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We consider positive solutions and optimal control problem for a second order impulsive differential equation with mixed
monotone terms. Firstly, by using a fixed point theorem of mixed monotone operator, we study positive solutions of the boundary
value problem for impulsive differential equations with mixed monotone terms, and sufficient conditions for existence and
uniqueness of positive solutions will be established. Also, we study positive solutions of the initial value problem for our system.
Moreover, we investigate the control problem of positive solutions to our equations, and then, we prove the existence of an optimal
control and its stability. In addition, related examples will be given for illustrations.

1. Introduction

Mixedmonotone operators have been introduced byGuo and
Lakshmikantham [1] in 1987. Recently, many authors have
investigated those kinds of operators in Banach spaces and
obtained a lot of interesting and important results (see [2–
9]). In this work, by using a fixed point theorem of mixed
monotone operator, we study the existence and uniqueness of
positive solutions to the boundary value problemof impulsive
differential equations with mixed monotone terms:

(BP; 𝑢)

{{{{{{{

{{{{{{{

{

−𝑥

(𝑡) = 𝑎 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡)) + 𝑢 (𝑡) ,

𝑡 ∈ (0, 1) \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

Δ𝑥|
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑏
0
, 𝑥 (1) = 0.

(1)

Here, 𝐽 = [0, 1], 𝑅
+ = [0, +∞), 𝑓 ∈ 𝐶[𝐽 × 𝑅+ × 𝑅+, 𝑅+],

and 𝑎 ∈ 𝐶[𝐽, 𝑅+] with min
𝑡∈𝐽

𝑎(𝑡) > 0 on any subinterval of
𝐽. A function 𝑢 is given on [0, 1], 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
<

1, Δ𝑥|
𝑡=𝑡𝑘

denotes the jump of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
and Δ𝑥|

𝑡=𝑡𝑘
=

𝑥(𝑡+
𝑘
)−𝑥(𝑡−
𝑘
), where𝑥(𝑡+

𝑘
) and𝑥(𝑡−

𝑘
) represent the right and left

limits of 𝑥(𝑡) at 𝑡 = 𝑡
𝑘
, respectively. Also, 𝐼

𝑘
is a given function

in 𝐶[𝑅
+ × 𝑅+, 𝑅+], 𝑘 = 1, 2, . . . , 𝑚. Furthermore, 𝑏

0
> 0 is a

given constant.
For convenience, we put 𝐽

0
= [0, 𝑡

1
], 𝐽
1

= (𝑡
1
, 𝑡
2
], . . . ,

𝐽
𝑚−1

= (𝑡
𝑚−1

, 𝑡
𝑚
], 𝐽
𝑚

= (𝑡
𝑚
, 1], and 𝐽


= 𝐽 \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑚
}.

Then, we study the existence and uniqueness of positive
solutions to initial value problem as follows:

(IP; 𝑢)

{{{{{{{

{{{{{{{

{

−𝑥

(𝑡) = 𝑎 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡)) + 𝑢 (𝑡) ,

𝑡 ∈ (0, 1) \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

Δ𝑥|
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) ,

𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑏
0
, 𝑥 (0) = 𝑏

1
,

(2)

where 𝑓 ∈ 𝐶[𝐽 × 𝑅+ × 𝑅+, 𝑅] and 𝑏
0
> 0 and 𝑏

1
⩾ 0 are given

constants. Moreover, we consider the related optimal control
problem (OP) of (2) as follows:

Problem (OP). Find an optimal control 𝑢∗ ∈ U
𝑀
such that

𝜋 (𝑢
∗
) = inf
𝑢∈U𝑀

𝜋 (𝑢) . (3)

Here,U
𝑀
is a control space defined by

U
𝑀

:= {𝑢 ∈ 𝐿
2

(0, 1) | −𝑀 ⩽ 𝑢 (𝑡) ⩽ 0 a.e. 𝑡 ∈ [0, 1]} , (4)
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where 𝑀 is a fixed positive number and 𝜋(𝑢) is the cost
functional defined by

𝜋 (𝑢) :=
1

2
∫
1

0

(𝑥 − 𝑥
𝑑
) (𝑡)


2

𝑑𝑡 + 𝑥 (1) +
1

2
∫
1

0

|𝑢 (𝑡)|
2
𝑑𝑡, (5)

where 𝑢 ∈ U
𝑀
is the control, function 𝑥 is a unique positive

solution to the state problem (IP; 𝑢), and 𝑥
𝑑
is the given

desired target profiles in 𝐿2(0, 1).
The existence and uniqueness of solutions for boundary

value problem have been discussed by many authors, and the
boundary value problem of impulsive differential equation
is a new and important branch of the differential equation
theory, which has an extensive physical, chemical, biological,
and engineering background, realistic mathematical model,
and so forth (see [10–14]). The theory on mixed monotone
operators has attracted much attention and has been widely
studied, such as Guo and Lakshmikantham [1] have applied
the monotone iterative technique to discuss an initial value
problem of differential equations without impulse:

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑎] ,

𝑢 (0) = 𝑥
0
.

(6)

They obtained the existence of the coupled quasisolutions
by mixed monotone sequence of coupled quasi upper and
lower solutions. Zhai and Zhang [7] showed a new fixed point
theorem for differential equations with mixed monotone
term. Jinli and Yihai [15] considered the following problem:

𝑢


(𝑥) − 𝑓 (𝑥, 𝑢, 𝑢) = 𝜃, 𝑥 ∈ 𝐽, 𝑥 ̸= 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

Δ𝑢|
𝑥=𝑥𝑖

= 𝐼
𝑖
(𝑢 (𝑥
𝑖
)) , 𝑖 = 1, 2, . . . , 𝑚,

Δ𝑢
𝑥=𝑥𝑖

= 𝐼
𝑖
(𝑢 (𝑥
𝑖
)) , 𝑖 = 1, 2, . . . , 𝑚,

𝑢 (0) = 𝑤
0
, 𝑢



(0) = 𝑤
1
.

(7)

They used the coupled fixed point theorem for mixed
monotone condensing operators to obtain the existence and
uniqueness of solutions.

Also, there is a vast literature on optimal control problems
(see [16–19]). For instance, with a fixed point theorem of
generalized concave operator, the authors [19] have studied
the optimal control problem of positive solutions to the
following second order impulsive differential equation:

−𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑢 (𝑡) , 𝑡 ∈ (0, 𝑇) \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

Δ𝑥|
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

Δ𝑥
𝑡=𝑡𝑘

= 𝐼
𝑘
(𝑥 (𝑡
𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑥 (0) = 𝑎, 𝑥


(0) = 𝑏.

(8)

In this paper, we investigate impulsive differential equa-
tions with mixed monotone terms, which have variable
coefficient nonlinear terms. Then, we prove the existence
and uniqueness of positive solutions to (BP; 𝑢) and (IP; 𝑢).

Moreover, we prove the existence of an optimal control to
(OP) and its stability.

The plan of this paper is as follows. In Section 2,
we recall the fundamentals of a fixed point theorem of
mixed monotone operators. In Section 3, we deal with the
existence and uniqueness of positive solutions to (BP; 𝑢).
In Section 4, we show the existence and uniqueness of
positive solutions to (IP; 𝑢). In Section 5, we prove the
existence of an optimal control to (OP) and its stability.
In the final Section 6, related examples on the main results
are given.

1.1. Notations. Throughout this paper, we use the following
notations.

Let 𝑃𝐶[𝐽, 𝑅] := {𝑥 | 𝑥 : 𝐽 → 𝑅, 𝑥(𝑡) is continuous
at 𝑡 ̸= 𝑡

𝑘
and left continuous at 𝑡 = 𝑡

𝑘
, 𝑥(𝑡+
𝑘
) exists, 𝑘 =

1, 2, . . . , 𝑚}.Then, we can easily find that𝑃𝐶[𝐽, 𝑅] is a Banach
space with the norm |𝑥|

𝑃𝐶
:= sup

𝑡∈𝐽
|𝑥|.

We put 𝐻 := 𝐿2(𝐽) with the usual real Hilbert structure
and denote by | ⋅ |

𝐻
the norm in 𝐻, for simplicity, and

𝑊
2,1

(𝐽, 𝑅) is a usual Sobolev space, namely,

𝑊
2,1

(𝐽, 𝑅) = {𝑓 ∈ 𝐿
1

(𝐽) : 𝐷
𝑘
𝑓 ∈ 𝐿

1

(𝐽) , 𝑘 = 1, 2} , (9)

where𝐷𝑘𝑓 denoted the 𝑘th derivative of 𝑓.
Also, 𝑁

𝑖
and 𝑁

𝑖
, 𝑖 = 1, 2, 3, . . ., denote positive (or

nonnegative) constants only depending on their arguments.

2. A Fixed Point Theorem of Mixed
Monotone Operator

In this section, we recall the fundamentals of a fixed point
theorem of mixed monotone operator.

Suppose that (𝐸, ‖ ⋅ ‖) is a real Banach space which is
partially ordered by a cone 𝑃 ⊂ 𝐸, that is, 𝑥 ⩽ 𝑦 if and only if
𝑦 − 𝑥 ∈ 𝑃. If 𝑥 ⩽ 𝑦 and 𝑥 ̸= 𝑦, then we denote 𝑥 < 𝑦 or 𝑦 > 𝑥.
By 𝜃we denote the zero element of 𝐸. Recall that a nonempty
closed convex set 𝑃 ⊂ 𝐸 is a cone if it satisfies

(i) 𝑥 ∈ 𝑃, 𝜆 ≥ 0 ⇒ 𝜆𝑥 ∈ 𝑃;
(ii) 𝑥 ∈ 𝑃, −𝑥 ∈ 𝑃 ⇒ 𝑥 = 𝜃.

Putting
∘

𝑃 = {𝑥 ∈ 𝑃 | 𝑥 is an interior point of 𝑃}, a cone
𝑃 is said to be solid if its interior

∘

𝑃 is nonempty. Moreover,
𝑃 is called normal if there exists a constant 𝑀 > 0 such that,
for all 𝑥, 𝑦 ∈ 𝐸, 𝜃 ⩽ 𝑥 ⩽ 𝑦 implies ‖𝑥‖ ⩽ 𝑀‖𝑦‖; in this case
𝑀 is called the normality constant of 𝑃. If 𝑥

1
, 𝑥
2
∈ 𝐸, the set

[𝑥
1
, 𝑥
2
] = {𝑥 ∈ 𝐸 | 𝑥

1
⩽ 𝑥 ⩽ 𝑥

2
} is called the order interval

between 𝑥
1
and 𝑥

2
.

For all 𝑥, 𝑦 ∈ 𝐸, the notation 𝑥 ∼ 𝑦 means that there
exist 𝜆 > 0 and 𝜇 > 0 such that 𝜆𝑥 ⩾ 𝑦 ⩾ 𝜇𝑥. Clearly, ∼ is
an equivalence relation. Giving ℎ > 𝜃 (i.e., ℎ ⩾ 𝜃 and ℎ ̸= 𝜃),
we denote by 𝑃

ℎ
the set 𝑃

ℎ
= {𝑥 ∈ 𝐸 | 𝑥 ∼ ℎ}. It is easy

to see that 𝑃
ℎ
⊂ 𝑃 is convex and 𝜆𝑃

ℎ
= 𝑃
ℎ
for all 𝜆 > 0. If

∘

𝑃 ̸= 0 and ℎ ∈
∘

𝑃, it is clear that 𝑃
ℎ

= 𝑃. For other detailed
properties of cones, we refer to the monograph by Guo and
Lakshmikantham [20].
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Definition 1 (cf. [1, 2]). 𝐴 : 𝑃 × 𝑃 → 𝑃 is said to be a
mixed monotone operator if 𝐴(𝑥, 𝑦) is increasing in 𝑥 and
decreasing in 𝑦, that is, 𝑢

𝑖
, V
𝑖
∈ 𝑃 (𝑖 = 1, 2), 𝑢

1
⩽ 𝑢
2
, V
1
⩾ V
2

implies that 𝐴(𝑢
1
, V
1
) ⩽ 𝐴(𝑢

2
, V
2
). Element 𝑥 ∈ 𝑃 is called a

fixed point of 𝐴 if 𝐴(𝑥, 𝑥) = 𝑥.

Here, one recalls the following fixed point theorem of
mixed monotone operator which has been established by
Zhai and Zhang [7].

Proposition 2 (cf. [7, Theorem 2.1]). Let 𝑃 be a normal cone
of a real Banach space 𝐸. Also, let 𝐴 : 𝑃 × 𝑃 → 𝑃 be a mixed
monotone operator. Assume that

(A
1
) there exists ℎ ∈ 𝑃 with ℎ ̸= 𝜃 such that 𝐴(ℎ, ℎ) ∈ 𝑃

ℎ
;

(A
2
) for any 𝑢, V ∈ 𝑃 and 𝑡 ∈ (0, 1), there exists 𝜑(𝑡) ∈ (𝑡, 1]

such that 𝐴(𝑡𝑢, 𝑡−1V) ⩾ 𝜑(𝑡)𝐴(𝑢, V).

Then operator 𝐴 has a unique fixed point 𝑥∗ in 𝑃
ℎ
. Moreover,

for any initial 𝑥
0
, 𝑦
0

∈ 𝑃
ℎ
, constructing successively the

sequences

𝑥
𝑛
= 𝐴 (𝑥

𝑛−1
, 𝑦
𝑛−1

) , 𝑦
𝑛
= 𝐴 (𝑦

𝑛−1
, 𝑥
𝑛−1

) ,

𝑛 = 1, 2, . . . ,
(10)

one has ‖𝑥
𝑛
− 𝑥∗‖ → 0 and ‖𝑦

𝑛
− 𝑥∗‖ → 0 as 𝑛 → ∞.

By applying Proposition 2, one shows the existence and
uniqueness of the positive solution to (BP; 𝑢) and (IP; 𝑢) on
𝐽.

3. Boundary Value Problem (BP; 𝑢)

In this section, we show the existence and uniqueness of the
positive solution to (BP; 𝑢) by applying a fixed point theorem
of mixed monotone operator (Proposition 2).

Throughout this section, we assume the following condi-
tions (H

1
)–(H
3
):

(H
1
) 𝑓 : 𝐽 × 𝑅+ × 𝑅+ → 𝑅+, 𝑓(𝑡, 𝑥, 𝑦) is nondecreasing in
𝑥 for each 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑅+, and is nonincreasing in 𝑦

for each 𝑡 ∈ 𝐽 and 𝑥 ∈ 𝑅+. Also, 𝑓(𝑡, (1/2), 1) > 0 for
all 𝑡 ∈ 𝐽.

(H
2
) For each 𝑘 = 1, 2, . . . , 𝑚, 𝐼

𝑘
: 𝑅+ ×𝑅+ → 𝑅+, 𝐼

𝑘
(𝑥, 𝑦)

is nondecreasing in 𝑥 for each 𝑦 ∈ 𝑅+ and is
nonincreasing in 𝑦 for each 𝑥 ∈ 𝑅+.

(H
3
) For all 𝛾 ∈ (0, 1), there exists a constant 𝜑

1
(𝛾), 𝜑
2
(𝛾) ∈

(𝛾,1] such that

𝑓 (𝑡, 𝛾𝑥, 𝛾
−1
𝑦) ⩾ 𝜑

1
(𝛾) 𝑓 (𝑡, 𝑥, 𝑦) ,

𝐼
𝑘
(𝛾𝑥, 𝛾

−1
𝑦) ⩾ 𝜑

2
(𝛾) 𝐼
𝑘
(𝑥, 𝑦) .

(11)

for any 𝑥, 𝑦 ∈ 𝑅+, any 𝑡 ∈ 𝐽, and any 𝑘 = 1, 2, . . . , 𝑚.

We give the definition of solutions to (BP; 𝑢).

Definition 3. Let 𝑢 ∈ 𝐻, and let 𝑏
0
be a given constant. Then,

a function 𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] ∩ 𝑊2,1(𝐽, 𝑅) is called a solution to
(BP; 𝑢) on 𝐽 if it satisfies (1).

Now, we mention our first main theorem in this paper,
which is concerned with the existence-uniqueness of the
positive solution to (BP; 𝑢) on 𝐽.

Theorem 4. Assuming the conditions (𝐻
1
)–(𝐻
3
), and having

𝑀 has a fixed positive constant, then for each function 𝑢 ∈ 𝐻

with 0 ⩽ 𝑢(𝑡) ⩽ 𝑀 a.e. 𝑡 ∈ 𝐽, there exists a unique positive
solution to (BP; 𝑢) on 𝐽.

Here, we give the key lemma, which is concerned with the
characterization of solutions to (BP; 𝑢).

Lemma5. Assume the same conditions as inTheorem 4.Then,
𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] ∩ 𝑊

2,1(𝐽, 𝑅) is a solution to (BP; 𝑢) on 𝐽 if and
only if 𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] satisfies the following integral equation:

𝑥 (𝑡) = 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) , ∀𝑡 ∈ 𝐽,

(12)

where

𝐺 (𝑡, 𝑠) = {
𝑡, 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1,

𝑠, 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1.
(13)

Proof. Firstly, integrating −𝑥

(𝑠) = 𝑎(𝑠)𝑓(𝑠, 𝑥(𝑠), 𝑥(𝑠)) + 𝑢(𝑠)

from 0 to 𝑡, we obtain

𝑥


(𝑡) = 𝑥


(0) − ∫
𝑡

0

{𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠,

∀𝑡 ∈ 𝐽.

(14)

Again, integrating (14), we have

𝑥 (𝑡) = 𝑥 (0) + 𝑥


(0) 𝑡

− ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

{𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡

𝑘
)} , ∀𝑡 ∈ 𝐽.

(15)

From (14) with 𝑥(1) = 0, we infer that

𝑥


(0) = ∫
1

0

{𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠. (16)

Hence, from 𝑥(0) = 𝑏
0
, (15), and (16), we can find that

𝑥 (𝑡) = 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) , ∀𝑡 ∈ 𝐽,

(17)

where𝐺(𝑡, 𝑠) is the function defined as in (13).Thus, the proof
is completed.
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By Lemma 5, we can show the solvability of (BP; 𝑢). In
fact, we define an operator 𝐴 : 𝑃𝐶[𝐽, 𝑅] × 𝑃𝐶[𝐽, 𝑅] →

𝑃𝐶[𝐽, 𝑅] by

𝐴 (𝑥, 𝑦) (𝑡)

= 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
)) ∀𝑥, 𝑦 ∈ 𝑃𝐶 [𝐽, 𝑅] , 𝑡 ∈ 𝐽,

(18)

where 𝐺(𝑡, 𝑠) is the function defined as in (13).
We can easily find that the following lemma holds.

Lemma6. Assume the same conditions as inTheorem 4.Then,
𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] ∩ 𝑊2,1(𝐽, 𝑅) is a solution to (BP; 𝑢) on 𝐽 if
and only if 𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] is the fixed point of the operator
𝐴 : 𝑃𝐶[𝐽, 𝑅] × 𝑃𝐶[𝐽, 𝑅] → 𝑃𝐶[𝐽, 𝑅] defined by (18).

Taking account of Proposition 2 and Lemmas 5 and
6, one can prove Theorem 4 concerning the existence and
uniqueness of the positive solution to (BP; 𝑢) on 𝐽.

Proof of Theorem 4. By applying a fixed point theorem of
mixed monotone operator (Proposition 2), we show the
existence and uniqueness of the positive solution to (BP; 𝑢)
on 𝐽.

To do so, set

�̃� := {𝑥 ∈ 𝑃𝐶 [𝐽, 𝑅] ; 𝑥 (𝑡) ⩾ 0, ∀𝑡 ∈ 𝐽} . (19)

Clearly, �̃� is a normal cone in 𝑃𝐶[𝐽, 𝑅] and the normality
constant is 1.

Let 𝐴 : 𝑃𝐶[𝐽, 𝑅] × 𝑃𝐶[𝐽, 𝑅] → 𝑃𝐶[𝐽, 𝑅] be the operator
defined by (18). Then, we infer from (H

1
), (H
2
), (13), and

𝑢(𝑡) ⩾ 0 a.e. 𝑡 ∈ 𝐽 that

𝐴 (𝑥, 𝑦) (𝑡) ⩾ 0 ∀𝑥, 𝑦 ∈ �̃�, 𝑡 ∈ 𝐽. (20)

Thus, we see that 𝐴 : �̃� × �̃� → �̃�.
Firstly, by (H

1
), (H
2
), and (18), we can easily prove that

𝐴 : �̃� × �̃� → �̃� is a mixed monotone operator.
Next, we show (A

2
). Put

𝜑 (𝛾) = min {𝜑
1
(𝛾) , 𝜑

2
(𝛾)} , 𝛾 ∈ (0, 1) . (21)

Then, we see from (H
3
) that 𝜑(𝛾) ∈ (𝛾, 1]. Therefore, for any

𝛾 ∈ (0, 1) and 𝑥, 𝑦 ∈ �̃�, we observe from (H
1
)–(H
3
), (13), and

𝑢(𝑡) ⩾ 0 a.e. 𝑡 ∈ 𝐽 that

𝐴(𝛾𝑥, 𝛾
−1
𝑦) (𝑡)

= 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝛾𝑥 (𝑠) , 𝛾
−1
𝑦 (𝑠))

+𝑢 (𝑠) } 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝛾𝑥 (𝑡

𝑘
) , 𝛾
−1
𝑦 (𝑡
𝑘
))

⩾ 𝑏
0
+ 𝜑
1
(𝛾) ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

+𝑢 (𝑠)} 𝑑𝑠

+ 𝜑
2
(𝛾) ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
))

⩾ 𝜑 (𝛾)𝐴 (𝑥, 𝑦) (𝑡) , ∀𝑡 ∈ 𝐽,

(22)

which implies that

𝐴(𝛾𝑥, 𝛾
−1
𝑦) ⩾ 𝜑 (𝛾)𝐴 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ �̃�, 𝛾 ∈ (0, 1) .

(23)

Thus, the condition (A
2
) holds.

Now, we show (A
1
), defining a function ℎ by

ℎ (𝑡) :=
1

2
+ ∫
1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐽; (24)

hence, ℎ(𝑡) = −(𝑡2/2) + 𝑡 + (1/2) for all 𝑡 ∈ 𝐽, then we can
easily see that (1/2) ⩽ ℎ(𝑡) ⩽ 1 for all 𝑡 ∈ 𝐽.

Now we show that 𝐴(ℎ, ℎ) ∈ �̃�
ℎ
. Set

𝑟
1
= min
𝑡∈𝐽

𝑓(𝑡,
1

2
, 1) , 𝑟

2
= max
𝑡∈𝐽

𝑓(𝑡, 1,
1

2
) , (25)

then, 0 < 𝑟
1
⩽ 𝑟
2
.

Note that 𝑎(𝑡) has maximum and minimum on 𝐽, since
𝑎(𝑡) ∈ 𝐶[𝐽, 𝑅

+] with min
𝑡∈𝐽

𝑎(𝑡) > 0 on any subinterval of 𝐽.
So, let

𝑎min = min
𝑡∈𝐽

𝑎 (𝑡) , 𝑎max = max
𝑡∈𝐽

𝑎 (𝑡) . (26)

Here, put 𝑟
3
:= min{2𝑏

0
, 𝑟
1
𝑎min}. Then, from (H

1
), (H
2
),

(13), and 𝑢(𝑡) ⩾ 0 a.e. 𝑡 ∈ 𝐽, it follows that

𝐴 (ℎ, ℎ) (𝑡)

= 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, ℎ (𝑠) , ℎ (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(ℎ (𝑡
𝑘
) , ℎ (𝑡

𝑘
))

⩾ 𝑏
0
+ 𝑎min ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠,
1

2
, 1) 𝑑𝑠

⩾ 𝑏
0
+ 𝑟
1
𝑎min ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

⩾ 𝑟
3
ℎ (𝑡) , ∀𝑡 ∈ 𝐽.

(27)
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Also, we have

𝐴 (ℎ, ℎ) (𝑡)

= 𝑏
0
+ ∫
1

0

𝐺 (𝑡, 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, ℎ (𝑠) , ℎ (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(ℎ (𝑡
𝑘
) , ℎ (𝑡

𝑘
))

⩽ 𝑏
0
+ 𝑎max ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 1,
1

2
) 𝑑𝑠

+ 𝑀∫
1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 + ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(1,

1

2
)

⩽ [2𝑏
0
+ 𝑟
2
𝑎max + 𝑀 + 2

𝑚

∑
𝑘=1

𝐼
𝑘
(1,

1

2
)] ℎ (𝑡) ,

∀𝑡 ∈ 𝐽.

(28)

Thus, we observe that

𝑟
3
ℎ ⩽ 𝐴 (ℎ, ℎ) ⩽ [2𝑏

0
+ 𝑟
2
𝑎max + 𝑀 + 2

𝑚

∑
𝑘=1

𝐼
𝑘
(1,

1

2
)] ℎ,

(29)

which implies that 𝐴(ℎ, ℎ) ∈ �̃�
ℎ
.

By arguments as above, we see that the operator 𝐴 :

�̃� × �̃� → �̃� defined by (18) satisfies conditions (A
1
) and

(A
2
) in Proposition 2. Therefore, by applying Proposition 2,

we conclude that an operator equation 𝑥 = 𝐴(𝑥, 𝑥) has a
unique solution in �̃�

ℎ
; hence there exists a unique positive

solution to (BP; 𝑢) on 𝐽.

4. Initial Value Problem (IP; 𝑢)

In this section, we show the existence-uniqueness of the
positive solution to (IP; 𝑢) on 𝐽 by arguments similar to (BP;
𝑢).

Throughout this section, we assume the following condi-
tions (H

1
)
, (H
3
)
:

(H
1
)

𝑓 : 𝐽 × 𝑅

+
× 𝑅
+

→ 𝑅, such that 𝑓(𝑡, 𝑥, 𝑦) ⩽ 0 for all
𝑡 ∈ 𝐽 and 𝑥, 𝑦 ∈ 𝑅+. Also, 𝑓(𝑡, 𝑥, 𝑦) is nonincreasing
in 𝑥 for each 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑅+ and is nondecreasing in
𝑦 for each 𝑡 ∈ 𝐽 and 𝑥 ∈ 𝑅+. Moreover,𝑓(𝑡, (1/2), 1) <
0 for all 𝑡 ∈ 𝐽.

(H
3
)
 For all 𝛾 ∈ (0, 1), there exists a constant 𝜑

1
(𝛾), 𝜑
2
(𝛾) ∈

(𝛾,1] such that

𝑓 (𝑡, 𝛾𝑥, 𝛾
−1
𝑦) ⩽ 𝜑

1
(𝛾) 𝑓 (𝑡, 𝑥, 𝑦) ,

𝐼
𝑘
(𝛾𝑥, 𝛾

−1
𝑦) ⩾ 𝜑

2
(𝛾) 𝐼
𝑘
(𝑥, 𝑦) ,

(30)

for any 𝑥, 𝑦 ∈ 𝑅+, any 𝑡 ∈ 𝐽, and any 𝑘 = 1, 2, . . . , 𝑚.

Here, we give the definition of solutions to (IP; 𝑢).

Definition 7. Let𝑢 ∈ 𝐻 and 𝑏
0
and 𝑏
1
as given constants.Then,

a function 𝑥 ∈ 𝑃𝐶[𝐽, 𝑅]∩𝑊2,1(𝐽, 𝑅) is called a solution to (IP;
𝑢) on 𝐽 if it satisfies (2).

Now, wemention our secondmain theorem in this paper,
which is concerned with the existence-uniqueness of the
positive solution to (IP; 𝑢) on 𝐽.

Theorem 8. Assuming the conditions (H
2
), (H
1
)
, and (H

3
)


and having 𝑀 has a fixed positive constant. Then, for each
function 𝑢 ∈ 𝐻 with −𝑀 ⩽ 𝑢(𝑡) ⩽ 0 a.e. 𝑡 ∈ 𝐽, there exists
a unique positive solution to (IP; 𝑢) on 𝐽.

Based on the proof of Lemma 5 (cf. (15)), one can get
the following key lemma concerning the characterization of
solutions to (IP; 𝑢).

Lemma9. Assume the same conditions as inTheorem 8.Then,
𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] ∩ 𝑊

2,1(𝐽, 𝑅) is a solution to (IP; 𝑢) on 𝐽 if and
only if 𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] satisfies the following integral equations:

𝑥 (𝑡) = 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) , ∀𝑡 ∈ 𝐽.

(31)

By Lemma 9 and Proposition 2, one can showTheorem 8
concerning the existence-uniqueness of the positive solution
to (IP; 𝑢) on 𝐽.

Proof of Theorem 8. Now, we define an operator 𝐴 : 𝑃𝐶[𝐽, 𝑅]

× 𝑃𝐶[𝐽, 𝑅] → 𝑃𝐶[𝐽, 𝑅] by

𝐴 (𝑥, 𝑦) (𝑡)

= 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
)) ∀𝑥, 𝑦 ∈ 𝑃𝐶 [𝐽, 𝑅] , 𝑡 ∈ 𝐽.

(32)

Then, we have to find the fixed point of the operator 𝐴 in
order to show the existence-uniqueness of the solution to (IP;
𝑢) on 𝐽.

Let �̃� be the same space defined by (19). Then, we infer
from (H

1
)
, (H
2
), (32), and 𝑢(𝑡) ⩽ 0 a.e. 𝑡 ∈ 𝐽 that

𝐴 (𝑥, 𝑦) (𝑡) ⩾ 0 ∀𝑥, 𝑦 ∈ �̃�, 𝑡 ∈ 𝐽. (33)

Thus, we see that 𝐴 : �̃� × �̃� → �̃�.
Also, we observe from (H

1
)
, (H
2
), and (32) that 𝐴 : �̃� ×

�̃� → �̃� is a mixed monotone operator.
Next, we show (A

2
). Put

𝜑 (𝛾) = min {𝜑
1
(𝛾) , 𝜑

2
(𝛾)} , 𝛾 ∈ (0, 1) . (34)
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Then, we see from (H
3
)
 that 𝜑(𝛾) ∈ (𝛾, 1]. Therefore, for any

𝛾 ∈ (0, 1) and 𝑥, 𝑦 ∈ �̃�, we observe from (H
2
), (H
1
)
, (H
3
)
,

(32), and 𝑢(𝑡) ⩽ 0 a.e. 𝑡 ∈ 𝐽 that

𝐴(𝛾𝑥, 𝛾
−1
𝑦) (𝑡)

= 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝛾𝑥 (𝑠) , 𝛾
−1
𝑦 (𝑠))

+𝑢 (𝑠) } 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝛾𝑥 (𝑡

𝑘
) , 𝛾
−1
𝑦 (𝑡
𝑘
))

⩾ 𝑏
0
+ 𝑏
1
𝑡 − 𝜑
1
(𝛾) ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑦 (𝑠))

+𝑢 (𝑠)} 𝑑𝑠

+ 𝜑
2
(𝛾) ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑦 (𝑡

𝑘
))

⩾ 𝜑 (𝛾)𝐴 (𝑥, 𝑦) (𝑡) , ∀𝑡 ∈ 𝐽,

(35)

which implies that

𝐴(𝛾𝑥, 𝛾
−1
𝑦) ⩾ 𝜑 (𝛾)𝐴 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ �̃�, 𝛾 ∈ (0, 1) .

(36)

Thus, the condition (A
2
) holds.

Now, we show (A
1
), defining a function ℎ by

ℎ (𝑡) :=
1

2
+ ∫
𝑡

0

(𝑡 − 𝑠) 𝑑𝑠, ∀𝑡 ∈ 𝐽; (37)

hence, ℎ(𝑡) = (𝑡2/2) + (1/2) for all 𝑡 ∈ 𝐽. Then, we can easily
see that (1/2) ⩽ ℎ(𝑡) ⩽ 1 for all 𝑡 ∈ 𝐽.

Now we show that 𝐴(ℎ, ℎ) ∈ �̃�
ℎ
. Set

𝑟
1
= min
𝑡∈𝐽

[−𝑓(𝑡,
1

2
, 1)] , 𝑟

2
= max
𝑡∈𝐽

[−𝑓(𝑡, 1,
1

2
)] ,

(38)

then, 0 < 𝑟
1
⩽ 𝑟
2
.

From (H
1
)
, (H
2
), (32), and 𝑢(𝑡) ⩽ 0 a.e. 𝑡 ∈ 𝐽, it follows

that

𝐴 (ℎ, ℎ) (𝑡)

= 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, ℎ (𝑠) , ℎ (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(ℎ (𝑡
𝑘
) , ℎ (𝑡

𝑘
))

⩾ 𝑏
0
+ 𝑎min [−∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠,
1

2
, 1) 𝑑𝑠]

⩾ 𝑏
0
+ 𝑟
1
𝑎min ∫

𝑡

0

(𝑡 − 𝑠) 𝑑𝑠

⩾ 𝑟
3
ℎ (𝑡) , ∀𝑡 ∈ 𝐽.

(39)

Also, we have
𝐴 (ℎ, ℎ) (𝑡)

= 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) {𝑎 (𝑠) 𝑓 (𝑠, ℎ (𝑠) , ℎ (𝑠)) + 𝑢 (𝑠)} 𝑑𝑠

+ ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(ℎ (𝑡
𝑘
) , ℎ (𝑡

𝑘
))

⩽ 𝑏
0
+ 𝑏
1
+ 𝑎max [−∫

𝑡

0

(𝑡 − 𝑠) 𝑓 (𝑠, 1,
1

2
) 𝑑𝑠]

+ 𝑀∫
𝑡

0

(𝑡 − 𝑠) 𝑑𝑠 + ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(1,

1

2
)

⩽ 2[𝑏
0
+ 𝑏
1
+ 𝑟
2
𝑎max + 𝑀 +

𝑚

∑
𝑘=1

𝐼
𝑘
(1,

1

2
)] ℎ (𝑡) ,

∀𝑡 ∈ 𝐽.

(40)

Thus, we observe that

𝑟
3
ℎ ⩽ 𝐴 (ℎ, ℎ) ⩽ 2 [𝑏

0
+ 𝑏
1
+ 𝑟
2
𝑎max + 𝑀 +

𝑚

∑
𝑘=1

𝐼
𝑘
(1,

1

2
)] ℎ,

(41)

which implies that 𝐴(ℎ, ℎ) ∈ �̃�
ℎ
.

By arguments as above, we see that the operator 𝐴 :

�̃� × �̃� → �̃� defined by (32) satisfies conditions (A
1
) and

(A
2
) in Proposition 2. Therefore, by applying Proposition 2,

we conclude that an operator equation 𝑥 = 𝐴(𝑥, 𝑥) has a
unique solution in �̃�

ℎ
; hence there exists a unique positive

solution to (IP; 𝑢) on 𝐽.

5. Optimal Control Problem (OP)

In this section, we consider an optimal control problem
(OP) to (IP; 𝑢). Throughout this section, we assume all
the conditions of Theorem 8. Also, we assume the following
additional conditions.
(H
4
) There is a constant 𝐶

𝑓
> 0 such that

𝑓 (𝑡, 𝑥, 𝑥) − 𝑓 (𝑡, 𝑦, 𝑦)
 ⩽ 𝐶
𝑓

𝑥 − 𝑦
 ∀𝑡 ∈ 𝐽, 𝑥, 𝑦 ∈ 𝑅

+
.

(42)

Also, for each 𝑘 = 1, 2, . . . , 𝑚, there exists a positive
constant 𝐶

𝑘
> 0 such that

𝐼𝑘 (𝑥, 𝑥) − 𝐼
𝑘
(𝑦, 𝑦)

 ⩽ 𝐶
𝑘

𝑥 − 𝑦
 ∀𝑥, 𝑦 ∈ 𝑅

+
. (43)

(H
5
) 𝑥
𝑑
is a given desired target profile in𝐻.

At first, we give the key lemma in order to show the result
of continuous dependence of positive solutions to (IP; 𝑢).

Lemma 10 (cf. [19, Lemma 5.1]). Let {𝑢
𝑛
} ⊂ 𝐻, and let 𝑄 :

𝐻 → 𝐶[𝐽, 𝑅] be an operator given by

(𝑄𝑧) (𝑡) := ∫
𝑡

0

(𝑡 − 𝑠) 𝑧 (𝑠) 𝑑𝑠, ∀𝑧 ∈ 𝐻, ∀𝑡 ∈ 𝐽. (44)
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Assume that 𝑢
𝑛
→ 𝑢weakly in𝐻 as 𝑛 → ∞ for some 𝑢 ∈ 𝐻.

Then

𝑄𝑢
𝑛
→ 𝑄𝑢 𝑖𝑛 𝐶 [𝐽, 𝑅] 𝑎𝑠 𝑛 → ∞. (45)

For the detailed proof of Lemma 10, we refer to [19,
Lemma 5.1].

Taking account of Lemma 10, one can show the following
proposition concerning the result of continuous dependence
of positive solutions to (IP; 𝑢).

Proposition 11 (cf. [19, Proposition 5.2]). Assume the same
conditions as in Theorem 8, (H

4
), and (H

5
). Let {𝑢

𝑛
} ⊂ U

𝑀

and 𝑢 ∈ U
𝑀
, where U

𝑀
is the control space defined by (4).

Assume 𝑢
𝑛

→ 𝑢 weakly in 𝐻 as 𝑛 → ∞. Then, the unique
positive solution 𝑥

𝑛
to (IP; 𝑢

𝑛
) on 𝐽 converges to one 𝑥 to (IP;

𝑢) on 𝐽 in the sense that

𝑥
𝑛
→ 𝑥 𝑖𝑛 𝑃𝐶 [𝐽, 𝑅] 𝑎𝑠 𝑛 → ∞. (46)

Proof. By arguments similar to [19, Proposition 5.2], we can
prove (46). In fact, note from Lemma 9 that 𝑥

𝑛
is a solution

to (IP; 𝑢
𝑛
) on 𝐽 if and only if

𝑥
𝑛
(𝑡) = 𝑏

0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠)) 𝑑𝑠

− ∫
𝑡

0

(𝑡 − 𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠 + ∑

0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥
𝑛
(𝑡
𝑘
) , 𝑥
𝑛
(𝑡
𝑘
)) ,

∀𝑡 ∈ 𝐽.

(47)

Now, let 𝑡 ∈ 𝐽
0
= [0, 𝑡

1
] ⊂ 𝐽, then, we obtain from (H

4
)

that
𝑥𝑛 (𝑡) − 𝑥 (𝑡)



⩽

∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠)) 𝑑𝑠

−∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠


+

∫
𝑡

0

(𝑡 − 𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝑛 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠 +

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅],

∀𝑡 ∈ 𝐽
0

(48)

for all 𝑛 = 1, 2, . . ., where 𝑄 is a function defined in (44).
Applying a Gronwall-type inequality (e.g., [21, Proposi-

tion 0.4.1]) to (48), we obtain

∫
𝑡

0

𝑥𝑛 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠 ⩽ 𝑒

𝐶𝑓|𝑎|𝐶[𝐽,𝑅] 𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], ∀𝑡 ∈ 𝐽
0
,

(49)

for all 𝑛 = 1, 2, . . .. Therefore, it follows from (48) and (49)
that
𝑥𝑛 (𝑡) − 𝑥 (𝑡)



⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

𝑒
𝐶𝑓|𝑎|𝐶[𝐽,𝑅] 𝑄𝑢

𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅] +
𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅]

≡ 𝑁
1

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], ∀𝑡 ∈ 𝐽
0
= [0, 𝑡

1
] ,

(50)

for all 𝑛 = 1, 2, . . ..
By (50) and the assumption (H

4
), we also have

𝑥𝑛 (𝑡
+

1
) − 𝑥 (𝑡

+

1
)


=
𝑥𝑛 (𝑡1) + 𝐼

1
(𝑥
𝑛
(𝑡
1
) , 𝑥
𝑛
(𝑡
1
)) − 𝑥 (𝑡

1
)

−𝐼
1
(𝑥 (𝑡
1
) , 𝑥 (𝑡

1
))


⩽ (1 + 𝐶
1
)
𝑥𝑛 (𝑡1) − 𝑥 (𝑡

1
)


⩽ (1 + 𝐶
1
)𝑁
1

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅]

≡ 𝑁


1

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅],

(51)

for all 𝑛 = 1, 2, . . ..
Next, we consider the time interval 𝐽

1
= (𝑡
1
, 𝑡
2
]. Then, we

see from (50) and (H
4
) that

𝑥𝑛 (𝑡) − 𝑥 (𝑡)


⩽

∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥
𝑛
(𝑠) , 𝑥
𝑛
(𝑠)) 𝑑𝑠

−∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠


+

∫
𝑡

0

(𝑡 − 𝑠) 𝑢
𝑛
(𝑠) 𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠


+
𝐼1 (𝑥𝑛 (𝑡1) , 𝑥𝑛 (𝑡1)) − 𝐼

1
(𝑥 (𝑡
1
) , 𝑥 (𝑡

1
))


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝑛 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠

+
𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅] + 𝐶
1

𝑥𝑛 (𝑡1) − 𝑥 (𝑡
1
)


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝑛 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠

+ (1 + 𝐶
1
𝑁
1
)
𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅],

(52)

for any 𝑡 ∈ 𝐽
1
and 𝑛 = 1, 2, . . .. By the same arguments as

before (cf. (49) and (50)), we can take some constants𝑁
2
> 0

so that
𝑥𝑛 (𝑡) − 𝑥 (𝑡)

 ⩽ 𝑁
2

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], ∀𝑡 ∈ 𝐽
1
= (𝑡
1
, 𝑡
2
] ,

(53)

for all 𝑛 = 1, 2, . . ..
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Also, we obtain from (H
4
) and (53) that

𝑥𝑛 (𝑡
+

2
) − 𝑥 (𝑡

+

2
)


⩽
𝑥𝑛 (𝑡2) − 𝑥 (𝑡

2
)
 +

𝐼2 (𝑥𝑛 (𝑡2) , 𝑥𝑛 (𝑡2))

−𝐼
2
(𝑥 (𝑡
2
) , 𝑥 (𝑡

2
))


⩽ (1 + 𝐶
2
)
𝑥𝑛 (𝑡2) − 𝑥 (𝑡

2
)


⩽ 𝑁


2

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], ∀𝑛 = 1, 2, . . . ,

(54)

for some positive constants𝑁
2
> 0.

By repeating this procedure, we can take positive con-
stants𝑁

𝑘
> 0 and𝑁

𝑘
> 0 such that

𝑥𝑛 (𝑡) − 𝑥 (𝑡)
 ⩽ 𝑁
𝑘

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅],

∀𝑡 ∈ 𝐽
𝑘−1

, 𝑘 = 1, 2, . . . , 𝑚 + 1,

𝑥𝑛 (𝑡
+

𝑘
) − 𝑥 (𝑡

+

𝑘
)
 ⩽ 𝑁



𝑘

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], 𝑘 = 1, 2, . . . , 𝑚,

(55)

for all 𝑛 = 1, 2, . . ..
Here, put 𝑁 := max{𝑁

1
, 𝑁
1
, 𝑁
2
, 𝑁
2
, . . . , 𝑁

𝑚
, 𝑁
𝑚
, 𝑁
𝑚+1

}.
Then, we infer from (55) that

𝑥𝑛 − 𝑥
𝑃𝐶 ⩽ 𝑁

𝑄𝑢
𝑛
− 𝑄𝑢

𝐶[𝐽,𝑅], ∀𝑛 = 1, 2, . . . . (56)

Since 𝑢
𝑛
→ 𝑢 weakly in𝐻 as 𝑛 → ∞, we observe from

Lemma 10 that

𝑄𝑢
𝑛
→ 𝑄𝑢 in 𝐶 [𝐽, 𝑅] as 𝑛 → ∞. (57)

Hence, we see from (56) and (57) that

𝑥
𝑛
→ 𝑥 in 𝑃𝐶 [𝐽, 𝑅] as 𝑛 → ∞. (58)

Thus, the proof of Proposition 11 has been completed.

Now, we mention our main result concerning the exis-
tence of an optimal control to (OP).

Theorem 12. Assume the same conditions as in Theorem 8,
(𝐻
4
), and (𝐻

5
).Then, the problem (OP) has at least one optimal

control 𝑢∗ ∈ U
𝑀
such that

𝜋 (𝑢
∗
) = inf
𝑢∈U𝑀

𝜋 (𝑢) , (59)

whereU
𝑀
is a control space defined by (4) and 𝜋(⋅) is the cost

functional defined in (5).

Proof. By the quite standard method, we can prove
Theorem 12. In fact, let {𝑢

𝑛
} ⊂ U

𝑀
be a minimizing

sequence so that

lim
𝑛→∞

𝜋 (𝑢
𝑛
) = inf
𝑢∈U𝑀

𝜋 (𝑢) . (60)

By the definition (5) of 𝜋(⋅), we see that {𝑢
𝑛
} is bounded in

𝐻. Hence, there is a subsequence {𝑛
𝑘
} ⊂ {𝑛} and a function

𝑢
∗
∈ U
𝑀
such that 𝑛

𝑘
→ ∞ and

𝑢
𝑛𝑘

→ 𝑢
∗ weakly in 𝐻 as 𝑘 → ∞. (61)

For any 𝑘 ∈ N, let 𝑥
𝑛𝑘

be a unique positive solution to
(IP; 𝑢
𝑛𝑘
) on 𝐽. Then, from (61) and Proposition 11, we observe

that

𝑥
𝑛𝑘

→ 𝑥 in 𝑃𝐶 [𝐽, 𝑅] as 𝑘 → ∞, (62)

where 𝑥 is a unique positive solution to (IP; 𝑢) on 𝐽.
Hence, it follows from (61), (62), and the weak lower

semicontinuity of𝐻-norm that

𝜋 (𝑢
∗
) ⩽ lim
𝑘→∞

𝜋 (𝑢
𝑛𝑘
) = inf
𝑢∈U𝑀

𝜋 (𝑢) , (63)

which implies that 𝑢∗ ∈ U
𝑀

is an optimal control to (OP).

Now, we mention our final main result in this paper,
which is concerned with the stability of the optimal control
to (OP).

Theorem 13. Assume the same conditions as in Theorem 12.
Let 𝑢 ∈ U

𝑀
and 𝑢 + 𝜀𝑢

0
∈ U
𝑀

for some 𝑢
0

∈ 𝐻 and
small positive constant 𝜀. Also, let 𝑥 and 𝑥

𝜀
be unique positive

solutions to (IP; 𝑢) and (IP;𝑢 + 𝜀𝑢
0
) on 𝐽, respectively. Then,

𝑥𝜀 − 𝑥
𝑃𝐶 = O (𝜀) , (𝜀 → 0) . (64)

Proof. Note from Lemma 9 that 𝑥 is a solution of (IP; 𝑢) on 𝐽

if and only if

𝑥 (𝑡) = 𝑏
0
+ 𝑏
1
𝑡 − ∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠

− ∫
𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∑
0<𝑡𝑘<𝑡

𝐼
𝑘
(𝑥 (𝑡
𝑘
) , 𝑥 (𝑡

𝑘
)) ,

∀𝑡 ∈ 𝐽.

(65)

Now, let 𝑡 ∈ 𝐽
0
= [0, 𝑡

1
] ⊂ 𝐽. Then, we obtain from (H

4
)

that
𝑥𝜀 (𝑡) − 𝑥 (𝑡)



⩽

∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥
𝜀
(𝑠) , 𝑥
𝜀
(𝑠)) 𝑑𝑠

−∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠


+

∫
𝑡

0

(𝑡 − 𝑠) (𝑢 + 𝜀𝑢
0
) (𝑠) 𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝜀 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠 + 𝜀

𝑢0
𝐻, ∀𝑡 ∈ 𝐽

0
.

(66)

Applying a Gronwall-type inequality (e.g., [21, Proposi-
tion 0.4.1]) to (66), we obtain

∫
𝑡

0

𝑥𝜀 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠 ⩽ 𝜀𝑒

𝐶𝑓|𝑎|𝐶[𝐽,𝑅] 𝑢0
𝐻, ∀𝑡 ∈ 𝐽

0
. (67)
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Therefore, it follows from (66) and (67) that
𝑥𝜀 (𝑡) − 𝑥 (𝑡)

 ⩽ 𝜀𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

𝑒
𝐶𝑓|𝑎|𝐶[𝐽,𝑅] 𝑢0

𝐻 + 𝜀
𝑢0

𝐻

≡ 𝜀�̃�
1

𝑢0
𝐻, ∀𝑡 ∈ 𝐽

0
= [0, 𝑡

1
] .

(68)

By (68) and the assumption (H
4
), we also have

𝑥𝜀 (𝑡
+

1
) − 𝑥 (𝑡

+

1
)


=
𝑥𝜀 (𝑡1) + 𝐼

1
(𝑥
𝜀
(𝑡
1
) , 𝑥
𝜀
(𝑡
1
)) − 𝑥 (𝑡

1
)

−𝐼
1
(𝑥 (𝑡
1
) , 𝑥 (𝑡

1
))


⩽ (1 + 𝐶
1
)
𝑥𝜀 (𝑡1) − 𝑥 (𝑡

1
)


⩽ (1 + 𝐶
1
) 𝜀�̃�
1

𝑢0
𝐻

≡ 𝜀�̃�


1

𝑢0
𝐻.

(69)

Next, we consider the time interval 𝐽
1
= (𝑡
1
, 𝑡
2
]. Then, we

see from (68) and (H
4
) that

𝑥𝜀 (𝑡) − 𝑥 (𝑡)


⩽

∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥
𝜀
(𝑠) , 𝑥
𝜀
(𝑠)) 𝑑𝑠

−∫
𝑡

0

(𝑡 − 𝑠) 𝑎 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠


+

∫
𝑡

0

(𝑡 − 𝑠) (𝑢 + 𝜀𝑢
0
) (𝑠) 𝑑𝑠 − ∫

𝑡

0

(𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠


+
𝐼1 (𝑥𝜀 (𝑡1) , 𝑥𝜀 (𝑡1)) − 𝐼

1
(𝑥 (𝑡
1
) , 𝑥 (𝑡

1
))


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝜀 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠 + 𝜀

𝑢0
𝐻

+ 𝐶
1

𝑥𝜀 (𝑡1) − 𝑥 (𝑡
1
)


⩽ 𝐶
𝑓
|𝑎|
𝐶[𝐽,𝑅]

∫
𝑡

0

𝑥𝜀 (𝑠) − 𝑥 (𝑠)
 𝑑𝑠

+ 𝜀 (1 + 𝐶
1
�̃�
1
)
𝑢0

𝐻,

(70)

for any 𝑡 ∈ 𝐽
1
. By the same arguments as before (cf. (67) and

(68)), we can take some constant �̃�
2
> 0 so that

𝑥𝜀 (𝑡) − 𝑥 (𝑡)
 ⩽ 𝜀�̃�

2

𝑢0
𝐻, ∀𝑡 ∈ 𝐽

1
= (𝑡
1
, 𝑡
2
] . (71)

Also, we obtain from (H
4
) and (71) that

𝑥𝜀 (𝑡
+

2
) − 𝑥 (𝑡

+

2
)


⩽
𝑥𝜀 (𝑡2) − 𝑥 (𝑡

2
)
 +

𝐼2 (𝑥𝜀 (𝑡2) , 𝑥𝜀 (𝑡2))

−𝐼
2
(𝑥 (𝑡
2
) , 𝑥 (𝑡

2
))


⩽ (1 + 𝐶
2
)
𝑥𝜀 (𝑡2) − 𝑥 (𝑡

2
)


⩽ 𝜀�̃�


2

𝑢0
𝐻,

(72)

for some positive constant �̃�
2
> 0.

By repeating this procedure, we can take positive con-
stants �̃�

𝑘
> 0 and �̃�

𝑘
> 0 such that

𝑥𝜀 (𝑡) − 𝑥 (𝑡)
 ⩽ 𝜀�̃�

𝑘

𝑢0
𝐻, ∀𝑡 ∈ 𝐽

𝑘−1
, 𝑘 = 1, 2, . . . , 𝑚 + 1,

𝑥𝜀 (𝑡
+

𝑘
) − 𝑥 (𝑡

+

𝑘
)
 ⩽ 𝜀�̃�



𝑘

𝑢0
𝐻, 𝑘 = 1, 2, . . . , 𝑚.

(73)

Here, put �̃� := max{�̃�
1
, �̃�
1
, �̃�
2
, �̃�
2
, . . . , �̃�

𝑚
, �̃�
𝑚
, �̃�
𝑚+1

}.
Then, we infer from (73) that

𝑥𝜀 − 𝑥
𝑃𝐶 ⩽ 𝜀�̃�

𝑢0
𝐻. (74)

Thus, the proof of Theorem 13 has been completed.

By Theorem 13 and the definition of 𝜋 (cf. (5)), we easily
see that the following corollary holds.

Corollary 14. Assume the same conditions as in Theorem 12.
Let 𝑢 ∈ U

𝑀
and 𝑢 + 𝜀𝑢

0
∈ U
𝑀

for some 𝑢
0
∈ 𝐻 and small

positive constant 𝜀. Then,
𝜋 (𝑢 + 𝜀𝑢

0
) − 𝜋 (𝑢)

 = O (𝜀) , (𝜀 → 0) . (75)

6. Examples

In this section, we give an example of the main results.

Example 1. Consider the following boundary value problem
of second order impulsive differential equation:

−𝑥


(𝑡) = (2𝑡 + 1) [(1 + 𝑥 (𝑡))
(1/2)

+ (1 + 𝑥 (𝑡))
−(1/4)

] + 𝑢 (𝑡) ,

𝑡 ∈ (0, 1) , 𝑡 ̸=
1

3
,

Δ𝑥|
𝑡=(1/3)

= (1 + 𝑥(
1

3
))
(1/2)

+ (1 + 𝑥(
1

3
))
−(1/4)

,

𝑥 (0) = 1, 𝑥


(1) = 0.

(76)

Conclusion. The boundary value problem (76) admits a
unique positive solution, which is continuously differentiable
on [0, (1/3)) ∪ ((1/3), 1].

Proof. Let 𝐽 = [0, 1], 𝑡
1
= (1/3), 𝑓(𝑡, 𝑥, 𝑦) := 𝑓(𝑥, 𝑦) = (1 +

𝑥)
(1/2)

+(1+𝑦)
−(1/4), 𝑎(𝑡) = 2𝑡+1, and 𝐼

1
(𝑥, 𝑦) = (1+𝑥)

(1/2)
+

(1 + 𝑦)
−(1/4). Evidently, 𝑓(𝑥, 𝑦) and 𝐼

1
(𝑥, 𝑦) are increasing in

𝑥 for 𝑦 ⩾ 0 and are decreasing in 𝑦 for 𝑥 ⩾ 0.
Set 𝜑(𝛾) = 𝛾(1/2), 𝛾 ∈ (0, 1), then,

𝑓 (𝛾𝑥, 𝛾
−1
𝑦)

= (1 + 𝛾𝑥)
(1/2)

+ (1 + 𝛾
−1
𝑦)
−(1/4)

⩾ 𝜑 (𝛾) 𝑓 (𝑥, 𝑦)

∀𝑥, 𝑦 ⩾ 0,

𝐼
1
(𝛾𝑥, 𝛾

−1
𝑦) ⩾ 𝜑 (𝛾) 𝐼

1
(𝑥, 𝑦) ∀𝑥, 𝑦 ⩾ 0.

(77)
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Therefore, we easily see that (H
1
)–(H
5
) hold. Hence, applying

Theorem 4 to (76), we get a unique positive solution to (76)
on 𝐽 for each 𝑢 ∈ 𝐻 with 0 ⩽ 𝑢(𝑡) ⩽ 𝑀 a.e. 𝑡 ∈ 𝐽, where
𝑀 > 0 is a given constant.

Example 2. Consider the following initial value problem of
the second order impulsive differential equation:

− 𝑥


(𝑡)

= (2𝑡 + 1) [(1 + 𝑥 (𝑡))
(1/2)

+ (1 + 𝑥 (𝑡))
−(1/4)

] + 𝑢 (𝑡) ,

𝑡 ∈ (0, 1) , 𝑡 ̸=
1

3
,

Δ𝑥|
𝑡=(1/3)

= (1 + 𝑥(
1

3
))
(1/2)

+ (1 + 𝑥(
1

3
))
−(1/4)

,

𝑥 (0) = 1, 𝑥


(0) = 0.

(78)

Conclusion. The initial value problem (78) admits a unique
positive solution, which is continuously differentiable on
[0, (1/3))∪((1/3), 1]. Moreover, the problem (OP) to (78) has
at least one optimal control, and the stability result of optimal
control holds.

Proof. Let 𝐽 = [0, 1], 𝑡
1

= (1/3), 𝑓(𝑡, 𝑥, 𝑦) := 𝑓(𝑥, 𝑦) =

−(1 + 𝑥)
(1/2)

− (1 + 𝑦)
−(1/4), and 𝑎(𝑡) = 2𝑡 + 1. Clearly, 𝑓(𝑥, 𝑦)

is decreasing in 𝑥 for 𝑦 ⩾ 0 and is increasing in 𝑦 for 𝑥 ⩾ 0.
Also, let 𝐼

1
(𝑥, 𝑦) = (1 + 𝑥)

(1/2)
+ (1 + 𝑦)

−(1/4), evidently,
𝐼
1
(𝑥, 𝑦) is increasing in 𝑥 for 𝑦 ⩾ 0 and is decreasing in 𝑦 for

𝑥 ⩾ 0.
Set 𝜑(𝛾) = 𝛾

(1/2), 𝛾 ∈ (0, 1), then,

𝑓 (𝛾𝑥, 𝛾
−1
𝑦)

= −(1 + 𝛾𝑥)
(1/2)

+ (1 + 𝛾
−1
𝑦)
−(1/4)

⩽ 𝜑 (𝛾) 𝑓 (𝑥, 𝑦)

∀𝑥, 𝑦 ⩾ 0,

𝐼
1
(𝛾𝑥, 𝛾

−1
𝑦) ⩾ 𝜑 (𝛾) 𝐼

1
(𝑥, 𝑦) ∀𝑥, 𝑦 ⩾ 0.

(79)

Therefore, we easily see that conditions (H
2
), (H
4
), (H
1
)
,

(H
3
)
, and (H

5
)
 hold. Hence, applyingTheorem 8 to (78), we

get a unique positive solution to (78) on 𝐽 for each 𝑢 ∈ 𝐻with
−𝑀 ⩽ 𝑢(𝑡) ⩽ 0 a.e. 𝑡 ∈ 𝐽, where𝑀 > 0 is a given constant.

In addition, let𝐶
𝑓
= 𝐶
1
= 1.Then, we easily see that (H

6
)

holds. Hence, applyingTheorem 12, we see that Problem (OP)
to (78) has at least one optimal control for each desired target
profile 𝑥

𝑑
in 𝐻. Also, applying Theorem 13, we get the result

on the stability of optimal control to (OP).
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