
Research Article
Symplectic Schemes for Linear Stochastic Schrödinger
Equations with Variable Coefficients

Xiuling Yin1,2 and Yanqin Liu1,2

1 School of Mathematical Sciences, Dezhou University, Dezhou 253023, China
2The Center of Data Processing and Analyzing, Dezhou University, Dezhou 253023, China

Correspondence should be addressed to Xiuling Yin; yinxiuling@dzu.edu.cn

Received 16 December 2013; Accepted 4 April 2014; Published 22 April 2014

Academic Editor: Adem Kılıçman
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This paper proposes a kind of symplectic schemes for linear Schrödinger equations with variable coefficients and a stochastic
perturbation term by using compact schemes in space. The numerical stability property of the schemes is analyzed. The schemes
preserve a discrete charge conservation law. They also follow a discrete energy transforming formula. The numerical experiments
verify our analysis.

1. Introduction

Differential equations (DEs) are important models in sci-
ences and engineering. By theoretical and numerical analysis
of DEs, we can yield some mathematical explanation of
many phenomena in applied sciences [1–5]. Time-dependent
Schrödinger equations arise in quantum physics, optics,
and many other fields [6, 7]. Some numerical methods
for such equations, such as symplectic scheme and mul-
tisymplectic schemes, have been proposed in [8–14]. The
schemes possess good numerical stability. Compact schemes
are popular recently due to high accuracy, compactness,
and economic resource in scientific computation [15–17].
In this paper, applying compact operators, we construct
symplectic methods to the initial boundary problems of the
linear Schrödinger equation with a variable coefficient and a
stochastic perturbation term (denoted by LSES):

𝑖𝑢
𝑡
+ 𝑢
𝑥
4 + 𝑓 (𝑥) 𝑢 = 𝜖𝑢 ∘ ̇𝜒, 𝑥 ∈ [0, 𝐿] ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) ,

(1)

where 𝑖2 = −1, 𝑓(𝑥) is a real differential function, 𝑢
0
(𝑥) is a

differential function, 𝜖 is a small real number, and ∘ means

Stratonovich product. ̇𝜒 is a real-valued white noise which is
delta correlated in time and either smooth or delta correlated
in space. For an integer 𝑚, 𝑢

𝑥
𝑚 and 𝑢

𝑡
𝑚 mean the 𝑚-order

partial derivatives of 𝑢 with respect to 𝑥 and 𝑡, respectively.
The system (1) with 𝜖 = 0 is a deterministic system. When 𝜖

is small, we can think that (1) is perturbed by the stochastic
term.

By multiplying (1) by 𝑢 or 𝑢
𝑡
and then integrating it with

respect to 𝑡 and 𝑥, it is easy to verify the following result.

Proposition 1. Under the periodic boundary condition,

(a) the solution of (1) satisfies the charge conservation law

Q (𝑡) = ∫

𝐿

0

|𝑢 (𝑥, 𝑡)|
2d𝑥 = Q (0) , (2)

(b) the corresponding deterministic system (𝜖 = 0) of (1)
possesses the energy conservation law

E (𝑡) = ∫

𝐿

0

󵄨󵄨󵄨󵄨𝑢𝑥𝑥
󵄨󵄨󵄨󵄨

2

+ 𝑓 (𝑥) |𝑢|
2d𝑥 = E (0) . (3)

The paper is organized as follows. In Section 2, we give a
symplectic structure of the LSES. In Section 3, we present the
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new symplectic methods to the LSES. First, we use a kind of
compact schemes in discretization of spatial derivative.Then,
in temporal discretization, we adopt the symplectic midpoint
method. The new methods are denoted by LSC schemes. We
also analyze the numerical stability of LSC schemes. We give
two numerical examples to support our theory in Section 4.
At last, we make some conclusions.

2. Symplectic Structure of the LSES

Let 𝑢 = 𝑝 + 𝑖𝑞. The LSES (1) can be written in

𝑝
𝑡
+ 𝑞
𝑥
4 + 𝑓 (𝑥) 𝑞 = 𝜖𝑞 ∘ ̇𝜒,

−𝑞
𝑡
+ 𝑝
𝑥
4 + 𝑓 (𝑥) 𝑝 = 𝜖𝑝 ∘ ̇𝜒.

(4)

Introducing the variable 𝑧 = (𝑝, 𝑞)
𝑇, (4) reads in stochas-

tic symplectic context

𝑧
𝑡
= 𝐽
−1
∇
𝑧
𝐻(𝑧) + 𝜖𝐽

−1
∇
𝑧
𝑆 (𝑧) ∘ ̇𝜒, (5)

where

𝐻(𝑧) =
1

2
(𝑝
2

𝑥𝑥
+ 𝑞
2

𝑥𝑥
) +

𝑓 (𝑥)

2
(𝑝
2
+ 𝑞
2
) ,

𝑆 (𝑧) = −
1

2
(𝑝
2
+ 𝑞
2
) ,

𝐽 = (
0 1

−1 0
) .

(6)

The system satisfies the symplectic conservation law [7, 12,
18]:

𝜔
𝑡
= 0, 𝜔 = 𝑑𝑝 ∧ 𝑑𝑞. (7)

Numerical methods which preserve the discrete symplectic
conservation law are called symplectic methods. Symplectic
methods have good numerical stability.

3. LSC Schemes

3.1. Compact Scheme. Introduce the following uniformmesh
grids:

𝑥
𝑘
= 𝑘ℎ, 𝑘 = 0, 1, . . . , 𝑁; 𝑡

𝑛
= 𝑛𝜏, 𝑛 = 0, 1, . . . ,

(8)

where ℎ = 𝐿/𝑁 and 𝜏 are spatial and temporal step sizes,
respectively. Denote the numerical values of 𝑢(𝑥

𝑘
, 𝑡
𝑛
) at the

nodes (𝑥
𝑘
, 𝑡
𝑛
) by 𝑢

𝑛

𝑘
. The symbols 𝑢

𝑛 and 𝑢
𝑘
mean the

numerical solution vectors at 𝑡 = 𝑡
𝑛
and 𝑥 = 𝑥

𝑘
with compo-

nents 𝑢𝑛
𝑘
, respectively. Furthermore, we denote

𝑢
𝑛+(1/2)

𝑘
:=

𝑢
𝑛+1

𝑘
+ 𝑢
𝑛

𝑘

2
, 𝛿

𝑡
𝑢
𝑛+(1/2)

𝑘
:=

𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘

𝜏
. (9)

Introducing the following linear operators

A𝑢
𝑘
= 𝛼𝑢
𝑘−1

+ 𝑢
𝑘
+ 𝛼𝑢
𝑘+1

,

B𝑢
𝑘
= 𝑏

𝑢
𝑘+3

− 9𝑢
𝑘+1

+ 16𝑢
𝑘
− 9𝑢
𝑘−1

+ 𝑢
𝑘−3

6ℎ4

+ 𝑎
𝑢
𝑘+2

− 4𝑢
𝑘+1

+ 6𝑢
𝑘
− 4𝑢
𝑘−1

+ 𝑢
𝑘−2

ℎ4
,

(10)

we adopt formula [19]

𝛿
4

𝑥
𝑢
𝑘
= A
−1
B𝑢
𝑘

(11)

to approximate 𝑢
𝑥
4 , which means that

A𝛿
4

𝑥
𝑢
𝑘
= B𝑢

𝑘
. (12)

By Taylor expansion, we can derive a family of fourth-order
schemes with

𝑎 = 2 (1 − 𝛼) , 𝑏 = 4𝛼 − 1. (13)

The leading termof the truncation error of themethod is ((7−
26𝛼)/240)(𝑢

𝑥
8)
𝑘
ℎ
4. If 𝑏 = 0, we get a scheme with smaller

stencil. A sixth-order scheme is obtained with

𝛼 =
7

26
, 𝑎 =

19

13
, 𝑏 =

1

13
. (14)

Denote two symmetric and cyclic matrices by

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 𝛼 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝛼

𝛼 1 𝛼 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 𝛼 1 𝛼 0 ⋅ ⋅ ⋅ 0

... d d d d d
...

...
... d 𝛼 1 𝛼 0

0 0 ⋅ ⋅ ⋅ 0 𝛼 1 𝛼

𝛼 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝛼 1

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]𝑁×𝑁

,
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𝐵 =
1

6ℎ4

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑐
0

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎

6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏

𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ 0

... d d d d d d d d d
...

0 ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎 𝑏

𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

6𝑎

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
0

𝑐
1

𝑐
1

6𝑎 𝑏 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑏 6𝑎 𝑐
1

𝑐
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]𝑁×𝑁

, (15)

where 𝑐
0
= 16𝑏 + 36𝑎 and 𝑐

1
= −9𝑏 − 24𝑎. Then the matrix

form of (11) is

𝛿
4

𝑥
𝑢
𝑛
= 𝐴
−1
𝐵𝑢
𝑛
. (16)

3.2. Discretization of the LSES. Applying the approximation
(11) to linear system (4), we obtain the following semidis-
cretization stochastic Hamiltonian system:

(𝑧
𝑘
)
𝑡
= 𝐽
−1
∇
𝑧
𝐻(𝑧
𝑘
) + 𝜖𝐽

−1
∇
𝑧
𝑆 (𝑧
𝑘
) ∘ ̇𝜒
𝑘
, (17)

where

𝐻(𝑧) =
𝑓 (𝑥
𝑘
)

2
(𝑝
2

𝑘
+ 𝑞
2

𝑘
) +

1

2
𝛿
4

𝑥
(𝑝
2

𝑘
+ 𝑞
2

𝑘
) ,

𝑆 (𝑧) = −
1

2
(𝑝
2

𝑘
+ 𝑞
2

𝑘
) .

(18)

In temporal discretization of (17), we apply the symplectic
midpoint method

𝛿
𝑡
𝑧
𝑛+(1/2)

𝑘
= 𝐽
−1
∇
𝑧
𝐻(𝑧
𝑛+(1/2)

𝑘
) + 𝜖𝐽

−1
∇
𝑧
𝐻(𝑧
𝑛+(1/2)

𝑘
)

∘ ̇𝜒
𝑛+(1/2)

𝑘
.

(19)

Its componentwise formulation is

𝑝
𝑛+1

𝑘
− 𝑝
𝑛

𝑘

𝜏
= −𝑓 (𝑥

𝑘
) 𝑞
𝑛+(1/2)

𝑘
− 𝛿
4

𝑥
𝑞
𝑛+(1/2)

𝑘

+ 𝜖𝑞
𝑛+(1/2)

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
,

𝑞
𝑛+1

𝑘
− 𝑞
𝑛

𝑘

𝜏
= 𝑓 (𝑥

𝑘
) 𝑝
𝑛+(1/2)

𝑘
+ 𝛿
4

𝑥
𝑝
𝑛+(1/2)

𝑘

− 𝜖𝑝
𝑛+(1/2)

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
.

(20)

According to the Fourier analysis, the LSC schemes (19)
are unconditionally stable. In fact, we can derive

𝛿
4

𝑥
𝑧
𝑛

𝑘
= 𝜇𝑧
𝑛

𝑘
, (21)

where

𝜇 =
4(𝜔 − 1)

2
(3𝑎 + 2𝑏 + 𝑏𝜔)

3ℎ4 (1 + 2𝛼𝜔)
, 𝜔 = cos𝛽ℎ. (22)

Then, with (19) and (21), we can obtain 𝑧
𝑛+1

= 𝐺𝑧
𝑛 with

(1 +
𝑐
2
𝜏
2

4
)𝐺 = (

1 −
𝑐
2
𝜏
2

4
−𝑐𝜏

𝑐𝜏 1 −
𝑐
2
𝜏
2

4

) , (23)

where 𝑐 = 𝜇 + 𝑓(𝑥
𝑘
) − 𝜖 ∘ ̇𝜒

𝑛+(1/2)

𝑘
. By direct computation,

we can derive that the spectral radius of the matrix 𝐺 is 1
and ‖𝐺‖

2
= 1. Therefore, the scheme (19) is unconditionally

stable. Moreover, by symmetry, they are nondissipative.

Theorem 2. Let ‖𝑧𝑛‖2 = ℎ∑
𝑘
𝑧
𝑛

𝑘
𝑧
𝑛

𝑘
. Then, ‖𝑧𝑛‖ is the discrete

charge invariant of the LSC schemes (19), which implies the
discrete charge conservation law of (2).

Scheme (19) can be rewritten in compact form

𝑖A
𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘

𝜏
+B𝑢

𝑛+(1/2)

𝑘
+A𝑓 (𝑥

𝑘
) 𝑢
𝑛+(1/2)

𝑘

= 𝜖A𝑢
𝑛+(1/2)

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
.

(24)

Multiplying (24) by (𝑢𝑛+1
𝑘

−𝑢
𝑛

𝑘
) and summing over 𝑘, we obtain

𝑖𝜏

2
∑

𝑘

[B𝑢
𝑛+1

𝑘
𝑢
𝑛+1

𝑘
−B𝑢

𝑛

𝑘
𝑢
𝑛

𝑘
]

+
𝑖𝜏

2
∑

𝑘

A𝑓 (𝑥
𝑘
) [𝑢
𝑛+1

𝑘
𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘
𝑢
𝑛

𝑘
]

−
𝑖𝜏𝜖

2
∑

𝑘

[A𝑢
𝑛+1

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
𝑢
𝑛+1

𝑘
−A𝑢
𝑛

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
𝑢
𝑛

𝑘
]

+
𝑖𝜏

2
∑

𝑘

[B𝑢
𝑛

𝑘
𝑢
𝑛+1

𝑘
−B𝑢

𝑛+1

𝑘
𝑢
𝑛

𝑘
]

+
𝑖𝜏

2
∑

𝑘

A𝑓 (𝑥
𝑘
) [𝑢
𝑛

𝑘
𝑢
𝑛+1

𝑘
− 𝑢
𝑛+1

𝑘
𝑢
𝑛

𝑘
]

−
𝑖𝜏𝜖

2
∑

𝑘

[A𝑢
𝑛

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
𝑢
𝑛+1

𝑘
−A𝑢
𝑛+1

𝑘
∘ ̇𝜒
𝑛+(1/2)

𝑘
𝑢
𝑛

𝑘
]

= ∑

𝑘

[A (𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘
) (𝑢
𝑛+1

𝑘
− 𝑢
𝑛

𝑘
)] .

(25)
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| for one trajectory.
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Figure 2: ‖𝑢‖
∞
for one trajectory and the average norm over 50 trajectories (a). Residuals of discrete charge for one trajectory (b).

Since A and B are symmetric, the first three summation
terms in the above equality are purely imaginary, while the
last four summation terms are real. Denote

𝐸
𝑛
= ℎ∑

𝑘

[B𝑢
𝑛

𝑘
𝑢
𝑛

𝑘
] + ℎ∑

𝑘

[A𝑓 (𝑥
𝑘
) 𝑢
𝑛

𝑘
𝑢
𝑛

𝑘
]

−
ℎ

2
𝜖∑

𝑘

[A𝑢
𝑛

𝑘
∘ ̇𝜒
𝑛

𝑘
𝑢
𝑛

𝑘
] .

(26)

Now, taking the imaginary parts of (25), we can get that

𝐸
𝑛+1

− 𝐸
𝑛
=
ℎ

2
𝜖∑

𝑘

[A𝑢
𝑛+1

𝑘
∘ ̇𝜒
𝑛

𝑘
𝑢
𝑛+1

𝑘
−A𝑢
𝑛

𝑘
∘ ̇𝜒
𝑛+1

𝑘
𝑢
𝑛

𝑘
] . (27)

Denote

V𝑛
𝑘
= √

𝑏

6

𝑢
𝑛

𝑘+3
− 𝑢
𝑛

𝑘

ℎ2
, Ṽ𝑛

𝑘
= √

3𝑏

2

𝑢
𝑛

𝑘+1
− 𝑢
𝑛

𝑘

ℎ2
,

𝑤
𝑛

𝑘
= √𝑎

𝑢
𝑛

𝑘+2
− 𝑢
𝑛

𝑘

ℎ2
,

𝑤
𝑛

𝑘
= 2√𝑎

𝑢
𝑛

𝑘+1
− 𝑢
𝑛

𝑘

ℎ2
, 𝑦

𝑛

𝑘
= A𝑓 (𝑥

𝑘
) 𝑢
𝑛

𝑘
,

𝑦
𝑛

𝑘
= A𝑢

𝑛

𝑘
∘ ̇𝜒
𝑛

𝑘
,

⟨𝑢
𝑛
, 𝑦
𝑛
⟩ = ℎ∑

𝑘

𝑢
𝑛

𝑘
𝑦
𝑛

𝑘
,

󵄩󵄩󵄩󵄩𝑢
𝑛󵄩󵄩󵄩󵄩

2

= ⟨𝑢
𝑛
, 𝑢
𝑛
⟩ .

(28)
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Figure 3: Residuals of discrete energy for one trajectory and the average energy over 50 trajectories.
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Figure 4: |𝑢𝑛
𝑘
| for one trajectory.

According to the Green formula, we obtain that

ℎ∑

𝑘

[B𝑢
𝑛

𝑘
𝑢
𝑛

𝑘
] =

󵄩󵄩󵄩󵄩Ṽ
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑤
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑤
𝑛󵄩󵄩󵄩󵄩

2

. (29)

Then,

𝐸
𝑛
=
󵄩󵄩󵄩󵄩Ṽ
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V
𝑛󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑤
𝑛󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑤
𝑛󵄩󵄩󵄩󵄩

2

+ ⟨𝑦
𝑛
, 𝑢
𝑛
⟩ −

𝜖

2
⟨𝑦
𝑛
, 𝑢
𝑛
⟩ .

(30)

Therefore, from the above analysis, we give the following
result.

Theorem 3. Under the periodic boundary condition, the LSC
schemes (19) satisfy the discrete energy transforming law (27).

4. Numerical Examples

We use the LSC scheme to solve the LSESs and investigate its
numerical behavior. According to the precise mathematical
definition of thewhite noise [13, 14], we can simulate the noise
as ̇𝜒
𝑛+(1/2)

𝑘
= (1/√ℎ𝜏)𝜒

𝑛+(1/2)

𝑘
, where 𝜒𝑛+(1/2)

𝑘
, 𝑘 = 0, 1, . . . , 𝑁

is a sequence of independent random variables with normal
lawN(0, 1) at each time increment. Denote

󵄩󵄩󵄩󵄩𝑢
𝑛󵄩󵄩󵄩󵄩∞ = max

1≤𝑘≤𝑁

󵄨󵄨󵄨󵄨𝑢
𝑛

𝑘

󵄨󵄨󵄨󵄨 , 𝑒
𝑛

𝑄
= 𝑄
𝑛
− 𝑄
0
,

𝑒
𝑛

𝐻
= 𝐻
𝑛
− 𝐻
𝑛−1

.

(31)

The numerical residuals of Q(𝑡) and H(𝑡) are measured by
𝑒
𝑛

𝑄
and 𝑒
𝑛

𝐻
, respectively. For numerical computation, we take

𝜏 = 0.01, ℎ = 𝜋/50, and 𝜖 = 0.05, 0.1.
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Figure 5: ‖𝑢‖
∞
for one trajectory and the average norm over 50 trajectories (a). Residuals of discrete charge for one trajectory (b).
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Figure 6: Residuals of discrete energy for one trajectory and the average energy over 50 trajectories.

Example 1. LSE with constant coefficients and periodic
boundary condition.

Consider
𝑖𝑢
𝑡
+ 𝑢
𝑥
4 − 15𝑢 = 𝜖𝑢 ∘ ̇𝜒, 𝑥 ∈ [0, 𝜋] , 𝑡 > 0,

𝑢 (𝑥, 0) = exp(𝑖𝜋
3
) cos 2𝑥.

(32)

The exact solution of its deterministic system is 𝑢(𝑥, 𝑡) =

exp[𝑖(𝑡 + (𝜋/3))] cos 2𝑥. The right side in the above system
can be seen as a stochastic perturbation term.

Figure 1 plots the amplitude |𝑢
𝑛

𝑘
| for one trajectory.

Figure 2 shows the evolution of ‖𝑢‖
∞

for one trajectory
and the average norm over 50 trajectories. We see that the
white noise produces stochastic perturbation on the solitary
wave and the size of perturbation depends on the size of
noise. Figure 2 plots the residuals of discrete charge of one

trajectory, which verifies the conservation of discrete charge
of the compact schemes. Figure 3 plots the residuals of
discrete energy for one trajectory and the average norm over
50 trajectories. The figure tells us that the stochastic noise
makes residuals of discrete energy increase linearly over time.

Example 2. LSE with a variable coefficient and periodic
boundary condition.

Consider

𝑖𝑢
𝑡
+ 𝑢
𝑥
4 + (8 ∗ cot2𝑥 − 7) 𝑢 = 𝜖𝑢 ∘ ̇𝜒, 𝑥 ∈ (0, 𝜋) , 𝑡 > 0,

𝑢 (𝑥, 0) = sin2𝑥.
(33)

The exact solution of its deterministic system is 𝑢(𝑥, 𝑦, 𝑡) =

𝑒
𝑖𝑡sin2𝑥.
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Figure 4 plots the amplitude |𝑢
𝑛

𝑘
| for one trajectory.

Figure 5 shows the evolution of ‖𝑢‖
∞

for one trajectory
and the average norm over 50 trajectories. We see that the
white noise produces stochastic perturbation on the solitary
wave and the size of perturbation depends on the size of
noise. Figure 5 plots the residuals of discrete charge of one
trajectory, which verifies the conservation of discrete charge
of the compact schemes. Figure 6 plots the residuals of
discrete energy for one trajectory and the average norm over
50 trajectories. The figure tells us that the stochastic noise
makes residuals of discrete energy increase linearly over time.

5. Conclusion

In this paper, we apply a symplectic scheme in time and
a kind of compact difference schemes in space to solve
the LSES. The methods are unconditionally stable. Under
periodic boundary conditions, they preserve a discrete charge
invariant and satisfy a discrete energy transforming law.
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