝑘|

2𝛼󵄩󵄩󵄩󵄩󵄩󵄩𝐿2𝛼
𝑡

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝛼/(2𝛼−1)
𝑡

𝐿
𝑝

𝑥

≲ ⟨𝑘⟩
−1󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝛼/(2𝛼−1)
𝑡

𝐿
𝑝

𝑥

.

(46)
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In view of ‖𝜕
𝑥
𝑖

◻
𝑘
𝑓‖

𝐿
𝑝

𝑥

≲ ⟨𝑘
𝑖
⟩‖◻

𝑘
𝑓‖

𝐿
𝑝

𝑥

, we deduce that

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
A

2𝛼
( ⃗𝛾 ⋅ ∇) 𝑓

󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈[0,𝑡
0
]

𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝛼/(2𝛼−1)
𝑡∈[0,𝑡
0
]
𝐿
𝑝

𝑥

.

(47)

So, taking the sequence 𝑙𝑞 norm on both sides of (47), we
have the following.

Proposition 10. Let 1 ⩽ 𝑝 ⩽ ∞, 𝑎 > 0.There exists a constant
𝑐 > 0 (0 < 𝑐 ⩽ 2−10) such that, for 0 < 𝑡

0
< ∞ and 𝐼 = [0, 𝑡

0
],

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

A
2𝛼
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,A;𝐸

𝑐𝑎𝑡

𝑝,1
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛼/(2𝛼−1)(𝐼,A;𝐸

𝑐𝑎𝑡

𝑝,1
)
,

A ⊂ Z
𝑛
\ {0} ,

(48)

󵄩󵄩󵄩󵄩◻0
A

2𝛼
𝑓
󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

𝐿
𝑝

𝑥

≲ |𝐼|
1/(2𝛼)󵄩󵄩󵄩󵄩◻0

𝑓
󵄩󵄩󵄩󵄩𝐿𝛼/(2𝛼−1)
𝑡∈𝐼

𝐿
𝑝

𝑥

, (49)

holds for all 𝑓 ∈ 𝐿̃𝛼/(2𝛼−1)(𝐼; 𝐸𝑐𝑎𝑡

𝑝,1
).

For the proof of (49), one only needs to take 𝑘 = 0 in (44)
and then𝐿2𝛼/(2𝛼−1)

𝑡
norm togetherwithYoung’s inequalitywill

imply the result.
Nowwe recall a nonlinearmapping estimate in 𝐿̃𝑞

(𝐼; 𝐸𝑠(𝑡)

𝑝,𝑞
)

which was shown in [7].

Proposition 11. Let 1 ⩽ 𝑝, 𝑝
1
, 𝑝

2
, 𝑞, 𝑞

1
, 𝑞

2
, 𝑞, 𝑞

1
, 𝑞

2
⩽ ∞.

Consider 1/𝑝 = 1/𝑝
1
+ 1/𝑝

2
, 1/𝑞 = 1/𝑞

1
+ 1/𝑞

2
and 1/𝑞 =

1/𝑞
1
+ 1/𝑞

2
− 1, 𝑠(⋅) : R

+
→ R

+
, and 𝐼 ⊂ R

+
with

sup
𝑡∈𝐼
𝑠(𝑡) < ∞. Then one has

󵄩󵄩󵄩󵄩𝑓𝑔
󵄩󵄩󵄩󵄩𝐿̃𝑞(𝐼;𝐸𝑠(𝑡)

𝑝,𝑞
)
≲ sup

𝑡∈𝐼

2
4𝑠(𝑡)󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿̃𝑞1 (𝐼;𝐸𝑠(𝑡)
𝑝
1
,𝑞
1

)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿̃𝑞2 (𝐼;𝐸𝑠(𝑡)

𝑝
2
,𝑞
2

)
. (50)

Now let us consider the following map:

T : 𝑢 (𝑡) 󳨀→ 𝐺
2𝛼
(𝑡) 𝑢

0
+A

2𝛼
(( ⃗𝛾 ⋅ ∇) 𝑢

2
) . (51)

Let 𝑐 = 2−10, 𝐼 = [0, 𝑡
0
]. For any 𝛿 > 0, one can choose

𝐽 := 𝐽(𝑢
0
) > 0 satisfying ∑

|𝑘|⩾𝐽
⟨𝑘⟩

1−2𝛼
‖◻

𝑘
𝑢

0
‖
𝑝
⩽ 𝛿/4𝐶. By

Proposition 9,

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,{𝑘:|𝑘|⩾𝐽};𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽ 𝐶∑

|𝑘|⩾𝐽

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝 ⩽
𝛿

4
.

(52)

On the other hand, one can choose 𝐼 satisfying

|𝐼|
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1

⩽
𝛿

4𝐶
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

, (53)

so,
󵄩󵄩󵄩󵄩𝐺2𝛼

(𝑡)𝑢
0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼,{𝑘:|𝑘|<𝐽};𝐸
𝑐𝑎𝑡

𝑝,1
)

⩽ 𝐶∑
|𝑘|<𝐽

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
2
−2𝑐𝑎𝑡|𝑘|

2𝛼

◻
𝑘
𝑢

0

󵄩󵄩󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2𝛼/(2𝛼−1)
𝑡∈𝐼

⩽ 𝐶|𝐼|
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1

∑
|𝑘|<𝐽

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝 ⩽
𝛿

4
.

(54)

Hence, in view of (52) and (54),

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼;𝐸𝑐𝑎𝑡
𝑝,1

)
⩽
𝛿

2
. (55)

It follows from Propositions 10 and 11 that
󵄩󵄩󵄩󵄩󵄩
A

2𝛼
( ⃗𝛾 ⋅ ∇) (𝑢

2
)
󵄩󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼;𝐸𝑐𝑎𝑡

𝑝,1
)

≲ (1 + |𝐼|
1/(2𝛼)

)
󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃𝛼/(2𝛼−1)(𝐼;𝐸𝑐𝑎𝑡
𝑝,1

)

≲ (1 + |𝐼|
1/(2𝛼)

) ‖𝑢‖
𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
‖𝑢‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)

≲ (1 + |𝐼|
1/(2𝛼)

) ‖𝑢‖
2

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
.

(56)

We can assume that |𝐼| ⩽ 1. Hence, collecting (55)-(56), we
have

‖T𝑢‖
𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽
𝛿

2
+ 𝐶‖𝑢‖

2

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
. (57)

Now we can fix 𝛿 verifying 𝐶𝛿 ⩽ 1/4. Put

D = {𝑢 ∈ 𝐿̃
2𝛼/(2𝛼−1)

(𝐼; 𝐸
𝑐𝑎𝑡

𝑝,1
) : ‖𝑢‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽ 𝛿} . (58)

We haveT𝑢 ∈ D if 𝑢 ∈ D and

‖T𝑢 −TV‖
𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽
1

2
‖𝑢 − V‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
,

𝑢, V ∈ D.

(59)

By the standard contraction mapping argument, there exists
a unique solution to (1) inD satisfying ‖ 𝑢‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽ 𝛿.

Next, we prove that

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈[0,𝑡
0
]
𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+ 𝛿
2
. (60)

In order to show (60), we need the following.

Proposition 12. Let 1 ⩽ 𝑝 ⩽ ∞, 𝑎 > 0.There exists a constant
𝑐 > 0 (0 < 𝑐 ⩽ 2−10) such that, for 0 < 𝑡

0
< ∞ and 𝐼 = [0, 𝑡

0
],

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝐺

2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈[0,𝑡
0
]
𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

,

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝜕
𝑥
𝑖

A
2𝛼
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈[0,𝑡
0
]
𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛼/(2𝛼−1)(𝐼;𝐸𝑐𝑎𝑡

𝑝,1
)

(61)

hold for all 𝑢
0
∈ 𝑀1−2𝛼

𝑝,1
and 𝑓 ∈ 𝐿̃𝛼/(2𝛼−1)(𝐼; 𝐸𝑐𝑎𝑡

𝑝,1
).

Proof. In view of (29), we immediately have (61).

Let us apply Proposition 12:

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑡|𝑘|

◻
𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈[0,𝑡
0
]
𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+
󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃𝛼/(2𝛼−1)(𝐼;𝐸𝑐𝑎𝑡
𝑝,1

)

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+ ‖𝑢‖
2

𝐿̃
2𝛼/(2𝛼−1)

(𝐼;𝐸
𝑐𝑎𝑡

𝑝,1
)
,

(62)

which implies (60).
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Wenow extend the solution from 𝐼 = [0, 𝑡
0
] to 𝐼

1
= [𝑡

0
, 𝑡

1
]

for some 𝑡
1
> 𝑡

0
. Consider the mapping

T
1
: 𝑢 (𝑡) 󳨀→ 𝐺

2𝛼
(𝑡 − 𝑡

0
) 𝑢 (𝑡

0
)

+ ∫
𝑡

𝑡
0

𝐺
2𝛼
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) (𝑢

2
) (𝜏) 𝑑𝜏,

(63)

and the resolution space

D
1
= {𝑢 ∈ 𝐿̃

2𝛼/(2𝛼−1)
(𝐼

1
; 𝐸

𝑐𝑎𝑡

𝑝,1
) : ‖𝑢‖

𝐿̃
2𝛼/(2𝛼−1)

(𝐼
1
;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽ 𝛿

1
} ,

(64)

where 𝛿
1
will be chosen below. Taking 𝑡 = 𝑡

0
in (60), one has

that

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+ 𝛿
2
. (65)

For any 𝛿
1
> 0, in view of (65), we can choose a sufficiently

large 𝐽 such that

𝐶∑
|𝑘|>𝐽

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
⩽
𝛿
1

4
. (66)

Hence, in view of Proposition 9,
󵄩󵄩󵄩󵄩𝐺2𝛼

(𝑡 − 𝑡
0
) 𝑢 (𝑡

0
)
󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼

1
,{𝑘:|𝑘|>𝐽};𝐸

𝑐𝑎𝑡

𝑝,1
)

⩽ 𝐶∑
|𝑘|>𝐽

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝
⩽
𝛿
1

4
,

(67)

and one can choose 𝑡
1
> 𝑡

0
verifying 𝐶|𝐼

1
|
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1

(‖𝑢
0
‖
𝑀
1−2𝛼

𝑝,1

+ 𝛿2) ⩽ 𝛿
1
/4, so

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡 − 𝑡

0
) 𝑢 (𝑡

0
)
󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼

1
,{𝑘:|𝑘|⩽𝐽};𝐸

𝑐𝑎𝑡

𝑝,1
)

⩽ 𝐶
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
(2𝛼−1)/(2𝛼)

∑
|𝑘|⩽𝐽

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝

⩽ 𝐶
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1

∑
|𝑘|⩽𝐽

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢
󵄩󵄩󵄩󵄩󵄩𝑝

⩽ 𝐶
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
(2𝛼−1)/(2𝛼)

⟨𝐽⟩
2𝛼−1

(
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀1−2𝛼
𝑝,1

+ 𝛿
2
) ⩽

𝛿
1

4
.

(68)

In view of (67) and (68),

󵄩󵄩󵄩󵄩𝐺2𝛼
(𝑡 − 𝑡

0
) 𝑢 (𝑡

0
)
󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼

1
;𝐸
𝑐𝑎𝑡

𝑝,1
)
⩽
𝛿
1

2
. (69)

It follows from Propositions 10 and 11
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

1

𝐺
2𝛼
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) 𝑢

2
(𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼
1
;𝐸
𝑐𝑎𝑡

𝑝,1
)

⩽ 𝐶(1 +
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
1/(2𝛼)

) 2
4𝑐𝑎𝑡
1

󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃𝛼/(2𝛼−1)(𝐼
1
;𝐸
𝑐𝑎𝑡

𝑝,1
)

≲ 𝐶(1 +
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
1/(2𝛼)

) 2
4𝑐𝑎𝑡
1‖𝑢‖

2

𝐿̃
2𝛼/(2𝛼−1)

(𝐼
1
;𝐸
𝑐𝑎𝑡

𝑝,1
)
.

(70)

Hence, collecting (69) and (70), we have

󵄩󵄩󵄩󵄩T1
𝑢
󵄩󵄩󵄩󵄩𝐿̃2𝛼/(2𝛼−1)(𝐼

1
;𝐸
𝑐𝑎𝑡

𝑝,1
)

⩽
𝛿
1

2
+ 𝐶 (1 +

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
1/(2𝛼)

) 2
4𝑐𝑎𝑡
1‖𝑢‖

2

𝐿̃
2𝛼/(2𝛼−1)

(𝐼
1
;𝐸
𝑐𝑎𝑡

𝑝,1
)
.

(71)

Now we can choose 𝛿
1
> 0 satisfying

𝐶(1 +
󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨
1/(2𝛼)

) 2
4𝑐𝑎𝑡
1𝛿

1
⩽
1

4
. (72)

It follows that T
1
𝑢 ∈ D

1
for any 𝑢 ∈ D

1
. So, we have

extended the solution from [0, 𝑡
0
] to [𝑡

0
, 𝑡

1
]. Noticing that

∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝐺

2𝛼
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈[𝑡
0
,𝑡
1
]
𝐿
𝑝

𝑥

≲ ∑
𝑘

⟨𝑘⟩
1−2𝛼󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡
0
|𝑘|
◻

𝑘
𝑢

0

󵄩󵄩󵄩󵄩󵄩𝑝
,

(73)

we easily see that the solution can be extended to [𝑡
1
, 𝑡

2
],

. . . , [𝑡
𝑚
, 𝑡

𝑚+1
], . . . and finally find a 𝑇max satisfying the con-

clusions inTheorems 6 and 7.

Remark 13. As explained in the introduction, the method
used here does not work for the critical case 𝛼 = 1/2 and
we need to find other ways to deal with this situation in the
next section.

4. Analytic Regularity for GDGL: 𝛼=1/2

Recall that, in Section 2, we verify the following frequency
uniform exponential decay estimate for the generalized
Ginzburg-Landau semigroup 𝐺

1
(𝑡) = 𝑒−(𝑎+𝑖)𝑡(−Δ)

1/2

:

󵄩󵄩󵄩󵄩◻𝑘
𝐺

1
(𝑡) 𝑓

󵄩󵄩󵄩󵄩𝑝 ≲ 2
−2𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓
󵄩󵄩󵄩󵄩𝑝 (74)

and the frequency dyadic decay estimate:

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

1
(𝑡) 𝑓

󵄩󵄩󵄩󵄩󵄩𝑝
≲ 𝑒

−𝑐𝑎𝑡2
𝑗󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝑝
. (75)

Based on (74) and (75), we will establish some estimates for
𝐺

1
(𝑡) andA

1
𝑓 in suitable space time exponentialmodulation

and Besov norms, respectively. First, let us consider the linear
estimates for 𝐺

1
(𝑡) in space time exponential modulation

norm.

Proposition 14. Assume that 1 ⩽ 𝑝, 𝑞 ⩽ ∞, 𝑎 > 0, 𝐼 = [0, 1];
then there hold

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐸𝑐𝑎𝑡
𝑝,𝑞

)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
𝑝,𝑞

,

󵄩󵄩󵄩󵄩𝐺1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;𝐸
𝑐𝑎𝑡

𝑝,𝑞
)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
𝑝,𝑞

.

(76)

Proof. For |𝑘| ⩾ 1, from (74)

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩󵄩

◻
𝑘
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝑝
≲ 2

−𝑐𝑎𝑡|𝑘|
⟨𝑘

𝑖
⟩
󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝. (77)
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Taking 𝐿1

𝑡∈𝐼
norm to (77),

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼

𝐿
𝑝

𝑥

≲ ⟨𝑘⟩
−1
⟨𝑘

𝑖
⟩
󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝

≲
󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩𝑝.

(78)

For 𝑘 = 0, (78) also holds. Hence taking a sequence 𝑙𝑞 norm
on both sides of (78) implies the first estimate. For the second
estimate, one only needs to take 𝐿∞

𝑡∈𝐼
norm to (74) and then a

sequence 𝑙𝑞 norm.

More generally, using the method in Proposition 14, one
can verify that, for the infinite time interval 𝐼 = [1, +∞), there
holds the following.

Proposition 15. Let 1 ⩽ 𝑝, 𝑞 ⩽ ∞, 𝑎 > 0, 𝐼 = [1, +∞); then
for any A ⊂ Z𝑛 \ {0},

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡 − 1) 𝑢 (1)

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;A;𝐸
𝑐𝑎𝑡

𝑝,𝑞
)
≲ ‖𝑢 (1)‖𝐸𝑐𝑎

𝑝,𝑞

,

󵄩󵄩󵄩󵄩𝐺1
(𝑡 − 1) 𝑢 (1)

󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;A;𝐸
𝑐𝑎𝑡

𝑝,𝑞
)
≲ ‖𝑢 (1)‖𝐸𝑐𝑎

𝑝,𝑞

.

(79)

Next, we proceed with the estimates ofA
1
𝑓 in space time

exponential modulation norm.

Proposition 16. Let 1 ⩽ 𝑝, 𝑞 ⩽ ∞, 1 ⩽ 𝑞
1
⩽ 𝑞 ⩽ ∞, 𝑎 > 0.

Then there exists a constant 𝑐 > 0 such that, for 0 < 𝑡
0
⩽ ∞,

𝐼 = [0, 𝑡
0
), and A ⊂ Z𝑛 \ {0},

󵄩󵄩󵄩󵄩A1
𝑓
󵄩󵄩󵄩󵄩𝐿̃𝑞(𝐼;A;𝐸

𝑐𝑎𝑡

𝑝,𝑞
)
≲ ∑

𝑘∈A

⟨𝑘⟩
1/𝑞
1
−1/𝑞−1󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝑡|𝑘|

◻
𝑘
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞1
𝑡∈𝐼

𝐿
𝑝

𝑥
(80)

holds for all 𝑓 ∈ 𝐿̃𝑞
(𝐼;A; 𝐸𝑐𝑎𝑡

𝑝,𝑞
).

Proof. By the decay estimate (74), we easily see that

󵄩󵄩󵄩󵄩◻𝑘
A

1
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ ∫
𝑡

0

2
−2𝑐𝑎(𝑡−𝜏)|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓 (𝜏)
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏. (81)

Multiplying (81) by 2𝑐𝑎𝑡|𝑘|,

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩◻𝑘

A
1
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ ∫
𝑡

0

2
−𝑐𝑎(𝑡−𝜏)|𝑘|

2
𝑐𝑎𝜏|𝑘|󵄩󵄩󵄩󵄩◻𝑘

𝑓 (𝜏)
󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏. (82)

When |𝑘| ⩾ 1, applying Young’s inequality to (82) with 𝑞 ⩾ 𝑞
1
,

󵄩󵄩󵄩󵄩󵄩
2
𝑐𝑎𝑡|𝑘|

◻
𝑘
A

1
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞
𝑡∈𝐼

𝐿
𝑝

𝑥

≲ ⟨𝑘⟩
1/𝑞
1
−1/𝑞−1󵄩󵄩󵄩󵄩󵄩

2
𝑐𝑎𝜏|𝑘|

◻
𝑘
𝑓 (𝜏)

󵄩󵄩󵄩󵄩󵄩𝐿𝑞
𝑡∈𝐼

𝐿
𝑝

𝑥

.

(83)

So, taking the sequence 𝑙𝑞 norm on both sides of (83) implied
the conclusion.

In view of ‖𝜕
𝑥
𝑖

◻
𝑘
𝑓‖

𝐿
𝑝

𝑥

≲ ⟨𝑘
𝑖
⟩‖◻

𝑘
𝑓‖

𝐿
𝑝

𝑥

and taking special
index in Proposition 16, we obtain the following.

Corollary 17. Under the same conditions as above, one has
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

A
1
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;A;𝐸

𝑐𝑎𝑡

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃1(𝐼;A;𝐸

𝑐𝑎𝑡

∞,1
)
,

󵄩󵄩󵄩󵄩A1
𝑓
󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;A;𝐸

𝑐𝑎𝑡

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃1(𝐼;A;𝐸

𝑐𝑎𝑡

∞,1
)
.

(84)

We now consider the linear estimates of𝐺
1
(𝑡) andA

1
𝑓 in

space time homogeneous Besov norms based on dyadic decay
estimate (75).

Proposition 18. Assume that 1 ⩽ 𝑝, 𝑞, 𝛾 ⩽ ∞, 𝑎 > 0; then
󵄩󵄩󵄩󵄩𝐺1

(𝑡) 𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾(R+ ;𝐵̇𝑠

𝑝,𝑞
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝑠−1/𝛾
𝑝,𝑞

. (85)

Proof. Let us take 𝐿𝛾

𝑡
norm on both sides of dyadic decay

estimate (75):
󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

1
(𝑡) 𝑓

󵄩󵄩󵄩󵄩󵄩𝐿𝛾
𝑡
𝐿
𝑝

𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑐𝑎𝑡2

𝑗󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝛾
𝑡

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

≲ 2
−𝑗/𝛾󵄩󵄩󵄩󵄩󵄩

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

.

(86)

Then multiplying the above inequality by 2𝑗𝑠 and taking a
sequence 𝑙𝑞 norm, we obtain the result as desired.

Proposition 19. Let 1 ⩽ 𝑝, 𝑞 ⩽ ∞, 1 ⩽ 𝛾
1
⩽ 𝛾 ⩽ ∞, 𝑎 > 0.

Then
󵄩󵄩󵄩󵄩A1

𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾(R+ ;𝐵̇𝑠

𝑝,𝑞
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃𝛾1 (R+ ;𝐵̇𝑠−(1+1/𝛾−1/𝛾1)

𝑝,𝑞
)
. (87)

In particular,
󵄩󵄩󵄩󵄩A1

𝑓
󵄩󵄩󵄩󵄩𝐿̃1(R+ ;𝐵̇1

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃1(R+ ;𝐵̇0

∞,1
)
,

󵄩󵄩󵄩󵄩A1
𝑓
󵄩󵄩󵄩󵄩𝐿̃∞(R+ ;𝐵̇0

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿̃1(R+ ;𝐵̇0

∞,1
)
.

(88)

Proof. Using dyadic decay estimate (75), we see that

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
A

1
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

⩽ ∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝐺

1
(𝑡 − 𝜏) 𝑓 (𝜏, 𝑥)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏

⩽ ∫
𝑡

0

𝑒
−𝑐𝑎(𝑡−𝜏)2

𝑗󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓 (𝜏)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑥

𝑑𝜏.

(89)

Taking 𝐿𝛾

𝑡
norm on both sides of the above estimate and with

Young’s inequality, we get
󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
A

1
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝛾
𝑡
𝐿
𝑝

𝑥

⩽ 2
−𝑗(1+1/𝛾−1/𝛾

1
)󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝛾1
𝑡

𝐿
𝑝

𝑥

. (90)

Arguing as before, wemultiply (90) by 2𝑗𝑠 and take a sequence
𝑙𝑞 norm and then finally get the conclusion as desired.

With the preparation above, we are now ready to start the
proof ofTheorem 8. In the following let 𝐼 = [0, 1]. We choose
the following resolution space:

D = {𝑢 : ‖𝑢‖𝑋 + ‖𝑢‖𝑌 ⩽ 𝛿} (91)

with metric 𝑑(𝑢, V) = ‖𝑢 − V‖
𝑋∩𝑌

, where ‖𝑢‖
𝑋

=

‖𝑢‖
𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)∩𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
and ‖𝑢‖

𝑌
= ∑

𝑛

𝑖=1
‖𝜕

𝑥
𝑖

𝑢‖
𝐿̃
1
(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
+

‖𝑢‖
𝐿̃
∞

(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
. Consider the map

T : 𝑢 (𝑡) 󳨀→ 𝐺
1
(𝑡) 𝑢

0
+A

1
[( ⃗𝛾 ⋅ ∇) 𝑢

2
] . (92)

We will first carry out the computation of ‖𝐺
1
(𝑡)𝑢

0
‖
𝑌
. Set 𝑐 =

2−5. By (74), for |𝑘| ⩾ 1,

2
𝑐𝑎𝑡|𝑘|󵄩󵄩󵄩󵄩󵄩

◻
𝑘
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩∞
≲ 2

−𝑐𝑎𝑡|𝑘|
⟨𝑘

𝑖
⟩
󵄩󵄩󵄩󵄩◻𝑘

𝑢
0

󵄩󵄩󵄩󵄩∞. (93)
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Denote Z𝑛

⋆
= Z𝑛 \ {0}. Taking 𝐿1

𝑡∈𝐼
norm and then sequence

𝑙1 norm on Z𝑛

⋆
to (93), we get

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)
≲ ⟨𝑘⟩

−1
⟨𝑘

𝑖
⟩
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

.

(94)

For 𝑘 = 0, there holds
󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩∞
≲
󵄩󵄩󵄩󵄩◻0

𝑢
0

󵄩󵄩󵄩󵄩∞. (95)

From (94) and (95), it is easy to see that
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐸𝑐𝑎𝑡
∞,1

)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

. (96)

Similarly,
󵄩󵄩󵄩󵄩𝐺1

(𝑡) 𝑢
0

󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

. (97)

Hence

󵄩󵄩󵄩󵄩𝐺1
(𝑡)𝑢

0

󵄩󵄩󵄩󵄩𝑌 =

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡) 𝑢

0

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐸𝑐𝑎𝑡
∞,1

)

+
󵄩󵄩󵄩󵄩𝐺1

(𝑡) 𝑢
0

󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;𝐸
𝑐𝑎𝑡

∞,1
)
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

.

(98)

By Corollary 17 and Proposition 11,

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

A
1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

+
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
( ⃗𝛾 ⋅ ∇)𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

≲

𝑛

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑗

𝑢
󵄩󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;Z𝑛

⋆
;𝐸
𝑐𝑎𝑡

∞,1
)

‖𝑢‖
𝐿̃
∞

(𝐼;Z𝑛
⋆
;𝐸
𝑐𝑎𝑡

∞,1
)
≲ ‖𝑢‖

2

𝑌
.

(99)

In view of ‖◻
0
𝑓‖

∞
≲ ‖𝑓‖

∞
≲ ‖𝑓‖

𝐵̇
0

∞,1

, we observe that

󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

A
1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼

𝐿
∞

𝑥

+
󵄩󵄩󵄩󵄩󵄩
◻

0
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼

𝐿
∞

𝑥

≲
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)
+
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃∞(𝐼;𝐵̇
0

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇0
∞,1

)
≲

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝑢
2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇0

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)
.

(100)

To bound the right-hand side of (100), let us recall the para-
product decomposition [10, 20]: for any two tempered distri-
butions 𝑓, 𝑔, 𝑓𝑔 can be decomposed as the summation of two
parts:

𝑓𝑔 = ∑
𝑖,𝑗

Δ
𝑖
𝑓Δ

𝑗
𝑔 = ∑

𝑗

𝑆
𝑗−1
𝑓Δ

𝑗
𝑔 +∑

𝑖

𝑆
𝑖
𝑔Δ

𝑖
𝑓. (101)

From the support property in frequency space, there holds

Δ
𝑖
(𝑆

𝑗
𝑓Δ

𝑗
𝑔) = 0, if 𝑖 > 𝑗 + 3. (102)

Thus

Δ
𝑖
(𝑓𝑔) = ∑

𝑖⩽𝑗+3

Δ
𝑖
(𝑆

𝑗−1
𝑓Δ

𝑗
𝑔 + 𝑆

𝑗
𝑔Δ

𝑗
𝑓) . (103)

With this tool, we now estimate ‖𝑢2‖
𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)
.

󵄩󵄩󵄩󵄩󵄩
Δ

𝑖
(𝑢

2
)
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑥

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑖⩽𝑗+3

Δ
𝑖
(𝑆

𝑗−1
𝑢Δ

𝑗
𝑢 + 𝑆

𝑗
𝑢Δ

𝑗
𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑥

≲ ∑
𝑗⩾𝑖−3

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑥

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑥

≲ ∑
𝑗⩾𝑖−3

∑
𝑘⩽𝑗

󵄩󵄩󵄩󵄩Δ 𝑘
𝑢
󵄩󵄩󵄩󵄩𝐿∞
𝑥

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑥

.

(104)

By taking 𝐿1

𝑡
norm, we deduce that

󵄩󵄩󵄩󵄩󵄩
Δ

𝑖
(𝑢

2
)
󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡
𝐿
∞

𝑥

≲ ∑
𝑗⩾𝑖−3

∑
𝑘⩽𝑗

󵄩󵄩󵄩󵄩Δ 𝑘
𝑢
󵄩󵄩󵄩󵄩𝐿∞
𝑡

𝐿
∞

𝑥

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡
𝐿
∞

𝑥

≲ ‖𝑢‖
𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
∑

𝑗⩾𝑖−3

󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡
𝐿
∞

𝑥

.

(105)

Multiplying (105) by 2𝑖 and taking a sequence 𝑙1 norm, we get

󵄩󵄩󵄩󵄩󵄩
𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)
≲ ‖𝑢‖

𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑
𝑗⩾𝑖−3

2
−(𝑗−𝑖)

2
𝑗 󵄩󵄩󵄩󵄩󵄩
Δ

𝑗
𝑢
󵄩󵄩󵄩󵄩󵄩 𝐿
1

𝑡
𝐿
∞

𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑙1

≲ ‖𝑢‖
𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
‖𝑢‖

𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)
,

(106)

where in the last inequality, we use Young’s inequality. From
(100) and (106), we obtain
󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

A
1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼

𝐿
∞

𝑥

+
󵄩󵄩󵄩󵄩󵄩
◻

0
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼

𝐿
∞

𝑥

≲ ‖𝑢‖
𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
‖𝑢‖

𝐿̃
1
(𝐼;𝐵̇
1

∞,1
)
≲ ‖𝑢‖

2

𝑋
.

(107)

Collecting (98), (99), and (107), we see that

‖T𝑢‖
𝑌
≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

+ ‖𝑢‖
2

𝑌
+ ‖𝑢‖

2

𝑋
. (108)

On the other hand, by Propositions 18 and 19, (100), and (106),
similar reasoning yields that

‖T𝑢‖𝑋 ≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐵̇0
∞,1

+
󵄩󵄩󵄩󵄩󵄩
A

1
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1
∞,1

)⋂ 𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)

≲
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝐵̇0
∞,1

+ ‖𝑢‖
2

𝑋
.

(109)

Thus from (108) and (109), we have

‖T𝑢‖𝑋 + ‖T𝑢‖𝑌 ⩽ 𝐶
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

∩𝐵̇
0

∞,1

+ 𝐶‖𝑢‖
2

𝑋
+ 𝐶‖𝑢‖

2

𝑌
.

(110)
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Suppose that

𝐶𝛿 ⩽
1

4
, 𝐶

󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩𝑀0
∞,1

∩𝐵̇
0

∞,1

⩽
𝛿

2
. (111)

By the standard contraction mapping principle, we see that
there exists a unique solution to T𝑢 = 𝑢 in space 𝑋 ∩ 𝑌. In
particular, there hold

‖𝑢‖
𝐿̃
∞

(0,1;𝐸
𝑐𝑎𝑡

∞,1
)
⩽ 𝛿; ‖𝑢‖

𝐿̃
∞

(0,1;𝐵̇
0

∞,1
)
⩽ 𝛿. (112)

So for 𝑢(1) = 𝑢(1, 𝑥),

‖𝑢 (1)‖
𝐸
𝑐𝑎

∞,1

⩽ 𝛿, ‖𝑢 (1)‖
𝐵̇
0

∞,1

⩽ 𝛿, 𝑐 = 2
−5
. (113)

We now extend the regularity of solutions. Consider the inte-
gral equation

𝑢 (𝑡) = 𝐺
1
(𝑡 − 1) 𝑢 (1) + ∫

𝑡

1

𝐺
1
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) (𝑢

2
) (𝜏) 𝑑𝜏.

(114)

Let 𝐼
1
= [1, +∞). Denote

‖𝑢‖𝑋
1

= ‖𝑢‖
𝐿̃
1
(𝐼
1
;𝐵̇
1

∞,1
)∩𝐿̃
∞

(𝐼
1
;𝐵̇
0

∞,1
)
,

‖𝑢‖𝑌
1

=

𝑛

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼

1
;𝐸
𝑐𝑎

∞,1
)
+ ‖𝑢‖

𝐿̃
∞

(𝐼
1
;𝐸
𝑐𝑎

∞,1
)
.

(115)

Choose the resolution space to be

D
1
= {𝑢 : ‖𝑢‖𝑋

1

+ ‖𝑢‖𝑌
1

⩽ 𝛿
1
} (116)

with metric 𝑑
1
(𝑢, V) = ‖𝑢 − V‖

𝑋
1
∩𝑌
1

. 𝛿
1
is to be determined

later. Similar to (109), we have
󵄩󵄩󵄩󵄩T1

𝑢
󵄩󵄩󵄩󵄩𝑋
1

⩽ 𝐶‖𝑢 (1)‖
𝐵̇
0

∞,1

+ 𝐶‖𝑢‖
2

𝑋
1

. (117)

To estimate ‖T
1
𝑢‖

𝑌
1

, by Proposition 15
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝐺
1
(𝑡 − 1) 𝑢 (1)

󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼
1
,Z𝑛
⋆
;𝐸
𝑐𝑎

∞,1
)

+
󵄩󵄩󵄩󵄩𝐺1

(𝑡 − 1) 𝑢 (1)
󵄩󵄩󵄩󵄩𝐿̃∞(𝐼

1
,Z𝑛
⋆
;𝐸
𝑐𝑎

∞,1
)
≲ ‖𝑢 (1)‖𝐸𝑐𝑎

∞,1

.

(118)

For the remaining part concerning ◻
0
, we use ‖◻

0
𝑓‖ ≲

‖𝑓‖
𝐵̇
0

∞,1

and Proposition 18 to bound
󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

𝐺
1
(𝑡 − 1) 𝑢 (1)

󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼
1

𝐿
∞

𝑥

+
󵄩󵄩󵄩󵄩◻0

𝐺
1
(𝑡 − 1) 𝑢 (1)

󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼
1

𝐿
∞

𝑥

≲
󵄩󵄩󵄩󵄩𝐺1

(𝑡 − 1) 𝑢 (1)
󵄩󵄩󵄩󵄩𝐿̃1(𝐼;𝐵̇1

∞,1
)∩𝐿̃
∞

(𝐼;𝐵̇
0

∞,1
)
≲ ‖𝑢 (1)‖

𝐵̇
0

∞,1

.

(119)

Arguing as before, with Corollary 17 and Proposition 11, we
get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

∫
𝑡

1

𝐺
1
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) 𝑢

2
(𝜏)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼

1
,Z𝑛
⋆
;𝐸
𝑐𝑎

∞,1
)

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

1

𝐺
1
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) 𝑢

2
(𝜏)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿̃∞(𝐼

1
,Z𝑛
⋆
;𝐸
𝑐𝑎

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
( ⃗𝛾 ⋅ ∇) 𝑢

2󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼
1
,Z𝑛
⋆
;𝐸
𝑐𝑎

∞,1
)

≲
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑥
𝑖

𝑢
󵄩󵄩󵄩󵄩󵄩𝐿̃1(𝐼

1
;𝐸
𝑐𝑎

∞,1
)
‖𝑢‖

𝐿̃
∞

(𝐼
1
;𝐸
𝑐𝑎

∞,1
)
≲ ‖𝑢‖

2

𝑌
1

.

(120)

Similar as in (107), we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
◻

0
𝜕
𝑥
𝑖

∫
𝑡

1

𝐺
1
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) 𝑢

2
(𝜏)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1
𝑡∈𝐼
1

𝐿
∞

𝑥

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
◻

0
∫

𝑡

1

𝐺
1
(𝑡 − 𝜏) ( ⃗𝛾 ⋅ ∇) 𝑢

2
(𝜏)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞
𝑡∈𝐼
1

𝐿
∞

𝑥

≲ ‖𝑢‖
𝐿̃
∞

(𝐼
1
;𝐵̇
0

∞,1
)
‖𝑢‖

𝐿̃
1
(𝐼
1
;𝐵̇
1

∞,1
)
≲ ‖𝑢‖

2

𝑋
1

.

(121)

Then
󵄩󵄩󵄩󵄩T1

𝑢
󵄩󵄩󵄩󵄩𝑌
1

⩽ 𝐶‖𝑢 (1)‖
𝐵̇
0

∞,1

+ 𝐶‖𝑢 (1)‖𝐸𝑐𝑎
∞,1

+ 𝐶‖𝑢‖
2

𝑋
1

+ 𝐶‖𝑢‖
2

𝑌
1

⩽ 𝐶𝛿 + 𝐶‖𝑢‖
2

𝑋
1
∩𝑌
1

.

(122)

Choose 𝛿
1
satisfying 𝐶𝛿 ⩽ 𝛿

1
/2 and 𝐶𝛿

1
⩽ 1/2; then by

the contraction mapping argument, we see that T
1
𝑢 = 𝑢

has a unique solution in D
1
which completes the proof of

Theorem 8.

Remark 20. The same reasoning can show that if 𝑢
0
∈ 𝐵̇0

𝑝,1
∩

𝑀0

𝑝,1
(1 ⩽ 𝑝 ⩽ ∞) is sufficiently small, then there exists a

unique global solution 𝑢 to (1) satisfying 𝑢 ∈ 𝐿̃∞(R+; 𝐸
𝑠(𝑡)

𝑝,1
)

and 𝜕
𝑥
𝑖

𝑢 ∈ 𝐿̃1(R+; 𝐸
𝑠(𝑡)

𝑝,1
) with 𝑠(𝑡) = 2−5(𝑎 ∧ 𝑎𝑡). We omit the

details here.

5. Conclusion

In this paper, we investigate and prove some well-posedness
results and analytic regularity property of the solutions
to the (fractional) quadratic derivative Ginzburg-Landau
equationwith rough initial data in certain criticalmodulation
spaces and Besov type spaces. The basic strategy is via
contractionmapping principle.Themain obstacle that comes
from the one order derivative in the nonlinearity is finally
resolved by developing suitable exponential decay estimates
for the (fractional) Ginzburg-Landau semigroup. The sug-
gested approach can be used for more general fractional
nonlinear partial differential equations.
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