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We are concerned with the uniqueness of solutions for a class of p-Laplacian fractional order nonlinear systems with nonlocal
boundary conditions. Based on some properties of the p-Laplacian operator, the criterion of uniqueness for solutions is established.

1. Introduction

Fractional order differential systems arise from many branch-
es of applied mathematics and physics, such as gas dynamics,
Newtonian fluid mechanics, nuclear physics, and biological
process [1-12]. In the recent years, there has a significant
development in fractional calculus. For example, by using the
contraction mapping principle, ur Rehman and Khan [13]
established the existence and uniqueness of positive solutions
for the fractional order differential equation with multipoint
boundary conditions:

Dy =f(ty®.Diy®), te(1),

m—2 (1)
y(©0) =0,  Dfy()- Y &DEy (&) =y
i=1

where 1 < o < 2,0 < B < L,{ € [0,+00), and
0 < & < 1, with ¥72E < 1. In [14], by using the
fixed point theorem of mixed monotone operator, Zhang et
al. studied the existence and uniqueness of positive solution
for the following fractional order differential systems with
multipoint boundary conditions:

-2, %x(t) = f (Lx (1), D x (), y (1)),

-D)y(t) =gt x(t), te(0,1),

p-2
@,Px(0) =0, Dt x(1) = Zajgt”x (51‘)’
j=1

p-2
y =0, D, y1)=Yb692 (),
j=l

)

wherel <y<a<2,1<a-B<y,0<f<u<l,0<v<1,
and 0 < § < & < - <&, < La;b; € [0,+00) with

Zf;lz ajE?_”_l < 1 and ij bjE]Y_l < 1; 9, is the standard
Riemann-Liouville derivative. Some interesting results were
also obtained by Zhang et al. [1, 2, 5, 7, 9], Goodrich [15-17],
and Ahmad and Nieto [18].

On the other hand, the p-Laplacian equation

(9, (x'®)) = F(t.x 0.5 ©)), (3)

where (pp(s) = |s|P2s, p > 1, can describe the turbulent
flow in a porous medium; see [19]. Recently, by using
Krasnoselskii’ s fixed point theorem and the Leggett-Williams
theorem, Wang et al. [20] investigated the existence of pos-
itive solutions for the nonlocal fractional order differential
equation with a p-Laplacian operator:

2, (9, (2. %)) ) + f (t.x (1) =0,

P,Px(0) =0,

(4)

x(0) =0, x (1) =ax (&),
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where 0 < < 2,0 < a <1,0 <a < l,and0 <
& < 1. And then, by looking for a more suitable upper and
lower solution, Ren and Chen [21] established the existence
of positive solutions for four points fractional order boundary
value problem:

D (¢, (D,%)) (1) = f (L,x (1), te(0,1),
x(1) =ax(§), (5)
D, x(1) =b9D,%x (1),

x(0) =0,

D,%x(0) =0,

where @,* and @,” are the standard Riemann-Liouville
derivatives, p-Laplacian operator is defined as (pp(s) = |s|P%s,
p > 1,and the nonlinearity f may be singular at botht = 0, 1
and x = 0.

Inspired by the above work, in this paper, we study the
uniqueness of positive solutions for the following fractional
order differential system with p-Laplacian operator:

D, (9, (D,%)) (1) = Af (t,y (1)),

2, (‘sz (gta)’)) (t) = pg (£, x (1)),

x(0) =0, x(1) = ax &), ©)
D,%x (0) = 0, D,%x(1) =bD,“x (1),

y© =0,  yM=cr@,
2y =0,  D°y(1)=dD y(u),

where @,% B,F, @Y, and @,° are the standard Riemann-
Liouville derivatives with «, 3,9,6 € (1,2], a,b,¢,d € [0,1],
and &,1,{,u € (0,1), A and p are positive parameters, p-
Laplacian operator is defined as ¢, (s) = Is|P7%s, p, > 1,

(@,)" = 9g51/py +1/q, = L,and g, (s) = Is|”*7s, p, > 1,
((sz)_l = ¢,,»1/p,+1/g, = 1. In the rest of paper, we assume
that f,g:[0,1] x R — R are continuous.

Normally, we cannot apply the contraction mapping
principle for solving the BVP (1) like ur Rehman and Khan
[13] since p-Laplacian operator is nonlinear. In this paper, by
using a property of the p-Laplacian operator, we overcome
this difficulty and establish the uniqueness of solution for the
eigenvalue problem of the fractional differential system (6).

2. Preliminaries and Lemmas

We firstly list the necessary definitions from fractional calcu-
lus theory here, which can be found in [10-12].

Definition 1. Let 3 > 0. The fractional integral operator of a

function f: (0,+00) — R is given by

Brome L (T p
FrO= 1 [, =9 s %
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Definition 2. Let f > 0. The Riemann-Liouville fractional
derivative of a function f: (0, +00) — R s given by

Bropmw_ 1 A\ [ s
910 () | -9 r0s ©

where n = [] + 1, [B] denotes the integer part of the number
B, and I denotes the gamma function.

Property 1. Letting B > a > 0and f € L'(0, 1), then

¢y)
Frefw =11,
DI (1) = (1),

DT =T F (1),
©)

)

PBLf(x)=fx) +aqxf !+ 2+ 4 xP™, (10)

where; € R (i = 1,2,...,n) and n is the smallest integer
greater than or equal to f3.

The main results of this paper are based on the following
property of p-Laplacian operator, which is easy to be proved.

Lemma 3. (1) Ifq > 2 and |x|,|y| < M, then

g ) =0, (M| < (@-D)MTP [x=y[. )

(2)If1<q<2xy>0, and |x|,|y| =m > 0, then

g -9, (M| < (@-)m|x-y]. (2

Applying Definitions 1 and 2 and Property 1, we have the
following lemma.

Lemma4. Let y € L'[0,1], 1 < 0, < 2,0 < &n < 1, and
0 < a,b < 1. The fractional order boundary value problem,

2. (9, (2,°x)) (1) =h(t), te(01),

x(1) = ax (§), (13)
D,%x(1) =b9D,%x (1),

x(0) =0,

D,%x(0) =0,

has the unique solution
1 1
x(t) = L K (t,5) 9, <L K, (s,7)h (1) dT> ds, (14)

where

ak, (&)t
1—q&~l

bk, (’7> 5) ¢!
1-bnp!

K, (t,s) =k, (t,s) +

>

K, (t,s) =k, (t,s) +

>
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,(t(l_s))a—l_(t_s)a—l’ O<s<t<l,

ki (t,s) = 1 ar—ga)
%’ 0<t<s<l,
'(t(l—s))ﬁ_l—(t—s)ﬁ_l, 0<s<t<l,

s r(B)
-9 0st<s<1
P o
(15)

andb, = b

Similar to (14), the fractional order boundary value
problem,

D (95, (2.°7)) O =h(®), te@1),
y(0) = y(1) = ey (), (16)
27y0)=0, D°y1)=d2,’y (),

has unique solution

1 1
y() = L K5 (t,5) @, <L K, (s,7)h(7) dT> ds, 17)

where
ks
K (t,s) = ks (t,s) + C(_CT
diky (s) 8
Kilt:5) = ky (69 + =02 m
. 5-1 6-1
(t(l_s))r(a_)(t_s) , 0<s<t<l,
ks (t,5) = 1 5-1
%, 0<t<s<l
'(t(l_S))i"E_)(t_S)yl’ 0<s<t<l,
k4 (t,S) =1 1 y—ly
%, 0<t<s<l,
Y
(18)
andd, = dP™!

Lemma 5. Let 1 < o,f3,7,8 < 2,0 < &Enppu < 1, and
0 < a,b,c,d < 1. The functions K(t,s), i = 1,2,3,4, are
continuous on [0, 1] x [0, 1] and satisfy
(i) Ki(t,s) =0, i=1,2,3,4 fort,s € [0,1];
(ii) fort,s € [0, 1],
o, (5) P < K, (1,5) < 0y () P,

19)
o, ()" < K, (t,s) <0, (s) V7,

where

bk, (1, 5)
1-byft’

bk, (’7’ 5)
1-byf1’

o, (s) =

1-s)F!
T (B)

dik, (u9)
1—dyr?’

dik, (u.5)
—dyrt

03 (s) =

(20)
o, (s) =

(1-s!
I (y)

0,(s) =

(iii) Fort,s € [0,1],

K, (ts)<r(1-9%"  Ky(ts)<n(1-5°"" (1)

where
= ! [1 + a ]
' T (@) 1—qéet ]’
(22)
ry, = ! [1 + ¢ ]
NG 1-cgdt ]’
Proof. The proof is obvious; we omit the proof. O

The basic space used in this paper is E = C([0, 1];R) x
C([0,1];R), where R is a real number set. Obviously, the
space E is a Banach space if it is endowed with the norm as
follows:

IGa V= Null + AVl el = max lu (0],

(23)
vl = max v,
for any (u,v) € E. By Lemma 4, (x, y) € E is a solution of

the fractional order system (1) if and only if (x,y) € Eisa
solution of the integral equation

1 1
x(t) = \D L K, (t:5) @, <L K, (s, T)f(s,y(r))dr> ds,

€ [0,1],

1 1
y(t) = p® JO K (t.s) ¢, (L K, (s, T)g(s,x(r))dr> ds,

€ [0,1].
(24)
We define an operator T : E — E by
T (xy) () = (F(x»),G(x 7)), (25)
where
F(x,y)

=\1 Ll K, (t,9) ¢, (JOI K, (s,7) f (s, ¥ (7)) d‘l’) ds,



G(x )

1 1
= p% L K, (t,s) ®,, (L K, (s, T)g(s,x(r))d‘r) ds.
(26)

It is easy to see that (x, y) is the solution of the boundary
value problem (6) if and only if (x, y) is the fixed point of T
As f,g € C([0,1] x R,R), we know that T : E — Eisa
continuous and compact operator.

3. Main Results

Now we here introduce a new concept: the Z-contraction
mapping.

Definition 6. A function ¥ : (—00,+00) — [0, +00) is called
a nonlinear P-contraction mapping if it is continuous and
nondecreasing and satisfies y(r) < r,r > 0.

Theorem 7. Suppose that p,, p, > 2, if there exist nonnegative
functions a;(t), i = 1,2,3,4, such that
1
0< J 8; () a; (t)dt < +oo, i=1,2,3,4, (27)
0
and the following conditions are satisfied:
(H,) for any (t,w) € (0,1) xR,

fhw za @), gtw =2a), (28)

(H,) there exist D-contraction mappings y,, y, as
|f (tw) = f(tv)| <as (6) gy (Ju—]),

ae. (t,u),(t,v) € [0,1] xR,
(29)
lg @t u)—gt,v)| < ay )y, (Ju—v)),

a.e. (t,u),(t,v) € [0,1] x R.

Then the fractional order differential system (6) has a unique
solution provided that

A=A (q -1)nB(a(B-1)(q-2)+1)

1 $=2 .1
y (L 8,(T)ay (r)d1> L 8, (v) as (1) dr .
+pP(q, - 1)rB (8, (y-1)(q,-2) +1)

1 22 1
X <j 62(T)a2(‘r)d‘r> J 8, (1)a, (r)dr < L.
0

0

Proof. In the case p;, p, > 2, we have 1 < g;, g, < 2. Now
we prove that T is a contraction mapping. By (27)-(28) and
Lemma 5, we have

Jl K, (s7) f(s,y(1))dr > P! Jl 8, (1) a, (1) d7,

01 (1 31)
J K, (s,7) g (s, x (7)) dr > sV‘lj S, (1) a, (1) dr.

0 0
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By (12), (28), and (31), for any (u,,v,), (u4,,v,) € E and for
t > 0, we have

Pq (Ll K, (s,7) f (s, (7)) dT>

~Pa, <Ll K, (s,7) f (s,v, (1)) dT)

4,2

1
<(q-1) (sﬁ‘l L al(r)almdr)

1
N L K (1) |f (1.v, (7)) = f (1, v, (0))|dT

(32)
4,2

<(a,- 1) (s j 8, (0 (e )
0
1
X Jo 85 (1) ay (1) dryy (v, — v|)
1 q:-2
< (ql _ l)s(ﬁ—l)(%—Z)(J SI(T)QI(T)dT)
0

1
v L 8, (1) ay (1) d v, = 1.

Similarly, we also have

Pa. (Ll Ky (s,7) g (s, u (1)) df)

~ % (J: K, (5,7) g (5,1, (7)) dT)

(33)
1 =2
<(q,-1) s(y*”“”*”(j az(r)az(ﬂdr)

0

1

X J 84 (1) a, (1) dt ||juy — uy .
0
So it follows from (14), (17), and (31)-(32) that
IF (uy,v1) (t) = F (uy,v,) (t)l

1
A1 Jo K, (t,s)

x [%l (jl Ky (57) f (s, (@) dr)

0

1
= Pa (.[0 K, (s,7) f (s, v (T))dT)] ds
< /\41’,1 Jl (1 _ S)oc—l
0

X

o ([ Ketom) F s @)
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= P, <Ll K, (s,7) f (s, v (T))d‘t’) ds

1
<AMri(q,-1) J (1 - ) 1B D@2 gq
0

y (Ll 5,()a, (T)dT)qlz

1
X J 8; (1) as (7) d v, = v,
0
<\ (ql - l)l’lB((X, (/3_ 1) (% _2) + 1)

1 a2
X ( J 6, (1)ay (T)d‘l’)
0

1
X J 85 (1) ay (1) dt||jv; — vy,
0
|G (uy, v1) () = G (u, ;) (1))

1
p™ L K, (t,s)

qra (Ll Ky (5,119 (5 () )

1
_(P‘h <J;) K4 (S> T) g (5> U, (T)) dT)] ds
<pP(q—1)r,B(8,(y-1)(q,—2) +1)

1 4,=2
X ( J 8,(1)a, (T)d‘l’)

0

1
X J 84 (1) ay (1) dt ||Juy — uy .
0
(34)

Hence

|T (“1"’1) _T(”2>V2)|

= |(F (”1»"1) - F(”z)"z) >G(”1>V1) - G(“z"’z))|

<||F (s v1) = F (s v) | + |G (ug,vy) = G (14, v,)|

<A (q,-1)rB(e, (B-1)(q1 -2) +1)

y (Ll 8,()a, (T)d‘r>ql_2

1
X j 85 (1) az (1) dr ||v, = v,
0
+p% (g, -1)r,B(8,(y—1)(g, - 2) +1)

< (Ll 52(1)%(1)511)%_2

1
X J-o 84 (1) ay (1) dt ||luy — u,

5
< A([Jvr = o] + [y = )
=A ”(”1»"1) = (uy, Vz)” >
(35)
where
A=A (q - 1)rB(a(B-1)(q; -2) +1)
1 Q-2 .1
X (L 81(T)a1(r)d‘r> Jo 85 (1) az (1) dt
(36)

+p% (g, = 1)1,B(8,(y~1) (g -2) + 1)
1 B2 1
« (L 82(T)a2(r)d‘r) L 5, (1) a, (7) dr.

Noticing that 0 < A < 1, we obtain that F : C[0,1] — C[0, 1]
is a contraction mapping. By means of the Banach contraction
mapping principle, we get that T has a unique fixed point in
E which implies that the fractional order differential system
(6) has a unique solution. O

Theorem 8. Suppose that 1 < p,, p, < 2, if there exist
nonnegative functions b,(t), i = 1,2, 3,4, such that

1
0<J<S,-(t)b,-(t)dt<+oo, 1,234 (37
0

and the following conditions are satisfied:

(H;) for any (t,w) € (0,1) xR,

If Gw)|<by (1),  gt,w)<b (D), (38)

(H,) there exist D-contraction mappings ¢,, ¢, as

|f (tw) = f (&) < by () ¢y (Ju—v]),
a.e.(t,u),(t,v) € [0,1] X R,

(39)
lg (tu) — g (&, v)| < by (1) §, (Ju— V),

a.e.(t,u),(t,v) € [0,1] x R.

Then the fractional order differential system (6) has a unique
solution provided that

A=A (q = 1)rB (o (B=1) (g1 -2) +1)

1
y (L 63(1)b3(1)dr>
+p (9, - 1)rB(8,(y-1)(q, -2) +1)

G2 .1
I 5, (1) by, (v)dr
’ (40)

1 @2 1
X <J 54(1)54(1)611) j 8, (1) b, (1) d < 1.
0

0

Proof. In the case 1 < p;, p, < 2, we get q;,4, > 2; here we
still prove that T is a contraction mapping if the conditions



of theorem are satisfied. By (37)-(38) and Lemma 5, for any
(x, y) € E, we have

Jl K, (s,7) f(s,y(1))dr < £ jl 8, (1) by (1) dr,
0 0 (41)

Il K,y (5,7) g (s, x (1) dr < s Jl 8, ()b, (7) dr.
0 0

By (11), (39), and (41), for any (u;,v,), (u,,v,) € E and for
t > 0, we have

9, (J Ky (6:7) £ (s (0) e )

00 ([, a6 £ (e e
-2

1 91
<(q-1) (sﬁ‘l L 63(1)b3(r)dr>
1
X L K (1) |f (1.v (7)) = f(1,v, (0))|dT
1 q:—2
<(q-1) (s‘“ L 63(T)b3(‘r)d‘r>
1
X Jo 8, (1) by (1) dr¢, (”v1 — v, ||)

1 412
<(q-1) s</"“<%‘2>(J 63(T)b3(‘r)dr>
0

1
X L 85 (1) by (D) dr vy — v,

(42)
Similarly, we also have
1
@, <L K, (s,7) g (s,u, (1)) d‘r)
1
-9, <L K, (s,7) g (s,uy (1)) dT)
< (‘12 _ 1) S(V—l)(qz—Z) (43)

X (J: 84 (1) by (7) d1>q2_2

1
<[ @b @dr - ).
So it follows from (14), (17), and (42)-(43) that
|F (uy, 1) (8) = F (1, v,) (1)

1
A0 L K, (t,s)

X [soql ( Ll K, (s,7) f (57 (7)) dr)

=P, <Ll K, (5,7) f (5,7, (T))d‘l’)] ds

Abstract and Applied Analysis

1
< My J (1-s)*"

0

X

%q, <Ll K, (s,7) f (s, v, (7)) dT>

00 ([ Ko v o) s

1
<Ari (g -1) J (1 - 5)* 1B D@2 gg
0

1 IZI_Z
X (JO 83(T)b3(7)dr>
1
y j 8; () by (1) dr v, - vy
0

<A (g, -1)rB(a, (B-1)(q,-2)+1)
1 4,2
x (L 83(T)b3(‘r)dr>

1
X J 85 (1) by (1) dt vy — vy,
0
|G (1, vy) (1) = G (up, v,) (@)

1
p® L K, (t,s)

<|on (L Ky (5,119 (5, (0) e )

1
~9q (L K, (s,7) g (s,u, (1)) d‘r>] ds
<p”(q,-1)rB(8,(y-1)(q,-2) + 1)

1 g2
x (J 84(T)b4(r)dr>
0

1
X L 8, ()b, (r)dt ||u1 - u2|| .

Hence
[T (1o v1) = T (15|
= |(F (1) = F (10v) .G (1, v,) = G (u )|
< |IF (1, v1) = F ()|
]G (1) = G (wyv2)|
<A™ (q - 1) B (o (B=1) (91 -2) +1)

02

x (Ll 83(T)b3(‘r)dr)

1
X L 8 (D) by (1) dr ||v, — vy
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+p" (g, = 1)r,B (8, (y - 1) (g, - 2) +1)
1 g2
x (J 84(T)b4(1)dr>
0

1
X J. 84 (1) by (1) dt |Juy — uy|
0
< 7{(""1 vy + u —ws) = A (e v1) = (1 v, 5
(45)
where

K=" (g, - 1) B (o (B=1) (@, ~2) +1)

< (Ll 83(T)b3('r)d'r)ql_2 Jl 8, (1) by () dr

’ (46)

+p% (g, = 1)r,B(8,(y ~1) (g2 -2) + 1)
1 42 1
y (L 54(T)b4(r)d‘r> JO 8, ()b, (1) dr.

Noticing that 0 < A < 1, we obtain that F : C[0,1] — C[0,1]
is a contraction mapping. By means of the Banach contraction
mapping principle, we get that T has a unique fixed point in
E which implies that the fractional order differential system
(6) has a unique solution. O

It follows from Theorems 7 and 8 that the following
corollaries for mixed cases hold.

Corollary 9. Suppose that p; > 2and 1 < p, < 2 if there exist
nonnegative functions a;(t), i = 1,2, 3, 4, such that

0< Ll 8;(t)a; (t)dt < +oo, i=1,2,3,4, (47)
and the following conditions are satisfied:
(H,) for any (t,w) € (0,1) xR,
ftwyza (), |gtw)|<a (), (48)
(H,) there exist D-contraction mappings y,, y, as
|f ()= £ (V)] < as (O y (lu =),

ae. (t,u),(t,v) € [0,1] xR,
(49)
lg (t,u) — g (t, )| < ay () y, (Ju—v]),

a.e (t,u),(t,v) € [0,1] x R.

Then the fractional order differential system (6) has a unique
solution provided that

A= A" (g -1)rB(a(B-1)(q, -2) +1)
1 Q=2 1
y (JO 51(T)a1(r)d‘r) L 8, (7) as (1) dr

+p%(q, - 1)r,B(8,(y-1)(q,-2) + 1)

< (Jl 84(T)a2(r)d‘r>q2_2

0

X J-l 04 (1) ay (1)dr < L.
O (50)
Corollary 10. Suppose that p, > 2 and 1 < p,; < 2 if there
exist nonnegative functions a;(t), i = 1,2, 3, 4, such that
0< Ll 8;(t)a; (t)dt < +oo, i=1,2,3,4, (51)
and the following conditions are satisfied:
(H,) forany (t,w) € (0,1) xR,
If (t,w)| <a @), gtw) =a,(t), (52)
(H,) there exist D-contraction mappings v,, v, as
|f (tw) = f (& V)] < as () yy (Ju =),

a.e (t,u),(t,v) € [0,1] xR,
(53)
lg (t,u) — g (£,)| < ay () wy (lu—I),

a.e. (t,u),(t,v) € [0,1] x R.

Then the fractional order differential system (6) has a unique
solution provided that

Ay =2 (g -1)riB(a (B=1) (g -2) +1)

X (Ll 8,(v)ay (r)dr>q12 Jl 8, (7) a; (1) dr

0

P (- )nB@.(y-1)(6-2)+1) (5
1 42
v (JO 82(T)a2(r)dr>

1
XJ 8, (1)ay (t)dtr < 1.
0
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