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We deal with the existence and uniqueness of positive solutions to a class of nonlinear parabolic partial differential equations, by
using some fixed point theorems for mixed monotone operators with perturbation.

1. Introduction

In this paper, we consider a class of nonlinear parabolic
partial differential equations of the form

𝑢
𝑡
− 2Δ𝑢 = 𝑓 (𝑡, 𝑢, 𝑢) + 𝑔 (𝑡, 𝑢) , (𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω × {0} ∪ 𝜕Ω × (0, 𝑇) ,

(1)

where Ω is a bounded smooth domain in R𝑛 and 0 < 𝑇 <

+∞; we denote 𝑄
𝑇
= Ω × (0, 𝑇).

Problems related to nonlinear parabolic equations arise
in many mathematical models of applied science, such as
nuclear science, chemical reactions, heat transfer, population
dynamics, and biological sciences, and have attracted a
great deal of attention in the literature; see [1–6] and the
references therein. In recent years, there are many results
about existence, uniqueness, blowing-up, global existence,
critical exponent, and other properties of the solution; see [4,
5, 7–12], among others. Some of the authors who investigated
parabolic equations were using the method of upper and
lower solutions; see [11], for example. Different from the
works mentioned above, in the present paper, we will utilize
some fixed point theorems for mixed monotone operators
with perturbation to study the existence and uniqueness of
positive solutions to the nonlinear parabolic partial differen-
tial equation (1).

With this context in mind, the outline of this paper is
as follows. In Section 2 we will recall certain results from
the theory of notations and results of monotone operators.

In Section 3, we will provide some conditions under which
problem (1) will have a unique positive solution. Finally, in
Section 4, we will provide an example, which explicates the
applicability of our result.

2. Preliminaries

In this sequel, we present some basic concepts in ordered
Banach spaces and two fixed point theorems which we will
use later. For convenience, we suggest that one refers to [13–
16] for details.

Suppose that (𝐸, ‖ ⋅ ‖) is a real Banach space which is
partially ordered by a cone 𝑃 ⊂ 𝐸; that is, 𝑥 ≤ 𝑦 if and only
if 𝑦 − 𝑥 ∈ 𝑃. If 𝑥 ≤ 𝑦 and 𝑥 ̸= 𝑦, then we denote 𝑥 < 𝑦

or 𝑦 > 𝑥. By 𝜃 we denote the zero element of 𝐸. Recall that
a nonempty closed convex set 𝑃 ⊂ 𝐸 is a cone if it satisfies
(i) 𝑥 ∈ 𝑃, 𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝑃; (ii) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃. 𝑃 is
called normal if there exists a constant𝑁 > 0 such that, for all
𝑥, 𝑦 ∈ 𝐸, 𝜃 ≤ 𝑥 ≤ 𝑦 implies that ‖𝑥‖ ≤ 𝑁‖𝑦‖; in this case 𝑁
is called the normality constant of 𝑃. We say that an operator
𝐴 : 𝐸 → 𝐸 is increasing (decreasing) if 𝑥 ≤ 𝑦 implies that
𝐴𝑥 ≤ 𝐴𝑦 (𝐴𝑥 ≥ 𝐴𝑦). For all 𝑥, 𝑦 ∈ 𝐸, the notation 𝑥 ∼ 𝑦

means that there exist 𝜆 > 0 and𝜇 > 0 such that𝜆𝑥 ≤ 𝑦 ≤ 𝜇𝑥.
Clearly, ∼ is an equivalence relation. Given ℎ > 𝜃 (i.e., ℎ ≥ 𝜃

and ℎ ̸= 𝜃), we denote by 𝑃
ℎ
the set 𝑃

ℎ
= {𝑥 ∈ 𝐸 | 𝑥 ∼ ℎ}. It is

easy to see that 𝑃
ℎ
⊂ 𝑃.

Definition 1 (see [13, 14]). 𝐴 : 𝑃 × 𝑃 → 𝑃 is said to be a
mixed monotone operator if 𝐴(𝑥, 𝑦) is increasing in 𝑥 and
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decreasing in 𝑦; that is, 𝑢
𝑖
, V
𝑖
(𝑖 = 1, 2) ∈ 𝑃, 𝑢

1
≤ 𝑢
2
, V
1
≥ V
2

imply that 𝐴(𝑢
1
, V
1
) ≤ 𝐴(𝑢

2
, V
2
). Element 𝑥 ∈ 𝑃 is called a

fixed point of 𝐴 if 𝐴(𝑥, 𝑥) = 𝑥.

Definition 2. An operator 𝐴 : 𝑃 → 𝑃 is said to be
subhomogeneous if it satisfies𝐴(𝑡𝑥) ≥ 𝑡𝐴𝑥,∀𝑡 ∈ (0, 1),𝑥 ∈ 𝑃.

Definition 3. Let 𝐷 = 𝑃 and let 𝛽 be a real number with 0 ≤

𝛽 < 1. An operator 𝐴 : 𝐷 → 𝐷 is said to be 𝛽-concave if it
satisfies 𝐴(𝑡𝑥) ≥ 𝑡

𝛽
𝐴(𝑥), ∀𝑡 ∈ (0, 1), 𝑥 ∈ 𝐷.

Lemma 4 (see Theorem 2.1 in [16]). Let 𝛽 ∈ (0, 1). 𝐴 :

𝑃 × 𝑃 → 𝑃 is a mixed monotone operator and satisfies
𝐴(𝑡𝑥, 𝑡

−1
𝑦) ≥ 𝑡

𝛽
𝐴(𝑥, 𝑦), ∀𝑡 ∈ (0, 1), 𝑥, 𝑦 ∈ 𝑃. 𝐵 : 𝑃 → 𝑃 is

an increasing subhomogeneous operator. Assume that (i) there
is ℎ
0
∈ 𝑃
ℎ
such that 𝐴(ℎ

0
, ℎ
0
) ∈ 𝑃
ℎ
and 𝐵ℎ

0
∈ 𝑃
ℎ
and (ii) there

exists a constant 𝛿
0
> 0 such that 𝐴(𝑥, 𝑦) ≥ 𝛿

0
𝐵𝑥, ∀𝑥, 𝑦 ∈ 𝑃.

Then we have the following:

(1) 𝐴 : 𝑃
ℎ
× 𝑃
ℎ
→ 𝑃
ℎ
and 𝐵 : 𝑃

ℎ
→ 𝑃
ℎ
;

(2) there exist 𝑢
0
, V
0
∈ 𝑃
ℎ
and 𝑟 ∈ (0, 1) such that

𝑟V
0
≤ 𝑢
0
< V
0
,

𝑢
0
≤ 𝐴 (𝑢

0
, V
0
) + 𝐵𝑢

0
≤ 𝐴 (V

0
, 𝑢
0
) + 𝐵V

0
≤ V
0
;

(2)

(3) the operator equation 𝐴(𝑥, 𝑥) + 𝐵𝑥 = 𝑥 has a unique
solution 𝑥∗ in 𝑃

ℎ
;

(4) for any initial values 𝑥
0
, 𝑦
0

∈ 𝑃
ℎ
, constructing

successively the sequences

𝑥
𝑛
= 𝐴 (𝑥

𝑛−1
, 𝑦
𝑛−1

) + 𝐵𝑥
𝑛−1

,

𝑦
𝑛
= 𝐴 (𝑦

𝑛−1
, 𝑥
𝑛−1

) + 𝐵𝑦
𝑛−1

,

𝑛 = 1, 2, . . . ,

(3)

one has 𝑥
𝑛
→ 𝑥
∗ and 𝑦

𝑛
→ 𝑥
∗ as 𝑛 → ∞.

Lemma 5 (see Theorem 2.4 in [16]). Let 𝛽 ∈ (0, 1). 𝐴 :

𝑃 × 𝑃 → 𝑃 is a mixed monotone operator and satisfies
𝐴(𝑡𝑥, 𝑡

−1
𝑦) ≥ 𝑡𝐴(𝑥, 𝑦), ∀𝑡 ∈ (0, 1), 𝑥, 𝑦 ∈ 𝑃. 𝐵 : 𝑃 → 𝑃 is an

increasing 𝛽-concave operator. Assume that (i) there is ℎ
0
∈ 𝑃
ℎ

such that 𝐴(ℎ
0
, ℎ
0
) ∈ 𝑃
ℎ
and 𝐵ℎ

0
∈ 𝑃
ℎ
and (ii) there exists a

constant 𝛿
0
> 0 such that 𝐴(𝑥, 𝑦) ≤ 𝛿

0
𝐵𝑥, ∀𝑥, 𝑦 ∈ 𝑃. Then we

have the following:

(1) 𝐴 : 𝑃
ℎ
× 𝑃
ℎ
→ 𝑃
ℎ
and 𝐵 : 𝑃

ℎ
→ 𝑃
ℎ
;

(2) there exist 𝑢
0
, V
0
∈ 𝑃
ℎ
and 𝑟 ∈ (0, 1) such that

𝑟V
0
≤ 𝑢
0
< V
0
,

𝑢
0
≤ 𝐴 (𝑢

0
, V
0
) + 𝐵𝑢

0
≤ 𝐴 (V

0
, 𝑢
0
) + 𝐵V

0
≤ V
0
;

(4)

(3) the operator equation 𝐴(𝑥, 𝑥) + 𝐵𝑥 = 𝑥 has a unique
solution 𝑥∗ in 𝑃

ℎ
;

(4) for any initial values 𝑥
0
, 𝑦
0

∈ 𝑃
ℎ
, constructing

successively the sequences

𝑥
𝑛
= 𝐴 (𝑥

𝑛−1
, 𝑦
𝑛−1

) + 𝐵𝑥
𝑛−1

,

𝑦
𝑛
= 𝐴 (𝑦

𝑛−1
, 𝑥
𝑛−1

) + 𝐵𝑦
𝑛−1

,

𝑛 = 1, 2, . . . ,

(5)

one has 𝑥
𝑛
→ 𝑥
∗ and 𝑦

𝑛
→ 𝑥
∗ as 𝑛 → ∞.

3. Existence and Uniqueness
of Positive Solutions

In this section, we will apply Lemmas 4 and 5 to study the
problem (1), and we obtain some new results on the existence
and uniqueness of positive solutions. The method used here
is relatively new to the literature and so are the existence
and uniqueness results of the nonlinear parabolic partial
differential equations.

In our considerations, we work in the Banach space 𝐸 =

𝐶(𝑄
𝑇
) = {𝑢 : 𝑄

𝑇
→ R is continuous} with the standard

norm ‖𝑢‖ = max{|𝑢(𝑥, 𝑡)| : (𝑥, 𝑡) ∈ 𝑄
𝑇
}. Notice that this

space can be equipped with a partial order given by

𝑢, V ∈ 𝐸, 𝑢 ≤ V ⇐⇒ 𝑢 (𝑥, 𝑡) ≤ V (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝑄
𝑇
. (6)

Set 𝑃 = {𝑢 ∈ 𝐶(𝑄
𝑇
) | 𝑢(𝑥, 𝑡) ≥ 0, (𝑥, 𝑡) ∈ 𝑄

𝑇
} , as the

standard cone. It is clear that 𝑃 is a normal cone in 𝐶(𝑄
𝑇
)

and the normality constant is 1.
The following assumptions on the nonlinear functions

𝑓(𝑥, 𝑢, V) and 𝑔(𝑥, 𝑢) are as follows:

(H1) 𝑓 : [0, 𝑇] × [0, +∞) × [0, +∞) → [0, +∞) is
continuous and 𝑔 : [0, 𝑇] × [0, +∞) → [0, +∞) is
continuous;

(H2) 𝑓(𝑡, 𝑢, V) is increasing in 𝑢 ∈ [0, +∞), for fixed 𝑡 ∈

[0, 𝑇] and V ∈ [0, +∞), and decreasing in V ∈ [0, +∞),
for fixed 𝑡 ∈ [0, 𝑇] and 𝑢 ∈ [0, +∞), and 𝑔(𝑡, 𝑢) is
increasing in 𝑢 ∈ [0, +∞), for fixed 𝑡 ∈ [0, 𝑇];

(H3) 𝑔(𝑡, 𝜆𝑢) ≥ 𝜆𝑔(𝑡, 𝑢), for 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 𝑇], and
𝑢 ∈ [0, +∞), and there exists a constant 𝛽 ∈ (0, 1)

such that 𝑓(𝑡, 𝜆𝑢, 𝜆−1V) ≥ 𝜆
𝛽
𝑓(𝑡, 𝑢, V), ∀𝑡 ∈ [0, 𝑇],

𝜆 ∈ (0, 1), 𝑢, V ∈ [0, +∞);
(H4) there exists a constant 𝛿0 > 0 such that 𝑓(𝑡, 𝑢, V) ≥

𝛿
0
𝑔(𝑡, 𝑢), 𝑡 ∈ [0, 𝑇], 𝑢, V ≥ 0;

(H5) min
(𝑥,𝑡)∈𝑄𝑇

𝑓(𝑡, 𝜑, 𝜑) > 0, min
(𝑥,𝑡)∈𝑄𝑇

𝑔(𝑡, 𝜑) > 0,
where 𝜑 is the positive solution of the equation

𝑢
𝑡
− Δ𝑢 = 1, (𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω × {0} ∪ 𝜕Ω × (0, 𝑇) ;

(7)

that is, 𝜑(𝑥, 𝑡) ≥ 0 for (𝑥, 𝑡) ∈ 𝑄
𝑇
. The existence of 𝜑 follows

fromTheorem 7 in [17, Chapter 7].

Theorem 6. Assume that (H
1
)-(H
5
) are satisfied. Then the

nonlinear parabolic partial differential equation (1) has a
unique positive solution 𝑢∗ in 𝑃

𝜑
.
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Proof. We divide the proof into three steps.

Step 1. By the existence and uniqueness of linear parabolic
partial differential equations, we consider the operator 𝐴 :

𝐸×𝐸 → 𝐸 as the solution of (8) for given 𝑢, V ∈ 𝑃
𝜑
as follows:

𝜕𝐴 (𝑢, V)
𝜕𝑡

− Δ𝐴 (𝑢, V) = 𝑓 (𝑡, 𝑢, V) in𝑄
𝑇
,

𝐴 (𝑢, V) = 0 on Ω × {0} ∪ 𝜕Ω × (0, 𝑇) .

(8)

Indeed, for 𝑡 ∈ [0, 𝑇], 𝑢, V ∈ 𝐸, we have 𝑓(𝑡, 𝑢, V) ∈ 𝐿
𝑛
(𝑄
𝑇
).

From the regularity theory of the heat equation, we conclude
that 𝐴(𝑢, V) ∈ 𝑊

2,1
(𝑄
𝑇
), and there exists some 𝛼 > 0 such

that 𝑊2,1(𝑄
𝑇
) ⊂ 𝐶

2𝛼,𝛼
(𝑄
𝑇
), so the operator 𝐴(𝑢, V) is well

defined as the solution of (8) for given 𝑢, V ∈ 𝑃
𝜑
. For 𝑢, V ∈ 𝑃

𝜑
,

∃𝑟
𝑢
, 𝑟V ∈ (0, 1) such that

𝑟
𝑢
𝜑 (𝑥, 𝑡) ≤ 𝑢 (𝑥, 𝑡) ≤

1

𝑟
𝑢

𝜑 (𝑥, 𝑡) ,

𝑟V𝜑 (𝑥, 𝑡) ≤ V (𝑥, 𝑡) ≤
1

𝑟V
𝜑 (𝑥, 𝑡) ,

(9)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
. Let 𝑟

0
= min{𝑟

𝑢
, 𝑟V}. Then from (H

3
),

𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ≥ 𝑓(𝑡, 𝑟
0
𝜑 (𝑥, 𝑡) ,

1

𝑟
0

𝜑 (𝑥, 𝑡))

≥ 𝑟
𝛽

0
𝑓 (𝑡, 𝜑 (𝑥, 𝑡) , 𝜑 (𝑥, 𝑡)) ,

𝑓 (𝑡, 𝑢 (𝑥, 𝑡) , V (𝑥, 𝑡)) ≤ 𝑓(𝑡,

1

𝑟
0

𝜑 (𝑥, 𝑡) , 𝑟
0
𝜑 (𝑥, 𝑡))

≤

1

𝑟
𝛽

0

𝑓 (𝑡, 𝜑 (𝑥, 𝑡) , 𝜑 (𝑥, 𝑡)) ,

(10)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢, V ∈ 𝑃

𝜑
. By (H

3
) and the above inequalities,

we have

𝜕𝐴 (𝑢, V)
𝜕𝑡

− Δ𝐴 (𝑢, V)

= 𝑓 (𝑡, 𝑢, V) ≥ 𝑟
𝛽

0
𝑓 (𝑡, 𝜑, 𝜑) ≥ 𝑟

𝛽

0
min
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑)

= 𝑟
𝛽

0
min
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑) (

𝜕𝜑

𝜕𝑡

− Δ𝜑) ,

𝜕𝐴 (𝑢, V)
𝜕𝑡

− Δ𝐴 (𝑢, V)

= 𝑓 (𝑡, 𝑢, V) ≤
1

𝑟
𝛽

0

𝑓 (𝑡, 𝜑, 𝜑) ≤

1

𝑟
𝛽

0

max
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑)

=

1

𝑟
𝛽

0

max
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑) (

𝜕𝜑

𝜕𝑡

− Δ𝜑) ,

(11)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢, V ∈ 𝑃

𝜑
. By the comparison principle for

parabolic partial differential equations [18, Lemma 3.1.8, page
108], we know that

1

𝑟
𝛽

0

max
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑) 𝜑 ≥ 𝐴 (𝑢, V) ≥ 𝑟
𝛽

0
min
(𝑥,𝑡)∈𝑄𝑇

𝑓 (𝑡, 𝜑, 𝜑) 𝜑 ≥ 0,

(12)

for 𝑢, V ∈ 𝑃
𝜑
, which is satisfied by (H

5
). So 𝐴 : 𝑃

𝜑
× 𝑃
𝜑
→ 𝑃.

Let 𝑟
1

= 𝑟
𝛽

0
min
(𝑥,𝑡)∈𝑄𝑇

𝑓(𝑡, 𝜑, 𝜑) and 𝑟
2

= (1/𝑟
𝛽

0
)

max
(𝑥,𝑡)∈𝑄𝑇

𝑓(𝑡, 𝜑, 𝜑) ; we get that 𝑟
2
𝜑 ≥ 𝐴(𝑢, V) ≥ 𝑟

1
𝜑, for

𝑢, V ∈ 𝑃
𝜑
; that is, 𝐴(𝜑, 𝜑) ∈ 𝑃

𝜑
. By (H

2
), we have

𝜕𝐴
𝑢
(𝑢, V)
𝜕𝑡

− Δ𝐴
𝑢
(𝑢, V) = 𝑓

𝑢
(𝑡, 𝑢, V) ≥ 0,

𝜕𝐴V (𝑢, V)
𝜕𝑡

− Δ𝐴V (𝑢, V) = 𝑓V (𝑡, 𝑢, V) ≤ 0,

(13)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢, V ∈ 𝑃

𝜑
. Also, by the comparison principle

for parabolic partial differential equations, we observe that
𝐴
𝑢
≥ 0, 𝐴V ≤ 0; that is, 𝐴 is a mixed monotone operator.

Moreover, by (H
3
), we have

𝜕𝐴 (𝜆𝑢, 𝜆
−1V)

𝜕𝑡

− Δ𝐴 (𝜆𝑢, 𝜆
−1V)

= 𝑓 (𝑡, 𝜆𝑢, 𝜆
−1V) ≥ 𝜆

𝛽
𝑓 (𝑡, 𝑢, V)

=

𝜕 (𝜆
𝛽
𝐴 (𝑢, V))
𝜕𝑡

− Δ (𝜆
𝛽
𝐴 (𝑢, V)) ,

(14)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢, V ∈ 𝑃

𝜑
. Also, by the comparison principle

for parabolic partial differential equations, we conclude that
𝐴(𝜆𝑢, 𝜆

−1V) ≥ 𝜆
𝛽
𝐴(𝑢, V), for 𝑢, V ∈ 𝑃

𝜑
.

Step 2. Similar to Step 1, we can also construct the operator
𝐵 : 𝐸 → 𝐸 as the solution of (15) for given 𝑢 ∈ 𝑃

𝜑
:

𝜕𝐵𝑢

𝜕𝑡

− Δ𝐵𝑢 = 𝑔 (𝑡, 𝑢) in 𝑄
𝑇
,

𝐵𝑢 = 0 on Ω × {0} ∪ 𝜕Ω × (0, 𝑇) ,

(15)

and we get the fact that the operator 𝐵𝑢 is well defined as the
solution of (15) for given 𝑢 ∈ 𝑃

𝜑
. From (H

3
), we get

𝑔 (𝑡, 𝑢 (𝑥, 𝑡)) ≥ 𝑔 (𝑡, 𝑟
0
𝜑 (𝑥, 𝑡)) ≥ 𝑟

0
𝑔 (𝑡, 𝜑 (𝑥, 𝑡)) ,

𝑔 (𝑡, 𝑢 (𝑥, 𝑡)) ≤ 𝑔(𝑡,

1

𝑟
0

𝜑 (𝑥, 𝑡)) ≤

1

𝑟
0

𝑔 (𝑡, 𝜑 (𝑥, 𝑡)) ,

(16)
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for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢 ∈ 𝑃

𝜑
. By (H

3
) and the above inequalities,

we have

𝜕𝐵𝑢

𝜕𝑡

− Δ𝐵𝑢 = 𝑔 (𝑡, 𝑢)

≥ 𝑟
0
𝑔 (𝑡, 𝜑) ≥ 𝑟

0
min
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑)

= 𝑟
0
min
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑) (

𝜕𝜑

𝜕𝑡

− Δ𝜑) ,

𝜕𝐵𝑢

𝜕𝑡

− Δ𝐵𝑢 = 𝑔 (𝑡, 𝑢)

≤

1

𝑟
0

𝑔 (𝑡, 𝜑) ≤

1

𝑟
0

max
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑)

=

1

𝑟
0

max
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑) (

𝜕𝜑

𝜕𝑡

− Δ𝜑) ,

(17)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢 ∈ 𝑃

𝜑
. Also, by the comparison principle for

parabolic partial differential equations, we know that

1

𝑟
0

max
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑) 𝜑 ≥ 𝐵𝑢 ≥ 𝑟
0
min
(𝑥,𝑡)∈𝑄𝑇

𝑔 (𝑡, 𝜑) 𝜑 ≥ 0, (18)

for 𝑢 ∈ 𝑃
𝜑
, which is satisfied by (H

5
). So 𝐵 : 𝑃

𝜑
→ 𝑃.

Let 𝑟
3

= 𝑟
0
min
(𝑥,𝑡)∈𝑄𝑇

𝑔(𝑡, 𝜑) and 𝑟
4

= (1/𝑟
0
)

max
(𝑥,𝑡)∈𝑄𝑇

𝑔(𝑡, 𝜑); we get that 𝑟
4
𝜑 ≥ 𝐵𝑢 ≥ 𝑟

3
𝜑, where 𝑢 ∈ 𝑃

𝜑
;

that is, 𝐵𝜑 ∈ 𝑃
𝜑
. By (H

2
), we have

𝜕𝐵
𝑢
𝑢

𝜕𝑡

− Δ𝐵
𝑢
𝑢 = 𝑔
𝑢
(𝑡, 𝑢) ≥ 0, (19)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢 ∈ 𝑃

𝜑
. By the comparison principle for

parabolic partial differential equations, we observe that 𝐵
𝑢
≥

0; that is, 𝐵 is an increasing operator. Moreover, by (H
3
), we

have

𝜕𝐵 (𝜆𝑢)

𝜕𝑡

− Δ𝐵 (𝜆𝑢) = 𝑔 (𝑡, 𝜆𝑢) ≥ 𝜆𝑔 (𝑡, 𝑢)

=

𝜕 (𝜆𝐵𝑢)

𝜕𝑡

− Δ (𝜆𝐵𝑢) ,

(20)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢 ∈ 𝑃

𝜑
. By the comparison principle

for parabolic partial differential equations, we conclude that
𝐵(𝜆𝑢) ≥ 𝜆𝐵𝑢, for 𝑢 ∈ 𝑃

𝜑
.

Step 3. By (H
4
), we have

𝜕𝐴 (𝑢, V)
𝜕𝑡

− Δ𝐴 (𝑢, V) = 𝑓 (𝑡, 𝑢, V) ≥ 𝛿
0
𝑔 (𝑡, 𝑢)

=

𝜕 (𝛿
0
𝐵𝑢)

𝜕𝑡

− Δ (𝛿
0
𝐵𝑢) ,

(21)

for (𝑥, 𝑡) ∈ 𝑄
𝑇
, 𝑢, V ∈ 𝑃

𝜑
. By the comparison principle

for parabolic partial differential equations, we know that
𝐴(𝑢, V) ≥ 𝛿

0
𝐵𝑢, where 𝑢, V ∈ 𝑃

𝜑
.

Therefore, the operators𝐴 and 𝐵 satisfy all the conditions
in Lemma 4. Thus, the operator equation 𝐴(𝑢, 𝑢) + 𝐵𝑢 = 𝑢

has a unique solution 𝑢
∗ in 𝑃

𝜑
. By

𝜕𝑢
∗

𝜕𝑡

=

𝜕𝐴 (𝑢
∗
, 𝑢
∗
)

𝜕𝑡

+

𝜕𝐵𝑢
∗

𝜕𝑡

= (Δ𝐴 (𝑢
∗
, 𝑢
∗
) + 𝑓 (𝑡, 𝑢

∗
, 𝑢
∗
)) + (Δ𝐵𝑢

∗
+ 𝑔 (𝑡, 𝑢

∗
))

= 2Δ𝑢
∗
+ 𝑓 (𝑡, 𝑢

∗
, 𝑢
∗
) + 𝑔 (𝑡, 𝑢

∗
) ,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝑢
∗
= 𝐴 (𝑢

∗
, 𝑢
∗
) + 𝐵𝑢

∗
= 0,

(𝑥, 𝑡) ∈ Ω × {0} ∪ 𝜕Ω × (0, 𝑇) ,

(22)

we obtain that the nonlinear parabolic partial differential
equation (1) has a unique positive solution 𝑢∗ in𝑃

𝜑
.The proof

is complete.

Further, we make some other assumptions on the nonlin-
ear functions 𝑓(𝑡, 𝑢, V) and 𝑔(𝑡, 𝑢):

(H6) there exists a constant 𝛽 ∈ (0, 1) such that 𝑔(𝑡, 𝜆𝑢) ≥
𝜆
𝛽
𝑔(𝑡, 𝑢), ∀𝑡 ∈ [0, 𝑇], 𝜆 ∈ (0, 1), 𝑢 ∈ [0, +∞), and

𝑓(𝑡, 𝜆𝑢, 𝜆
−1V) ≥ 𝜆𝑓(𝑡, 𝑢, V), for 𝜆 ∈ (0, 1), 𝑡 ∈ [0, 𝑇],

𝑢, V ∈ [0, +∞);
(H7) there exists a constant 𝛿0 > 0 such that 𝑓(𝑡, 𝑢, V) ≤

𝛿
0
𝑔(𝑡, 𝑢), 𝑡 ∈ [0, 𝑇], 𝑢, V ≥ 0.

By using Lemma 5, we can also easily prove the following
conclusion.

Theorem 7. Assume that (H
1
), (H
2
), (H
5
), (H
6
), and (H

7
)

are satisfied. Then the nonlinear parabolic partial differential
equation (1) has a unique positive solution 𝑢∗ in 𝑃

𝜑
.

4. An Example

We now present one example to illustrate Theorem 6.

Example 1. Consider the following parabolic partial differen-
tial equation:

𝑢
𝑡
− 2Δ𝑢 = 𝑢

1/2
+ (𝑢 + 1)

−1/3
+

𝑢

𝑢 + 1

𝑎 (𝑡)

+ 𝑏 (𝑡) + 𝑐, (𝑥, 𝑡) ∈ Ω × (0, 1) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω × {0} ∪ 𝜕Ω × (0, 1) ,

(23)

where 𝑐 > 0 is a constant, 𝑎, 𝑏 : [0, 1] → (0, +∞) are
continuous, and Ω is a bounded smooth domain in R𝑛; we
denote𝑄

1
= Ω×(0, 1). Set 𝜑 to be the positive solution of the

following:

𝑢
𝑡
− Δ𝑢 = 1, (𝑥, 𝑡) ∈ Ω × (0, 1) ,

𝑢 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ Ω × {0} ∪ 𝜕Ω × (0, 1) ;

(24)



Abstract and Applied Analysis 5

that is, 𝜑(𝑥, 𝑡) ≥ 0, for (𝑥, 𝑡) ∈ 𝑄
1
. We can conclude that

the nonlinear parabolic partial differential equation (23) has
a unique positive solution 𝑢

∗ in 𝑃
𝜑
.

Proof. In this example, we take 0 < 𝑑 < 𝑐 and let

𝑓 (𝑡, 𝑢, V) = 𝑢
1/2

+ (V + 1)
−1/3

+ 𝑏 (𝑡) + 𝑑,

𝑔 (𝑡, 𝑢) =

𝑢

𝑢 + 1

𝑎 (𝑡) + 𝑐 − 𝑑,

𝛽 =

1

2

, 𝑎
∗
= max {𝑎 (𝑡) : 𝑡 ∈ [0, 1]} .

(25)

Obviously, 𝑎∗ > 0, 𝑓 : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞)

is continuous, and 𝑔 : [0, 1] × [0, +∞) → [0, +∞) is
continuous. And 𝑓(𝑡, 𝑢, V) is increasing in 𝑢 ∈ [0, +∞), for
fixed 𝑡 ∈ [0, 1] and V ∈ [0, +∞), and decreasing in V ∈

[0, +∞), for fixed 𝑡 ∈ [0, 1] and 𝑢 ∈ [0, +∞), and 𝑔(𝑡, 𝑢) is
increasing in 𝑢 ∈ [0, +∞), for fixed 𝑡 ∈ [0, 1]. Besides, for
𝜆 ∈ (0, 1), 𝑡 ∈ [0, 1], and 𝑢, V ∈ [0, +∞), we have

𝑔 (𝑡, 𝜆𝑢) =

𝜆𝑢

𝜆𝑢 + 1

𝑎 (𝑡) + 𝑐 − 𝑑

≥

𝜆𝑢

𝑢 + 1

𝑎 (𝑡) + 𝜆 (𝑐 − 𝑑) = 𝜆𝑔 (𝑡, 𝑢) ,

𝑓 (𝑡, 𝜆𝑢, 𝜆
−1V) = (𝜆𝑢)

1/2
+ (𝜆
−1V + 1)

−1/3

+ 𝑏 (𝑡) + 𝑑

≥ 𝜆
1/2

[𝑢
1/2

+ (V + 1)

−1/3

+ 𝑏 (𝑡) + 𝑑]

= 𝜆
1/2
𝑓 (𝑡, 𝑢, V) .

(26)

Moreover, if we take 𝛿
0
∈ (0, 𝑑/(𝑎

∗
+ 𝑐 − 𝑑)], then we obtain

𝑓 (𝑡, 𝑢, V) = 𝑢
1/2

+ (V + 1)
−1/3

+ 𝑏 (𝑡) + 𝑑 ≥ 𝑑

=

𝑑

𝑎
∗
+ 𝑐 − 𝑑

⋅ (𝑎
∗
+ 𝑐 − 𝑑)

≥ 𝛿
0
[

𝑢

𝑢 + 1

𝑎 (𝑡) + 𝑐 − 𝑑] = 𝛿
0
𝑔 (𝑡, 𝑢) .

(27)

Further, min
(𝑥,𝑡)∈𝑄1

𝑓(𝑡, 𝜑, 𝜑) ≥ 𝑑 > 0 andmin
(𝑥,𝑡)∈𝑄1

𝑔(𝑡, 𝜑) ≥

𝑐 − 𝑑 > 0.
Hence, all the conditions of Theorem 6 are satisfied. An

application ofTheorem 6 implies that the nonlinear parabolic
partial differential equation (23) has a unique positive solu-
tion 𝑢

∗ in 𝑃
𝜑
, where 𝑃

𝜑
= {𝑢 ∈ 𝐶(𝑄

1
) | there exist 𝜆 =

𝜆(𝑢, 𝜑), 𝜇 = 𝜇(𝑢, 𝜑) > 0 such that 𝜆𝜑 ≤ 𝑢 ≤ 𝜇𝜑}.
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