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We study norm attaining properties of the Arens extensions of multilinear forms defined on Banach spaces. Among other related
results, we construct a multilinear form on ℓ

1
with the property that only some fixed Arens extensions determined a priori attain

their norms. We also study when multilinear forms can be approximated by ones with the property that only some of their Arens
extensions attain their norms.

1. Introduction

The Bishop-Phelps theorem [1] states that the set of norm
attaining forms on a real or complex Banach space is norm
dense in the set of linear and continuous forms. Bishop
and Phelps raised the question of extending their results
to operators between Banach spaces. This question was
answered in the negative by Lindenstrauss in his seminal
paper [2], where he gave an example of a Banach space 𝑋

such that the identity mapping on𝑋 cannot be approximated
by norm attaining operators. However, if one considers the
adjoint 𝑇∗ : 𝑌

∗
→ 𝑋

∗ of an operator 𝑇 : 𝑋 → 𝑌

between Banach spaces, given by 𝑇∗(𝑦∗)(𝑥) = 𝑦
∗
(𝑇(𝑥)), for

all 𝑥 ∈ 𝑋, 𝑦∗ ∈ 𝑌
∗, Lindenstrauss proved the denseness of

those operators whose second adjoints attain their norms.
The theory of norm attaining operators has spread to

the nonlinear setting. The denseness of the set of norm
attainingmultilinearmappings has been deeply studied in the
last decades. Assuming the Radon-Nikodým property, this
density has been established for multilinear forms (see [3]).
However, a general result for multilinear mappings cannot
be expected. The first counterexample was given in [4] for
bilinear forms. Based on Lindenstrauss result andmaking use
of the Arens extensions to the second duals (see next section
for the definitions), Acosta [5] proved a Lindenstrauss type
result for bilinear forms whose third Arens transpose attains
its norm. Afterwards, in [6] the denseness of bilinear forms
whose Arens extensions to the biduals attain their norms at

the same point was established. It is worth mentioning that
in [6, Example 2] an example of a bilinear mapping is given
such that only one of their Arens extensions attains its norm.
This asymmetry between the twoArens extensions reveals the
importance of the stronger condition of attaining their norms
simultaneously. The generalization of Lindenstrauss result to
𝑛-linear vector-valued mappings was finally obtained in [7]
in its strongest form; that is, the space formed by those 𝑛-
linear mappings whose Arens extensions attain their norms
simultaneously at the same point is dense in the space of all
𝑛-linear mappings.

The aim of this paper is to study the norm attaining
properties of the Arens extensions of multilinear forms on ℓ

1
.

On one hand, inspired by [6, Example 2], several examples of
multilinear forms whose extensions suffer different kinds of
asymmetries from the point of view of norm attainment are
provided. These examples are built using multilinear forms
on ℓ
1
, which is the classical example of a non-Arens regular

Banach space. For instance, if we fix a priori some of theArens
extensions, we can construct a multilinear form on ℓ

1
with

the property that only these extensions attain their norms.
Moreover, by undertaking a detailed study of the procedure
used to generate such examples, we also get examples with
stronger properties that allow a better understanding of
the norm attaining behavior of the Arens extensions. These
examples are presented as general results on existence of
multilinear forms that fulfill the required norm attaining
properties. On the other hand, we also deal with general
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Banach spaces and study when Arens extensions attain their
norms in terms of convergence of sequences.

The paper is organized as follows. Next section is devoted
to fix the notation and to recall some of the basics on Arens
extensions. Section 3 is involved with the norm attaining
behavior of the Arens extensions of multilinear forms on
general Banach spaces. We prove that if an extension of a
multilinear form attains its norm at a point then the norm
is achieved just considering sequential limits. As a converse,
we prove that if the norm of an extension is achieved with
limits of subsequences of a normalized Schauder basis, then
such extension attains its norm at a point whose coordinates
are in the bidual. In Section 4 we deal with multilinear forms
on ℓ
1
. We strengthen the results from the former section

by proving a characterization of norm attaining extensions
of bilinear forms at points with coordinates in 𝐵

ℓ
1

∗∗ \ ℓ
1
in

terms of sequential limits of the images of subsequences of
the canonical sequence {𝑒

𝑛
}
∞

𝑛=1
. It is also proved that, fixing

a number of Arens extensions, there exists an 𝑛-linear form
on (ℓ
1
)
𝑛 of norm one such that only these extensions fixed a

priori are norm attaining. Finally, we show that such 𝑛-linear
forms are dense in the set of all 𝑛-linear forms of norm one
that fulfill a condition in terms of sequential limits.

2. Background and Notation

In this paper 𝑋, 𝑌, 𝑋
1
, . . ., 𝑋

𝑛
are real or complex Banach

spaces. LetL(𝑋
1
, . . . , 𝑋

𝑛
) denote the space of continuous 𝑛-

linear forms 𝐴 from 𝑋
1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
into K (K = R or C) with

the usual norm

‖𝐴‖ = sup {𝐴 (𝑥
1
, . . . , 𝑥

𝑛
)
 : 𝑥𝑖 ∈ 𝑋

𝑖
,

𝑥𝑖
 ≤ 1, 𝑖 = 1, . . . , 𝑛} .

(1)

When 𝑋
1
= ⋅ ⋅ ⋅ = 𝑋

𝑛
= 𝑋, we just write L(

𝑛
𝑋). We denote

by 𝐵
𝑋
the closed unit ball of 𝑋, by 𝑆

𝑋
the unit sphere, by 𝑋∗

the strong dual, and by𝑋∗∗ the bidual of𝑋.
We say that 𝐴 is norm attaining (or 𝐴 attains its norm) if

there exist 𝑥
𝑖
∈ 𝑋
𝑖
, ‖𝑥
𝑖
‖ = 1, 𝑖 = 1, . . . , 𝑛, such that ‖𝐴‖ =

|𝐴(𝑥
1
, . . . , 𝑥

𝑛
)|.

Arens [8] found a natural way to extend a continuous
bilinear mapping 𝐴 : 𝑋

1
× 𝑋
2
→ 𝑌 to a continuous bilinear

mapping from 𝑋
∗∗

1
× 𝑋
∗∗

2
into 𝑌

∗∗. His method consists in
applying three times the operation defined as

𝐴
𝑡
: 𝑌
∗
× 𝑋
1
→ 𝑋

∗

2
,

(𝑦
∗
, 𝑥
1
) ∼⇝ 𝐴

𝑡
(𝑦
∗
, 𝑥
1
) (𝑥
2
) = 𝑦
∗
(𝐴 (𝑥
1
, 𝑥
2
)) ,

(2)

𝑥
1
∈ 𝑋
1
, 𝑥
2
∈ 𝑋
2
, and 𝑦∗ ∈ 𝑌

∗. The first extension is defined
as 𝐴𝑡𝑡𝑡 : 𝑋∗∗ × 𝑌

∗∗
→ 𝑍
∗∗ and the second one is 𝐴𝑇𝑡𝑡𝑡𝑇,

where 𝐵
𝑇
(𝑥
1
, 𝑥
2
) = 𝐵(𝑥

2
, 𝑥
1
) for any bilinear mapping 𝐵.

These extensions, which are in general different, are known
as Arens products. This procedure was generalized by Aron
and Berner [9] to arbitrary multilinear mappings.

For our purposes we will use an alternative approach due
toDavie andGamelin [10].Thekey of such approach isGolds-
tine theoremas it is based on limits in the𝑤𝑒𝑎𝑘-𝑠𝑡𝑎𝑟𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑦,

denoted by𝑤(𝑋∗∗, 𝑋∗). Consider Σ
𝑛
the group of all permu-

tations of the set {1, . . . , 𝑛}. Given 𝜎 ∈ Σ
𝑛
they defined the

extension𝐴
𝜎
associated with 𝜎 of an 𝑛-linear form𝐴 defined

on𝑋
1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, by

𝐴
𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
) = lim
𝑑
𝜎(1)

⋅ ⋅ ⋅ lim
𝑑
𝜎(𝑛)

𝐴(𝑥
𝑑
1

, . . . , 𝑥
𝑑
𝑛

) , (3)

where {𝑥
𝑑
𝑖

}
𝑑
𝑖

is a bounded net (‖𝑥
𝑑
𝑖

‖ ≤ ‖𝑥
∗∗

𝑖
‖, for all 𝑑

𝑖
)

𝑤(𝑋
∗
, 𝑋) convergent to 𝑥

∗∗

𝑖
∈ 𝑋
∗∗

𝑖
, for 𝑖 = 1, . . . , 𝑛.

The mapping 𝐴
𝜎
is called an Arens extension of 𝐴 and

the 𝑛! Arens extensions may be different from each other.
When convenient, we will write 𝐴

𝜎(1),...,𝜎(𝑛)
instead of 𝐴

𝜎
. In

particular, for 𝑛 = 2, 𝐴
𝐼𝑑

= 𝐴
1,2

= 𝐴
𝑡𝑡𝑡 and 𝐴

2,1
= 𝐴
𝑇𝑡𝑡𝑡𝑇,

where 𝐼𝑑 is the identity permutation of the set {1, 2}.
Note that the use of the𝑤(𝑋∗, 𝑋) topology prevents us in

general from using sequences in the above limits. However
we will show that in the study of norm attaining multilinear
forms one can reduce such iterated limits to sequential ones.

In [7] Lindenstrauss theorem is extended to multilinear
forms by using the Arens extensions.

Theorem 1 ([7, Theorem 2.1]). Let 𝑋
𝑖
be Banach spaces (1 ≤

𝑖 ≤ 𝑛). Then the set of 𝑛-linear forms on𝑋
1
× ⋅ ⋅ ⋅ ×𝑋

𝑛
such that

all their Arens extensions to𝑋∗∗
1

× ⋅ ⋅ ⋅×𝑋
∗∗

𝑛
attain their norms

at the same 𝑛-tuple is dense in the spaceL(𝑋
1
, . . . , 𝑋

𝑛
).

Let ℓ
1
denote the space of all absolutely summing

sequences in K with its usual norm. In [6] the following
example is provided. It illustrates that, although all Arens
extensions have the same norm, the fact that one of them
attains its norm does not imply that the other extensions
should attain their norms too. More precisely, it shows
a bounded bilinear form 𝐴 whose first extension 𝐴

1,2
is

not norm attaining, whereas the second one 𝐴
2,1

is norm
attaining. This example brings into relief that the extensions
of a bilinear formmay have different behaviors from the point
of view of attaining their norms and is the core of our study.

Example 2 ([6, Example 2]). The bilinear form 𝐴 ∈ L(
2
ℓ
1
),

defined by

𝐴 (𝑥
1
, 𝑥
2
) :=

∞

∑

𝑡
1
=1

𝑥
1
(𝑡
1
)(

𝑡
1

∑

𝑡
2
=1

𝑡
2

𝑡
2
+ 1

𝑥
2
(𝑡
2
)) , (4)

is such that neither 𝐴 nor 𝐴
𝐼𝑑

= 𝐴
1,2

is norm attaining, but
𝐴
2,1

is norm attaining.

3. Norm Attaining Extensions of Multilinear
Forms on General Banach Spaces

It is well known that, under the first axiom of separability,
nets can be replaced with sequences, which turns out to be
an advantage when dealing with limits. Our first result is just
a lemma that will clarify how to pass from nets to sequences
in the context of several indexes that will be helpful in the
context of multilinear mappings. We give the proof for the
sake of completeness.
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Lemma 3. Let 𝑛 ∈ N. For each 𝑗 = 1, . . . , 𝑛, let 𝐷
𝑗
be an infi-

nite directed set. Consider a family {𝑎
𝛼
1
,...,𝛼
𝑛

}
(𝛼
1
,...,𝛼
𝑛
)∈𝐷
1
×⋅⋅⋅×𝐷

𝑛

of real or complex numbers. If the iterated limit 𝑎 :=

lim
𝛼
1
∈𝐷
1

⋅ ⋅ ⋅ lim
𝛼
𝑛
∈𝐷
𝑛

𝑎
𝛼
1
,...,𝛼
𝑛

is finite then there exist strictly
increasing sequences {𝛼

𝑗
(𝑚)}
∞

𝑚=1
in 𝐷
𝑗
, 1 ≤ 𝑗 ≤ 𝑛, such that

lim
𝑚
1
→∞

⋅ ⋅ ⋅ lim
𝑚
𝑛
→∞

𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛
(𝑚
𝑛
)
= 𝑎.

Proof. We proceed by induction on 𝑛. For 𝑛 = 1, since
lim
𝛼
1
∈𝐷
1

𝑎
𝛼
1

= 𝑎, for each 𝑘 ∈ N there exists 𝛼
1
(𝑘) ∈ 𝐷

1

such that |𝑎
𝛼
1

− 𝑎| < 1/𝑘 for all 𝛼
1

≥ 𝛼
1
(𝑘). Besides, by

the condition on 𝐷
1
, we can choose the sequence {𝛼

1
(𝑘)}
𝑘∈N

strictly increasing.
Assume that the result is true for 𝑛 − 1 and let us prove it

for 𝑛. So, if we assume that 𝑎 = lim
𝛼
1
∈𝐷
1

⋅ ⋅ ⋅ lim
𝛼
𝑛
∈𝐷
𝑛

𝑎
𝛼
1
,...,𝛼
𝑛

is
finite, define

𝑏
𝛼
1
,...,𝛼
𝑛−1

:= lim
𝛼
𝑛
∈𝐷
𝑛

𝑎
𝛼
1
,...,𝛼
𝑛−1
,𝛼
𝑛

. (5)

By the assumption applied to the family
{𝑏
𝛼
1
,...,𝛼
𝑛−1

}
(𝛼
1
,...,𝛼
𝑛−1
)∈𝐷
1
×⋅⋅⋅×𝐷

𝑛−1

, for each 𝑗 = 1, . . ., 𝑛 − 1

there exists a strictly increasing sequence {𝛼
𝑗
(𝑚
𝑗
)}
𝑚
𝑗
∈N such

that

𝑎 = lim
𝑚
1
→∞

⋅ ⋅ ⋅ lim
𝑚
𝑛−1
→∞

𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
. (6)

Let us construct the sequence {𝛼
𝑛
(𝑘)}
𝑘∈N by induction on 𝑘.

Since 𝑏
𝛼
1
(1),...,𝛼

𝑛−1
(1)

= lim
𝛼
𝑛
∈𝐷
𝑛

𝑎
𝛼
1
(1),...,𝛼

𝑛−1
(1),𝛼
𝑛

, there exists
𝛼
𝑛
(1) ∈ 𝐷

𝑛
such that

𝑏
𝛼
1
(1),...,𝛼

𝑛−1
(1)

− 𝑎
𝛼
1
(1),...,𝛼

𝑛−1
(1),𝛼
𝑛


< 1 (7)

for all 𝛼
𝑛

≥ 𝛼
𝑛
(1). Assume that we have found 𝛼

𝑛
(1), . . .,

𝛼
𝑛
(𝑘 − 1) ∈ 𝐷

𝑛
with 𝛼

𝑛
(1) < ⋅ ⋅ ⋅ < 𝛼

𝑛
(𝑘 − 1) such that

|𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
− 𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛

| < (1/𝑙) for all 𝛼
𝑛
≥

𝛼
𝑛
(𝑙), all 1 ≤ 𝑚

1
, . . . , 𝑚

𝑛−1
≤ 𝑙, and all 𝑙 = 1, . . ., 𝑘 − 1.

Fix 1 ≤ 𝑚
1
, . . ., 𝑚

𝑛−1
≤ 𝑘. Since 𝑏

𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
=

lim
𝛼
𝑛
∈𝐷
𝑛

𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛

, there exists 𝛼
𝑛
(𝑚
1
, . . . , 𝑚

𝑛−1
) ∈

𝐷
𝑛
, with 𝛼

𝑛
(𝑚
1
, . . . , 𝑚

𝑛−1
) ≥ 𝛼
𝑛
(𝑘 − 1), such that


𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
− 𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛


<
1

𝑘
(8)

for all 𝛼
𝑛
≥ 𝛼
𝑛
(𝑚
1
, . . . , 𝑚

𝑛−1
). Take 𝛼

𝑛
(𝑘) > 𝛼

𝑛
(𝑚
1
, . . . , 𝑚

𝑛−1
)

for all 1 ≤ 𝑚
1
, . . .,𝑚

𝑛−1
≤ 𝑘. Then


𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
− 𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛


<
1

𝑘
(9)

whenever 𝛼
𝑛

≥ 𝛼
𝑛
(𝑘). Hence the limit

lim
𝑘→∞

𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛
(𝑘)

exists and is equal to
𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)
. Now,

𝑎 = lim
𝑚
1
→∞

⋅ ⋅ ⋅ lim
𝑚
𝑛−1
→∞

𝑏
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
)

= lim
𝑚
1
→∞

⋅ ⋅ ⋅ lim
𝑚
𝑛−1
→∞

lim
𝑚
𝑛
→∞

𝑎
𝛼
1
(𝑚
1
),...,𝛼
𝑛−1
(𝑚
𝑛−1
),𝛼
𝑛
(𝑚
𝑛
)

(10)

and the proof is over.

Theorem 4. Let 𝑋
1
, . . . , 𝑋

𝑛
be infinite dimensional Banach

spaces, 𝐶 ∈ L(𝑋
1
, . . . , 𝑋

𝑛
), and 𝜎 ∈ Σ

𝑛
. If the

extension 𝐶
𝜎
attains its norm then there exist sequences

{𝑥
1

𝑚
1

}
∞

𝑚
1
=1
, . . . , {𝑥

𝑛

𝑚
𝑛

}
∞

𝑚
𝑛
=1

with each 𝑥
𝑘

𝑚
𝑘

∈ 𝐵
𝑋
𝑘

, 𝑚
𝑘
∈ N, and

𝑘 = 1, . . . , 𝑛, such that

lim
𝑚
𝜎(1)
→∞

. . . lim
𝑚
𝜎(𝑛)
→∞


𝐶 (𝑥
1

𝑚
1

, . . . , 𝑥
𝑛

𝑚
𝑛

)

= ‖𝐶‖ . (11)

Proof. For simplicity we assume that 𝜎 = 𝐼𝑑. Let
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
) be a point in 𝐵

𝑋
∗∗

1

×⋅ ⋅ ⋅×𝐵
𝑋
∗∗

𝑛

, where𝐶
𝜎
attains

its norm. Let 𝐾 = {𝑘 : 𝑥
∗∗

𝑘
∈ 𝑋
∗∗

\ 𝑋}. By density, each 𝑥
∗∗

𝑘

is the weak-star limit of a net {𝑥𝑘
𝛼
𝑘

}
𝛼
𝑘
∈𝐷
𝑘

in 𝐵
𝑋
𝑘

, 𝑘 ∈ 𝐾. For
𝑘 ∉ 𝐾, set𝐷

𝑘
= N and 𝑥

𝑘

𝛼
𝑘

:= 𝑥
∗∗

𝑘
∈ 𝑋 for all 𝛼

𝑘
∈ 𝐷
𝑘
. Then

‖𝐶‖ =
𝐶𝜎



=
𝐶𝜎 (𝑥

∗∗

1
, . . . , 𝑥

∗∗

𝑛
)


= lim
𝛼
1
∈𝐷
1

⋅ ⋅ ⋅ lim
𝛼
𝑛
∈𝐷
𝑛


𝐶 (𝑥
1

𝛼
1

, . . . , 𝑥
𝑛

𝛼
𝑛

)

.

(12)

By Lemma 3 applied to 𝑎
𝛼
1
,...,𝛼
𝑛

:= |𝐶(𝑥
1

𝛼
1

, . . . , 𝑥
𝑛

𝛼
𝑛

)|, we obtain
the desired sequences {𝑥𝑘

𝑚
𝑘

}
∞

𝑚
𝑘
=1
, for every 1 ≤ 𝑘 ≤ 𝑛.

Proposition 5. Let𝑋 be an infinite dimensional Banach space,
and let {𝑥

𝑛
}
∞

𝑛=1
be a basic sequence. Then, any nonzero weak-

star cluster point of {𝑥
𝑛
}
∞

𝑛=1
belongs to𝑋∗∗ \ 𝑋.

Proof. Let 𝑍 be the closed linear span of {𝑥
𝑛
}
∞

𝑛=1
and let

{𝑥
∗

𝑛
}
∞

𝑛=1
be the orthogonal functionals in 𝑍

∗ associated with
{𝑥
𝑛
}
∞

𝑛=1
. By the Hahn-Banach extension theorem, we can

consider each 𝑥
∗

𝑛
in𝑋
∗.

Let 𝑥∗∗ ∈ 𝑋
∗∗ be a nonzero cluster point of {𝑥

𝑛
}
∞

𝑛=1
, and

let {𝑥
𝑑
}
𝑑∈𝐷

be a subnet of {𝑥
𝑛
}
∞

𝑛=1
weak-star converging to𝑥∗∗.

We first prove that 𝑥∗∗ is none of the vectors 𝑥
𝑛
. Assume

that this is not the case; that is, 𝑥∗∗ = 𝑥
𝑛
0

for some 𝑛
0
. Since

{𝑥
𝑑
}
𝑑∈𝐷

weak-star converges to 𝑥
∗∗, the net {⟨𝑥

𝑑
, 𝑥
∗

𝑛
0

⟩}
𝑑∈𝐷

converges to ⟨𝑥∗∗, 𝑥∗
𝑛
0

⟩ = 1. Then, there is 𝑑 ∈ 𝐷 such that


⟨𝑥
𝑑
, 𝑥
∗

𝑛
0

⟩

>
1

2
(13)

for all 𝑑 ≥ 𝑑. Since 𝐷 is cofinal, there is 𝑑
1
∈ 𝐷 such that

𝑑
1
≥ 𝑑 and 𝑑

1
≥ 𝑛
0
+ 1 > 𝑛

0
. By the biorthogonality of

{𝑥
∗

𝑛
}
∞

𝑛=1
it follows that ⟨𝑥

𝑑
1

, 𝑥
∗

𝑛
0

⟩ = 0, which contradicts (13).
We prove now that 𝑥∗∗ ∉ 𝑍. Let us assume that 𝑥∗∗ ∈ 𝑍.

Then there is a unique sequence of scalars {𝑎
𝑛
}
∞

𝑛=1
so that

𝑥
∗∗

= ∑
∞

𝑛=1
𝑎
𝑛
𝑥
𝑛
. Let 𝜖 > 0 and take 𝑛

1
:= 1. Since

{⟨𝑥
𝑑
, 𝑥
∗

1
⟩}
𝑑∈𝐷

converges to ⟨𝑥
∗∗
, 𝑥
∗

1
⟩ = 𝑎

1
, there is ̃̃𝑑 ∈ 𝐷

so that |⟨𝑥
𝑑
, 𝑥
∗

1
⟩ − 𝑎
1
| < 𝜖 for all 𝑑 ≥

̃̃
𝑑. Since 𝐷 is cofinal,

there is 𝑑
1
∈ 𝐷 such that 𝑑

1
≥ 2. Let 𝑑

2
≥ 𝑑
1
,
̃̃
𝑑. Then

𝑛
2
:= 𝑑
2
≥ 𝑑
1
> 1 = 𝑛

1
. Therefore ⟨𝑥

𝑑
2

, 𝑥
∗

1
⟩ = ⟨𝑥

𝑛
2

, 𝑥
∗

𝑛
1

⟩ = 0

and |⟨𝑥
𝑑
2

, 𝑥
∗

1
⟩ − 𝑎
1
| < 𝜖. Hence, |𝑎

1
| < 𝜖. This shows that

𝑎
1
= 0. Reiterating this process we can prove that 𝑎

𝑛
= 0 for

all 𝑛 ∈ N, which contradicts the fact that 𝑥∗∗ ̸= 0.
To finish the proof, since 𝑥∗∗ belongs to the 𝑤(𝑋∗∗, 𝑋∗)

closure of 𝑍, if we assume that 𝑥∗∗ ∈ 𝑋, then 𝑥
∗∗ actually

belongs to the 𝑤(𝑋,𝑋∗) closure of 𝑍. This closure coincides
with the norm closure, that is, with 𝑍. As we have already
proved, this is impossible. Therefore, 𝑥∗∗ ∉ 𝑋.
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Theorem 6. Let 𝑛 ∈ N. For each 1 ≤ 𝑗 ≤ 𝑛 let 𝑋
𝑗
be a

Banach space with a normalized Schauder basis {𝑥𝑗
𝑛
}
∞

𝑛=1
. Let

𝐶 ∈ L(𝑋
1
, . . . , 𝑋

𝑛
) and𝜎 ∈ Σ

𝑛
. If there exist strictly increasing

sequences of natural numbers {𝑘(𝑗, 𝑚
𝑗
)}
∞

𝑚
𝑗
=1
, 𝑗 = 1, . . ., 𝑛, such

that

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐶 (𝑥
1

𝑘(1,𝑚1)
, . . . , 𝑥

𝑛

𝑘(𝑛,𝑚𝑛)
)

= ‖𝐶‖ (14)

then𝐶
𝜎
attains its norm at a point in (𝐵

𝑋
∗∗

1

\𝑋
1
)× ⋅ ⋅ ⋅×(𝐵

𝑋
∗∗

𝑛

\

𝑋
𝑛
).

Proof. Consider any 1 ≤ 𝑗 ≤ 𝑛. Let 𝑥∗∗
𝑗

be a cluster point
of the subsequence {𝑥𝑗

𝑘(𝑗,𝑚
𝑗
)
}
∞

𝑚
𝑗
=1

and hence of the sequence
{𝑥
𝑗

𝑛
}
∞

𝑛=1
. As the Schauder basis is normalized, 𝑥∗∗

𝑗
∈ 𝐵
𝑋
∗∗

𝑗

and
by Proposition 5 𝑥

∗∗

𝑗
∉ 𝑋
𝑗
. Let {𝑥

𝑘(𝑗,𝑑
𝑗
)
}
𝑑
𝑗
∈𝐷
𝑗

be a subnet of
{𝑥
𝑘(𝑗,𝑚

𝑗
)
}
∞

𝑚
𝑗
=1

that weak-star converges to 𝑥∗∗
𝑗
. Then

𝐶𝜎
 = ‖𝐶‖

= lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐶 (𝑥
1

𝑘(1,𝑚1)
, . . . , 𝑥

𝑛

𝑘(𝑛,𝑚𝑛)
)


= lim
𝑑
𝜎(1)
∈𝐷
𝜎(1)

⋅ ⋅ ⋅ lim
𝑑
𝜎(𝑛)
∈𝐷
𝜎(𝑛)


𝐶 (𝑥
1

𝑘(1,𝑑1)
, . . . , 𝑥

𝑛

𝑘(𝑛,𝑑𝑛)
)


=
𝐶𝜎 (𝑥

∗∗

1
, . . . , 𝑥

∗∗

𝑛
)
 .

(15)

4. Norm Attaining Extensions
of Multilinear Forms on ℓ

1

Our aim in this section is to show that, when working with
the space ℓ

1
, one can strengthen the results in Section 3. But

before, let us recall some well known facts on ℓ
1
that we need

to use later. First is that, since ℓ∗∗
1

is the third dual of 𝑐
0
, then ℓ

1

is a complemented subspace of ℓ∗∗
1
. Actually, ℓ∗∗

1
= 𝑐
∗

0
⊕ 𝑐
⊥

0
=

ℓ
1
⊕ 𝑐
⊥

0
, where a linear form belongs to 𝑐

⊥

0
if it vanishs on 𝑐

0
.

Moreover, ℓ∗∗
1

is 1-sum of ℓ
1
and 𝑐
⊥

0
[11, page 158]; that is, if

we denote by 𝜋 : ℓ
∗∗

1
→ ℓ
1
the projection of ℓ∗∗

1
onto ℓ

1
, we

have that ‖𝑥∗∗‖ = ‖𝜋(𝑥
∗∗
)‖+‖𝑥

⊥
‖ for every 𝑥∗∗ in ℓ∗∗

1
, where

𝑥
⊥
= 𝑥
∗∗

− 𝜋(𝑥
∗∗
). If 𝐴 is inL(

𝑛
ℓ
∗∗

1
), then

‖𝐴‖ = sup
𝑘
1
,...,𝑘
𝑛
∈N


𝐴 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

, (16)

where {𝑒
𝑘
}
∞

𝑘=1
is the canonical basis of ℓ

1
.

We have seen that, even if the norm of an extension of
a multilinear functional is attained in points of the bidual,
we can deal with sequential limits of points in the unit ball
of the space. We now prove that, when dealing with bilinear
forms defined on ℓ

1
×ℓ
1
, sequences in the unit ball of ℓ

1
can be

replaced with subsequences of the canonical basis of ℓ
1
, and

so a full characterization works.

Lemma 7. Let 𝐴 ∈ L(
𝑛
ℓ
∗∗

1
) with ‖𝐴‖ = 1, 𝑥∗∗

1
, . . . , 𝑥

∗∗

𝑛
∈

𝐵
ℓ
∗∗

1

\ ℓ
1
, and 𝑥

⊥

𝑖
= 𝑥
∗∗

𝑖
− 𝜋(𝑥

∗∗

𝑖
), 𝑖 = 1, . . . , 𝑛. If 𝐴

attains its norm at (𝑥∗∗
1
, . . . , 𝑥

∗∗

𝑛
) then 𝐴 attains its norm at

(𝑥
⊥

1
/‖𝑥
⊥

1
‖, . . . , 𝑥

⊥

𝑛
/‖𝑥
⊥

𝑛
‖) too.

Proof. Let us prove it first for 𝑛 = 1, that is, for𝐴 being linear.
If we assume that |𝐴(𝑥⊥

1
)| < ‖𝑥

⊥

1
‖ then for some 𝜀 ∈ K with

|𝜀| = 1

1 = 𝐴 (𝜀𝑥
∗∗

1
)

= 𝐴 (𝜀𝑥
⊥

1
) + 𝐴 (𝜀𝜋 (𝑥

∗∗

1
))

<

𝑥
⊥

1


+
𝜋 (𝑥
∗∗

1
)
 =

𝑥
∗∗

1

 = 1

(17)

which is a contradiction.
Assume now that 𝐴 is bilinear. The associated linear

mapping 𝐴
1
(𝑦) := 𝐴(𝑦, 𝑥

∗∗

2
), 𝑦 ∈ ℓ

∗∗

1
, attains its norm at

𝑥
∗∗

1
∈ 𝐵
ℓ
∗∗

1

\ ℓ
1
and so, by the linear case, 𝐴

1
attains its norm

at 𝑥⊥
1
/‖𝑥
⊥

1
‖. Now, if we consider the other associated linear

mapping𝐴
2
(𝑦) := 𝐴(𝑥

⊥

1
/‖𝑥
⊥

1
‖, 𝑦), 𝑦 ∈ ℓ

∗∗

1
, it attains its norm

at 𝑥∗∗
2
. Then, 𝐴

2
also attains its norm at 𝑥⊥

2
/‖𝑥
⊥

2
‖. That is,

|𝐴(𝑥
⊥

1
/‖𝑥
⊥

1
‖, 𝑥
⊥

2
/‖𝑥
⊥

2
‖)| = 1.

An easy induction yields the general case.

Lemma 8. Let 𝑀 and 𝑁 be subsets of N, 0 < 𝛽 < 1, and for
each 𝑛 ∈ N let 𝑎

𝑛
≥ 0 be such that ∑∞

𝑛=1
𝑎
𝑛
= 1. If ∑

𝑡∈𝑀
𝑎
𝑡
+

∑
𝑡∈𝑁

𝑎
𝑡
> 2 − 𝛽 then ∑

𝑡∈𝑀∩𝑁
𝑎
𝑡
> 1 − 𝛽.

Proof. Since

1 =

∞

∑

𝑛=1

𝑎
𝑛
≥ ∑

𝑡∈𝑀\𝑁

𝑎
𝑡
+ ∑

𝑡∈𝑁\𝑀

𝑎
𝑡
+ ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡 (18)

it follows that

∑

𝑡∈𝑀\𝑁

𝑎
𝑡
+ ∑

𝑡∈𝑁\𝑀

𝑎
𝑡
≤ 1 − ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡
. (19)

Combining this with the hypothesis we finally get that

2 − 𝛽 < ∑

𝑡∈𝑀\𝑁

𝑎
𝑡
+ ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡
+ ∑

𝑡∈𝑁\𝑀

𝑎
𝑡
+ ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡

≤ 2 ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡
− ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡
+ 1 = ∑

𝑡∈𝑀∩𝑁

𝑎
𝑡
+ 1.

(20)

Theorem 9. Given a bilinear form 𝐴 ∈ L(
2
ℓ
1
) of norm one,

the following are equivalent:

(a) lim
𝑖
lim
𝑗
|𝐴(𝑒
𝑚
𝑖

, 𝑒
𝑛
𝑗

)| = 1 for some strictly increasing
sequences of natural numbers (𝑚

𝑖
)
∞

𝑖=1
and (𝑛

𝑗
)
∞

𝑗=1
;

(b) there exist 𝑥∗∗
1
, 𝑥
∗∗

2
∈ ℓ
∗∗

1
\ ℓ
1
of norm one such that

|𝐴
𝐼𝑑
(𝑥
∗∗

1
, 𝑥
∗∗

2
)| = 1.

Proof. (𝑎) ⇒ (𝑏) is a consequence of Theorem 6.
(𝑏) ⇒ (𝑎): notice that ℓ

1
is an 𝐿-summand space in its

bidual so ‖𝑥
∗∗

𝑠
‖ = ‖𝜋(𝑥

∗∗

𝑠
)‖ + ‖𝑥

∗∗

𝑠
− 𝜋(𝑥

∗∗

𝑠
)‖, for 𝑠 = 1, 2,

where 𝜋 is the projection from ℓ
∗∗

1
onto ℓ

1
. For each 𝑛 ∈ N

let 𝜋
𝑛
denote the projection from ℓ

∗∗

1
onto ℓ𝑛

1
. Note that 𝜋

𝑛
is

weak-star continuous.
By Lemma 7 we can assume that 𝜋(𝑥∗∗

1
) = 𝜋(𝑥

∗∗

2
) = 0.

Consider the linear form 𝐴
𝐼𝑑
(⋅, 𝑥
∗∗

2
) of ℓ∗

1
with norm one

defined by 𝐴
𝐼𝑑
(𝑥, 𝑥
∗∗

2
) = lim

𝑑
2

𝐴(𝑥, 𝑥
𝑑
2

) for all 𝑥 in ℓ
1
,
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whenever {𝑥
𝑑
2

}
𝑑
2
∈𝐷
2

is a net in the unit ball of ℓ
1
weak-star

convergent to 𝑥∗∗
2
.

Let us see that there exists a strictly increasing sequence
of natural numbers {𝑚

𝑖
}
∞

𝑖=1
with lim

𝑖
|𝐴
𝐼𝑑
(𝑒
𝑚
𝑖

, 𝑥
∗∗

2
)| = 1. If

this is not the case, then there exists 𝜖 > 0 and there exists
a natural number 𝑟 with |𝐴

𝐼𝑑
(𝑒
𝑘
, 𝑥
∗∗

2
)| ≤ 1 − 𝜖 for all 𝑘 >

𝑟. Let {𝑥
𝑑
1

}
𝑑
1
∈𝐷
1

be a net in the unit ball of ℓ
1
weak-star

convergent to 𝑥
∗∗

1
. Since 𝜋(𝑥∗∗

1
) = 0 and 𝜋

𝑟
(𝑥
𝑑
1

) converges
to 𝜋
𝑟
(𝑥
∗∗

1
) = 0 then {𝑥

𝑑
1

− 𝜋
𝑟
(𝑥
𝑑
1

)}
𝑑
1
∈𝐷
1

weak-star converges
to 𝑥
∗∗

1
. Moreover, ‖𝑥

𝑑
1

− 𝜋
𝑟
(𝑥
𝑑
1

)‖ ≤ ‖𝑥
𝑑
1

‖ ≤ 1 and so by
replacing 𝑥

𝑑
1

with 𝑥
𝑑
1

−𝜋
𝑟
(𝑥
𝑑
1

)we can assume that 𝜋
𝑟
(𝑥
𝑑
1

) =

0; that is, 𝑥
𝑑
1

(𝑡) = 0 for all 𝑡 = 1, . . . , 𝑟.
Therefore for all 𝑑

1
∈ 𝐷
1


𝐴
𝐼𝑑
(𝑥
𝑑
1

, 𝑥
∗∗

2
)

=



∞

∑

𝑡=1

𝑥
𝑑
1
(𝑡) 𝐴
𝐼𝑑
(𝑒
𝑡
, 𝑥
∗∗

2
)



≤

∞

∑

𝑡=𝑟+1


𝑥
𝑑
1
(𝑡)



𝐴𝐼𝑑 (𝑒𝑡, 𝑥
∗∗

2
)


≤ 1 − 𝜖,

(21)

contradicting the fact that |lim
𝑑
1

𝐴
𝐼𝑑
(𝑥
𝑑
1

, 𝑥
∗∗

2
)| =

|𝐴
𝐼𝑑
(𝑥
∗∗

1
, 𝑥
∗∗

2
)| = 1.

Without loss of generality assume that for all 𝑖 ∈ N

1 −

𝐴
𝐼𝑑
(𝑒
𝑚
𝑖

, 𝑥
∗∗

2
)

≤ 2
−(2𝑖+2)

. (22)

By using induction, let us find a strictly increasing
sequence of natural numbers {𝑛

𝑗
}
∞

𝑗=1
such that |𝐴(𝑒

𝑚
𝑖

, 𝑒
𝑛
𝑗

)| ≥

1 − 2
−𝑖 for all 1 ≤ 𝑖 ≤ 𝑗.
Let {𝑥

𝑑
2

}
𝑑
2
∈𝐷
2

be a net in the unit ball of ℓ
1
weak-star con-

vergent to 𝑥∗∗
2
. Since |lim

𝑑
2

𝐴
𝐼𝑑
(𝑒
𝑚
1

, 𝑥
𝑑
2

)| = |𝐴
𝐼𝑑
(𝑒
𝑚
1

, 𝑥
∗∗

2
)| >

1 − 2
−4, there exists 𝑑

0
in𝐷
2
with |𝐴(𝑒

𝑚
1

, 𝑥
𝑑
0

)| > 2
−1. Then

2
−1

<

𝐴 (𝑒
𝑚
1

, 𝑥
𝑑
0

)

≤ ∑

𝑡∈N


𝑥
𝑑
0
(𝑡)




𝐴 (𝑒
𝑚
1

, 𝑒
𝑡
)


≤ sup
𝑡∈N

{

𝐴 (𝑒
𝑚
1

, 𝑒
𝑡
)

} ∑

𝑡∈N


𝑥
𝑑
0
(𝑡)



≤ sup
𝑡∈N

{

𝐴 (𝑒
𝑚
1

, 𝑒
𝑡
)

} .

(23)

Let 𝑛
1
be a natural number with |𝐴

𝐼𝑑
(𝑒
𝑚
1

, 𝑒
𝑛
1

)| > 2
−1.

Now, assume that we have found 𝑛
1

< ⋅ ⋅ ⋅ < 𝑛
𝑟
with

|𝐴(𝑒
𝑚
𝑖

, 𝑒
𝑛
𝑗

)| > 1 − 2
−𝑖 for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑟 and let us find

𝑛
𝑟+1

. Considering that 𝜋(𝑥∗∗
2
) = 0, by replacing 𝑥

𝑑
2

with
𝑥
𝑑
2

− 𝜋
𝑛
𝑟

(𝑥
𝑑
2

), we can assume that 𝜋
𝑛
𝑟

(𝑥
𝑑
2

) = 0; that is,
𝑥
𝑑
2

(𝑡) = 0 for all 𝑡 = 1, . . . , 𝑛
𝑟
and all 𝑑

2
∈ 𝐷
2
.

By (22), consider 𝑥
0
an element of the net {𝑥

𝑑
2

}
𝑑
2
∈𝐷
2

such
that


𝐴 (𝑒
𝑚
𝑖

, 𝑥
0
)

≥ 1 − 2

−2𝑖 for 𝑖 = 1, . . . , 𝑟 + 1. (24)

For each 𝑖 = 1, . . . , 𝑟 + 1 define the sets

𝑇
𝑖
:= {𝑡 ∈ N : 𝑡 > 𝑛

𝑟
,

𝐴
𝐼𝑑
(𝑒
𝑚
𝑖

, 𝑒
𝑡
)

≥ 1 − 2

−𝑖
} . (25)

Therefore, for every 𝑖 = 1, . . . , 𝑟 + 1,

1 − 2
−2𝑖

≤

𝐴 (𝑒
𝑚
𝑖

, 𝑥
0
)


≤ ∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)



𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑡
)

+ ∑

𝑡∉𝑇
𝑖

𝑥0 (𝑡)



𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑡
)


≤ ∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)
 + (1 − 2

−𝑖
) ∑

𝑡∉𝑇
𝑖

𝑥0 (𝑡)


≤ ∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)
 + (1 − 2

−𝑖
)(1 − ∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)
)

= (1 − 2
−𝑖
) + 2
−𝑖
∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)
 ,

(26)

where in the first inequality we have used (24). Thus
2
−𝑖
∑
𝑡∈𝑇
𝑖

|𝑥
0
(𝑡)| ≥ 2

−𝑖
− 2
−2𝑖 and so

∑

𝑡∈𝑇
𝑖

𝑥0 (𝑡)
 ≥ 1 − 2

−𝑖
. (27)

We use now finite induction and Lemma 8 to see that
⋂
𝑟+1

𝑖=1
𝑇
𝑖
̸= 0. Indeed, by (27)

∑

𝑡∈𝑇
1

𝑥0 (𝑡)
 + ∑

𝑡∈𝑇
2

𝑥0 (𝑡)
 > 2 − (

1

2
+

1

2
2
) . (28)

Lemma 8 yields that∑
𝑡∈𝑇
1
∩𝑇
2

|𝑥
0
(𝑡)| > 1 − ((1/2) + (1/2

2
)). If

for some 1 ≤ 𝑙 < 𝑟 + 1 we assume that

∑

𝑡∈∩
𝑙

𝑗=1
𝑇
𝑗

𝑥0 (𝑡)
 > 1 − (

1

2
+

1

2
2
+ ⋅ ⋅ ⋅ +

1

2
𝑙
) , (29)

then

∑

𝑡∈∩
𝑙

𝑗=1
𝑇
𝑗

𝑥0 (𝑡)
 + ∑

𝑡∈𝑇
𝑙+1

𝑥0 (𝑡)


> 2 − (
1

2
+

1

2
2
+ ⋅ ⋅ ⋅ +

1

2
𝑙
+

1

2
𝑙+1

) .

(30)

Once more, Lemma 8 yields that

∑

𝑡∈∩
𝑙+1

𝑗=1
𝑇
𝑗

𝑥0 (𝑡)
 > 1 − (

1

2
+

1

2
2
+ ⋅ ⋅ ⋅ +

1

2
𝑙+1

) . (31)

Therefore, we can conclude that

∑

𝑡∈∩
𝑟+1

𝑗=1
𝑇
𝑗

𝑥0 (𝑡)
 > 1 − (

1

2
+

1

2
2
+ ⋅ ⋅ ⋅ +

1

2
𝑟+1

) , (32)

and so ∩
𝑟+1

𝑗=1
𝑇
𝑗

̸= 0. We define 𝑛
𝑟+1

:= min(∩𝑟+1
𝑗=1

𝑇
𝑗
). Note that

𝑛
𝑟+1

> 𝑛
𝑟
.

From (25) it follows that

𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑛
𝑟+1

)

≥ 1 − 2

−𝑖 (33)

for all 𝑖 = 1, . . . , 𝑟 + 1.
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By (33)

1 ≥ lim inf
𝑗


𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑛
𝑗

)

≥ 1 − 2

−𝑖
. (34)

Then

lim
𝑖

lim inf
𝑗


𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑛
𝑗

)

= 1. (35)

To finish the proof, we show that the lim inf can be replaced
with lim by just choosing a suitable subsequence of {𝑒

𝑛
𝑗

}
∞

𝑗=1
.

Let us proceed once more by induction. By (33),
|𝐴(𝑒
𝑚
1

, 𝑒
𝑛
𝑗

)| ≥ 1 − (1/2) for all 𝑗 ≥ 1. Then, there exists a
subsequence {𝑒

𝑛
𝑗𝑘

}
∞

𝑘=1
of {𝑒
𝑛
𝑗

}
∞

𝑗=1
such that lim

𝑘
|𝐴(𝑒
𝑚
1

, 𝑒
𝑛
𝑗𝑘

)|

exists and it is greater than or equal to 1 − (1/2). To make the
notation clear, we write 𝑛(1, 𝑘) := 𝑛

𝑗𝑘
and so

lim
𝑘


𝐴 (𝑒
𝑚
1

, 𝑒
𝑛(1,𝑘)

)

≥ 1 −

1

2
. (36)

Assume that we have a chain of sequences
{𝑒
𝑛(1,𝑗)

}
∞

𝑗=1
, . . . , {𝑒

𝑛(𝑝,𝑗)
}
∞

𝑗=1
with each of them being

a subsequence of the previous one, such that
lim
𝑗
|𝐴(𝑒
𝑚
𝑖

, 𝑒
𝑛(𝑖,𝑗)

)| ≥ 1 − (1/2
𝑖
), for all 𝑖 = 1, . . . , 𝑝. Let

us construct a subsequence {𝑒
𝑛(𝑝+1,𝑗)

}
∞

𝑗=1
of {𝑒
𝑛(𝑝,𝑗)

}
∞

𝑗=1
such

that |𝐴(𝑒
𝑚
𝑝+1

, 𝑒
𝑛(𝑝+1,𝑗)

)| ≥ 1 − (1/2
𝑝+1

) for all 𝑗 ∈ N. Indeed,
since |𝐴(𝑒

𝑚
𝑝+1

, 𝑒
𝑛(𝑝,𝑗)

)| ≥ 1 − (1/2
𝑝+1

) for all 𝑗 ≥ 𝑝 + 1,
there exists a subsequence {𝑒

𝑛(𝑝,𝑗)
𝑙

}
∞

𝑙=1
of {𝑒
𝑛(𝑝,𝑗)

}
∞

𝑗=1
such that

lim
𝑙
|𝐴(𝑒
𝑚
𝑝+1

, 𝑒
𝑛(𝑝,𝑗)

𝑙

)| exists and it is greater than or equal to
1 − (1/2

𝑝+1
). We write 𝑛(𝑝 + 1, 𝑙) := 𝑛(𝑝, 𝑗)

𝑙
and so

lim
𝑙


𝐴 (𝑒
𝑚
𝑝+1

, 𝑒
𝑛(𝑝+1,𝑙)

)

≥ 1 −

1

2
𝑝+1

. (37)

So we have countably many sequences
{𝑒
𝑛(1,𝑗)

}
∞

𝑗=1
, {𝑒
𝑛(2,𝑗)

}
∞

𝑗=1
, . . ., with each of them being

a subsequence of the previous one, such that
lim
𝑗
|𝐴(𝑒
𝑚
𝑖

, 𝑒
𝑛(𝑖,𝑗)

)| ≥ 1 − (1/2
𝑖
), for all 𝑖 = 1, 2, . . .. The

diagonal sequence {𝑒
𝑛(𝑗,𝑗)

}
∞

𝑗=1
is the one we were looking for.

Note that {𝑒
𝑛(𝑗,𝑗)

}
∞

𝑗=𝑖
is a subsequence of {𝑒

𝑛(𝑖,𝑗)
}
∞

𝑗=1
and then

there exists

lim
𝑗


𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑛(𝑗,𝑗)

)

≥ 1 −

1

2
𝑖
, (38)

for all 𝑖 ∈ N.
Therefore, we have found sequences {𝑒

𝑚
𝑖

}
∞

𝑖=1
and

{𝑒
𝑛(𝑗,𝑗)

}
∞

𝑗=1
, with {𝑚

𝑖
}
∞

𝑖=1
and {𝑛(𝑗, 𝑗)}∞

𝑗=1
strictly increasing, for

which there exists

lim
𝑖

lim
𝑗


𝐴 (𝑒
𝑚
𝑖

, 𝑒
𝑛(𝑗,𝑗)

)

= 1. (39)

This concludes the case with 𝜋(𝑥
∗∗

1
) = 𝜋(𝑥

∗∗

2
) = 0.

If 𝜋(𝑥∗∗
1
) ̸= 0 or 𝜋(𝑥∗∗

2
) ̸= 0, then 𝑦

∗∗

1
= 𝑥
∗∗

1
− 𝜋(𝑥

∗∗

1
)

and 𝑦
∗∗

2
= 𝑥
∗∗

2
− 𝜋(𝑥

∗∗

2
) are nonzero points of ℓ∗∗

1
\ ℓ
1
with

|𝐴(𝑦
∗∗

1
/‖𝑦
∗∗

1
‖, 𝑦
∗∗

2
/‖𝑦
∗∗

2
‖)| = 1, and the former case gives us

the desired result.

Corollary 10. Given a bilinear form 𝐴 ∈ L(
2
ℓ
1
) of norm one

and 𝜎 ∈ Σ
2
, the following are equivalent:

(a) lim
(𝑖,𝜎(1),𝜎)

lim
(𝑖,𝜎(2),𝜎)

|𝐴(𝑒
𝑚(𝑖,1,𝜎)

, 𝑒
𝑚(𝑖,2,𝜎)

)| = 1 for
some strictly increasing sequences of natural numbers
(𝑚(𝑖, 1, 𝜎))

∞

𝑖=1
and (𝑚(𝑖, 2, 𝜎))

∞

𝑖=1
;

(b) there exist 𝑥∗∗
1,𝜎
, 𝑥
∗∗

2,𝜎
∈ ℓ
∗∗

1
\ ℓ
1
of norm one such that

|𝐴
𝜎
(𝑥
∗∗

1,𝜎
, 𝑥
∗∗

2,𝜎
)| = 1.

Remark 11. We do not know ifTheorem 9 is valid for 𝑛-linear
mappings with 𝑛 > 2. Our conjecture is the following. Let
𝑛 ∈ N, 𝐴 ∈ L(

𝑛
ℓ
1
), and 𝜎 ∈ Σ

𝑛
. If 𝐴
𝜎
attains its norm on

ℓ
∗∗

1
but only in 𝑛-tuples that belong to (𝐵

ℓ
∗∗

1

\ ℓ
1
)
𝑛, then there

exist increasing sequences of natural numbers {𝑘(𝑗, 𝑚
𝑗
)}
∞

𝑚
𝑗
=1
,

𝑗 = 1, . . . , 𝑛, such that

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
)
)

= ‖𝐴‖ . (40)

Next we give the following lemma.

Lemma 12. Let {𝑘
1
(ℎ), . . . , 𝑘

𝑛
(ℎ)}
∞

ℎ=1
be a sequence inN𝑛 such

that each {𝑘
𝑗
(ℎ)}
∞

ℎ=1
is strictly increasing, 𝑗 = 1, . . . , 𝑛, and let

the 𝑛-linear mapping 𝐴 : ℓ
𝑛

1
→ R be defined by

𝐴(𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

=

{{{{

{{{{

{

(
𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1

)

𝑛

𝑖𝑓 (𝑘
1
, . . . , 𝑘

𝑛
) = (𝑘

1
(ℎ) , . . . , 𝑘

𝑛
(ℎ))

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 ℎ ∈ N.

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(41)

One has that ‖𝐴‖ = 1 and there is no permutation 𝜎 such that
𝐴
𝜎
attains its norm (at any 𝑛-tuple of 𝐵

ℓ
∗∗

1

× ⋅ ⋅ ⋅ × 𝐵
ℓ
∗∗

1

).

Proof. Note first that, for arbitrary 𝑥
𝑖
:= ∑
∞

𝑘=1
𝑎
𝑘,𝑖
𝑒
𝑘
∈ 𝐵
ℓ
1

,
𝑖 = 1, . . . , 𝑛, if we fix 1 ≤ 𝑗 ≤ 𝑛 then

𝐴 (𝑥
1
, . . . , 𝑥

𝑛
)
 ≤

𝑥1
 ⋅ ⋅ ⋅


𝑥
𝑗−1


⋅

𝑥
𝑗+1


⋅ ⋅ ⋅

𝑥𝑛


×

∞

∑

ℎ=1

𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1


𝑎
𝑘
𝑗
(ℎ),𝑗



≤

∞

∑

ℎ=1

𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1


𝑎
𝑘
𝑗
(ℎ),𝑗


.

(42)

Thus, for any 𝜎 ∈ Σ
𝑛
, 𝐴
𝜎
, any 𝑥

∗∗

1
, . . ., 𝑥∗∗

𝑘−𝑗
, 𝑥∗∗
𝑗+1

, . . .,
𝑥
∗∗

𝑛
∈ 𝐵
ℓ
∗∗

1

, and any 𝑥
𝑗
∈ 𝐵
ℓ
1

, by taking nets in 𝐵
ℓ
1

weak-star
convergent if necessary, we get


𝐴
𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑗−1
, 𝑥
𝑗
, 𝑥
∗∗

𝑗+1
, . . . , 𝑥

∗∗

𝑛
)


≤

∞

∑

ℎ=1

𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1


𝑎
𝑘
𝑗
(ℎ),𝑗


< 1.

(43)

Hence if there exist a permutation 𝜎 ∈ Σ
𝑛
and 𝑥∗∗

1
, . . ., 𝑥∗∗

𝑛
in

𝐵
ℓ
∗∗

1

such that ‖𝑥∗∗
𝑗
‖ = 1 for every 𝑗 and
𝐴𝜎 (𝑥

∗∗

1
, . . . , 𝑥

∗∗

𝑛
)
 = 1, (44)
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we have that 𝑥∗∗
1
, . . ., 𝑥∗∗

𝑛
∈ 𝐵
ℓ
∗∗

1

\𝐵
ℓ
1

. Moreover, by Lemma 7
it can also be assumed that 𝑥

∗∗

𝑗
belongs to 𝑐

⊥

0
for 𝑗 =

1, . . . , 𝑛. Finally, bymaking a rearrangement of coordinates, if
necessary, we can assume that 𝜎 is the identity permutation.

We define 𝐵 : ℓ
1
× ℓ
1

→ R by 𝐵(𝑥, 𝑦) =

𝐴
𝐼𝑑
(𝑥, 𝑦, 𝑥

∗∗

3
, . . . , 𝑥

∗∗

𝑛
). Clearly

𝐵𝐼𝑑 (𝑥
∗∗

1
, 𝑥
∗∗

2
)
 =

𝐴𝐼𝑑 (𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
)
 = 1. (45)

By Theorem 9, there exist two sequences (𝑒
𝑛
𝑗

) and (𝑒
𝑚
𝑙

) such
that

lim
𝑗→∞

lim
𝑙→∞


𝐵 (𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

)

= 1. (46)

Thus there exist 𝑗, 𝑙 such that


𝐵 (𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

)

>
1

2
. (47)

But there exists ℎ
0
such that 𝑛

𝑗
< 𝑘
1
(ℎ) and 𝑚

𝑙
< 𝑘
2
(ℎ) for

every ℎ ≥ ℎ
0
and we get that

(𝑛
𝑗
, 𝑚
𝑙
, 𝑘
3
, . . . , 𝑘

𝑛
) ∉ {(𝑘

1
(ℎ) , . . . , 𝑘

𝑛
(ℎ)) : ℎ ≥ ℎ

0
} , (48)

for every 𝑘
3
, . . ., 𝑘

𝑛
∈ N with 𝑘

3
> 𝑘
3
(ℎ
0
), . . ., 𝑘

𝑛
> 𝑘
𝑛
(ℎ
0
).

Now consider a net {𝑥
𝑑
𝑗

}
𝑑
𝑗
∈𝐷
𝑗

in 𝐵
ℓ
1

weak-star convergent to
𝑥
∗∗

𝑗
for 𝑗 = 3, . . ., 𝑛. Since 𝑥∗∗

𝑗
belongs to 𝑐

⊥

0
, as in the proof

ofTheorem 9, we can assume additionally that, for every 𝑑
𝑗
∈

𝐷
𝑗
, the first 𝑘

𝑗
(ℎ
0
) components of 𝑥

𝑑
𝑗

are 0. Hence

𝐴(𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

, 𝑒
𝑘
3

, . . . , 𝑒
𝑘
𝑛−1

, 𝑥
𝑑
𝑛

) = 0, (49)

for every 𝑑
𝑛
∈ 𝐷
𝑛
. Hence

𝐴
𝐼𝑑
(𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

, 𝑒
𝑘
3

, . . . , 𝑒
𝑘
𝑛−1

, 𝑥
∗∗

𝑛
) = 0, (50)

for every 𝑘
3

> 𝑘
3
(ℎ
0
), . . . , 𝑘

𝑛
> 𝑘
𝑛
(ℎ
0
). By induction we

obtain the contradiction

𝐵 (𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

) = 𝐴
𝐼𝑑
(𝑒
𝑛
𝑗

, 𝑒
𝑚
𝑙

, 𝑥
∗∗

3
, . . . , 𝑥

∗∗

𝑛
) = 0. (51)

Theorem 13. Given a subset 𝑃 ⊆ Σ
𝑛
, there exists an 𝑛-linear

form𝐴(𝑃) ∈ L(
𝑛
ℓ
1
)with ‖𝐴(𝑃)‖ = 1 such that𝐴(𝑃)

𝜎
is norm

attaining if and only if 𝜎 ∈ 𝑃.

Proof. The proof will be divided into two cases.
If 𝑃 is the empty set, consider 𝐴(𝑃) ∈ L(

𝑛
ℓ
1
)

𝐴 (𝑃) (𝑒
𝑘
1

, 𝑒
𝑘
2

, . . . , 𝑒
𝑘
𝑛

)

=

{

{

{

(
𝑘
1

𝑘
1
+ 1

)

𝑛

if 𝑘
1
= 𝑘
2
= ⋅ ⋅ ⋅ = 𝑘

𝑛
,

0 otherwise.

(52)

By Lemma 12, 𝐴(𝑃) does not attain its norm at any point of
the unit ball of ℓ∗∗

1
.

If 𝑃 is not empty, consider

𝐴 (𝑃) (𝑒
𝑘
1

, 𝑒
𝑘
2

, . . . , 𝑒
𝑘
𝑛

)

=

{{

{{

{

𝑛

∏

𝑖=1

𝑘
𝑖

𝑘
𝑖
+ 1

if ∃𝜎 ∈ 𝑃, 𝑘
𝜎(1)

≤ 𝑘
𝜎(2)

≤ ⋅ ⋅ ⋅ ≤ 𝑘
𝜎(𝑛)

,

0 otherwise.
(53)

Clearly, ‖𝐴(𝑃)‖ = 1. A similar argument to the one given
in (43) shows that, for any 𝜎 ∈ Σ

𝑛
,𝐴
𝜎
does not attain its norm

at any 𝑛-tuple in 𝐵
ℓ
∗∗

1

× ⋅ ⋅ ⋅ × 𝐵
ℓ
∗∗

1

with at least a coordinate 𝑗
belonging to 𝐵

ℓ
1

. If 𝜎 ∈ 𝑃 then

lim
𝑘
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑘
𝜎(𝑛)
→∞

𝐴 (𝑃) (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) = 1. (54)

Hence, considering 𝑥
∗∗ a weak-star cluster point of the

sequence {𝑒
𝑘
}
∞

𝑘=1
we obtain

𝐴(𝑃)
𝜎
(𝑥
∗∗
, . . . , 𝑥

∗∗
) = 1. (55)

Thus, 𝐴(𝑃)
𝜎
is norm attaining.

Nowwe see that𝐴(𝑃)
𝜎
does not attain its normwhenever

𝜎 is not in 𝑃. For simplicity we will assume that 𝜎 is the
identity permutation. Let us assume that 𝐴(𝑃)

𝐼𝑑
does attain

its norm at (𝑥∗∗
1
, . . . , 𝑥

∗∗

𝑛
) ∈ 𝐵

ℓ
∗∗

1

× ⋅ ⋅ ⋅ × 𝐵
ℓ
∗∗

1

. By the above
observation, 𝑥∗∗

𝑖
is a point in 𝐵

ℓ
∗∗

1

\ ℓ
1
for 𝑖 = 1, . . . , 𝑛. By

Lemma 7 we can assume that 𝜋(𝑥∗∗
𝑖
) = 0 for 𝑖 = 1, . . . , 𝑛. Let

{𝑥
𝑑
𝑖

}
𝑑
𝑖
∈𝐷
𝑖

be nets in the unit sphere of ℓ
1
weak-star convergent

to 𝑥∗∗
𝑖
, for 𝑖 = 1, . . . , 𝑛.

Let 𝑙
0
= 0. Since |𝐴(𝑃)

𝐼𝑑
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
)| = 1 there exists

𝑑
0

1
∈ 𝐷
1
with


𝐴(𝑃)
𝐼𝑑
(𝑥
𝑑
0

1

, 𝑥
∗∗

2
, . . . , 𝑥

∗∗

𝑛
)

> 1 − 2

−𝑛
. (56)

Let 𝑙
1
be such that ‖𝜋

𝑙
1

(𝑥
𝑑
0

1

)‖ > 1/2. Now, using (56) and
since 𝜋(𝑥

∗∗

2
) = 0 we can find 𝑑

2
∈ 𝐷
2
and a natural

number 𝑙
2
with |𝐴(𝑃)

𝐼𝑑
(𝑥
𝑑
0

1

, 𝑥
𝑑
0

2

, 𝑥
∗∗

3
, . . . , 𝑥

∗∗

𝑛
)| > 1 − 2

−𝑛

and ‖𝜋
𝑙
2

(𝑥
𝑑
0

2

)‖ − ‖𝜋
𝑙
1

(𝑥
𝑑
0

2

)‖ > 1/2. In general, by using finite
induction over 𝑖, we can find 𝑑

0

𝑖
∈ 𝐷
𝑖
and a natural number

𝑙
𝑖
such that |𝐴(𝑃)

𝐼𝑑
(𝑥
𝑑
0

1

, . . . , 𝑥
𝑑
0

𝑖

, 𝑥
∗∗

𝑖+1
, . . . , 𝑥

∗∗

𝑛
)| > 1 − 2

−𝑛 and
‖𝜋
𝑙
𝑖

(𝑥
𝑑
0

𝑖

)‖ − ‖𝜋
𝑙
𝑖−1

(𝑥
𝑑
0

𝑖

)‖ > 1/2, for 𝑖 = 2, . . . , 𝑛.
But then, if we denote by

𝐶 := {(𝑡
1
, . . . , 𝑡

𝑛
) ∈ N
𝑛
: 𝑙
𝑖−1

< 𝑡
𝑖
≤ 𝑙
𝑖
for 𝑖 = 1, . . . 𝑛} (57)
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since 𝐼𝑑 is not in 𝑃, we have 𝐴(𝑃)(𝑒
𝑡
1

, . . . , 𝑒
𝑡
𝑛

) = 0 for all
(𝑡
1
, . . . , 𝑡

𝑛
) ∈ 𝐶. Therefore,

1 − 2
−𝑛

<

𝐴 (𝑃) (𝑥

𝑑
0

1

, . . . , 𝑥
𝑑
0

𝑛

)


≤ ∑

(𝑡1,...,𝑡𝑛)

𝑛

∏

𝑖=1


𝑥
𝑑
0

𝑖

(𝑡
𝑖
)

𝐴 (𝑃) (𝑒

𝑡
1

, . . . , 𝑒
𝑡
𝑛

)

= ∑

(𝑡
1
,...,𝑡
𝑛
)∉𝐶

𝑛

∏

𝑖=1


𝑥
𝑑
0

𝑖

(𝑡
𝑖
)

𝐴 (𝑃) (𝑒

𝑡
1

, . . . , 𝑒
𝑡
𝑛

)

< ∑

(𝑡1,...,𝑡𝑛)∉𝐶

𝑛

∏

𝑖=1


𝑥
𝑑
0

𝑖

(𝑡
𝑖
)


≤ 1 − ∑

(𝑡1,...,𝑡𝑛)∈𝐶

𝑛

∏

𝑖=1


𝑥
𝑑
0

𝑖

(𝑡
𝑖
)


= 1 −

𝑛

∏

𝑖=1

(

𝜋
𝑘
𝑖

(𝑥
𝑑
0

𝑖

)

−

𝜋
𝑘
𝑖−1

(𝑥
𝑑
0

𝑖

)

)

< 1 − 2
−𝑛

(58)

which is a contradiction. Hence 𝐴(𝑃)
𝐼𝑑

does not attain its
norm.

Theorem 14. Let 𝐴 ∈ L(
𝑛
ℓ
1
) of norm one such that, for

every 𝜖 > 0 and every 𝜎 ∈ Σ
𝑛
, there exist subsequences

{𝑒
𝑘(𝑖,𝑚
𝑖
,𝜎)
}
∞

𝑚
𝑖
=1
(that depend on 𝜎 and 𝜖) of the sequence {𝑒

𝑘
}
∞

𝑘=1

so that

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

> 1 − 𝜖.

(59)

Then for every 𝜖 > 0 and each subset 𝑃 ⊆ Σ
𝑛
, there exists

𝐴(𝑃, 𝜖) ∈ L(
𝑛
ℓ
1
) with ‖𝐴(𝑃, 𝜖)‖ = 1 such that ‖𝐴(𝑃, 𝜖) −𝐴‖ ≤

𝜖, and 𝐴(𝑃, 𝜖)
𝜎
is norm attaining if and only if 𝜎 ∈ 𝑃.

Proof. Consider the 𝑛-linear form

𝐵 (𝑥
1
, . . . , 𝑥

𝑛
) = ∑

𝑘
1
,...,𝑘
𝑛
∈N

𝐵 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

𝑛

∏

𝑖=1

𝑥
𝑖
(𝑘
𝑖
) (60)

for 𝑥
1
, . . . , 𝑥

𝑛
∈ ℓ
1
, where

𝐵 (𝑒
𝑘1
, . . . , 𝑒

𝑘𝑛
)

=

{{{

{{{

{

𝐴(𝑒
𝑘1
, . . . , 𝑒

𝑘𝑛
) if 1 − 𝜖

2
≥

𝐴 (𝑒
𝑘1
, . . . , 𝑒

𝑘𝑛
)


(1 −
𝜖

2
) sign (𝐴 (𝑒

𝑘1
, . . . , 𝑒

𝑘𝑛
)) , if 𝐴 (𝑒

𝑘1
, . . . , 𝑒

𝑘𝑛
)

> 1 −

𝜖

2
.

(61)

We have ‖𝐵‖ ≤ 1 − (𝜖/2).

Fix a nonempty subset of permutations 𝑃, consider the
𝑛-linear form 𝐴(𝑃) fromTheorem 13, and define the 𝑛-linear
form 𝐴(𝑃, 𝜖) as follows:

𝐴 (𝑃, 𝜖) (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) := 𝐵 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

+ sign (𝐵 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

))

×
𝜖

2
𝐴 (𝑃) (𝑒

𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

(62)

if 𝑘
1
= 𝑘(1,𝑚

1
, 𝜎), . . . , 𝑘

𝑛
= 𝑘(𝑛,𝑚

𝑛
, 𝜎), for some 𝜎 ∈ 𝑃, with

𝑚
𝜎(1)

≤ ⋅ ⋅ ⋅ ≤ 𝑚
𝜎(𝑛)

and 𝐵(𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) otherwise.
Clearly,

‖𝐴 (𝑃, 𝜖)‖ ≤ ‖𝐵‖ +
𝜖

2
‖𝐴 (𝑃)‖ ≤ 1 −

𝜖

2
+
𝜖

2
= 1, (63)

and hence ‖𝐴(𝑃, 𝜖)‖ ≤ 1.
By hypothesis, for each 𝜎 ∈ Σ

𝑛
, there exist sequences

{𝑒
𝑘(𝑖,𝑚
𝑖
,𝜎)
}
∞

𝑚
𝑖
=1
, with the property that {𝑘(𝑖, 𝑚

𝑖
, 𝜎)}
∞

𝑚
𝑖
=1

is
strictly increasing, such that

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

> 1 −

𝜖

2
.

(64)

From (64) there exists 𝑚0
𝜎(1)

such that for every 𝑚
𝜎(1)

≥

𝑚
0

𝜎(1)

lim
𝑚
𝜎(2)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

> 1 −

𝜖

2
.

(65)

Taking 𝑚
𝜎(1)

≥ 𝑚
0

𝜎(1)
, there is 𝑚0

𝜎(2)
that depends on 𝑚

𝜎(1)
,

such that for every𝑚
𝜎(2)

≥ 𝑚
0

𝜎(2)

lim
𝑚
𝜎(3)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

> 1 −

𝜖

2
.

(66)

Reiterating this process and assuming that we have
fixed natural numbers 𝑚

𝜎(1)
, 𝑚
𝜎(1)

, . . ., 𝑚
𝜎(𝑛−1)

with
𝑚
𝜎(1)

≥ 𝑚
0

𝜎(1)
, 𝑚
𝜎(2)

≥ 𝑚
0

𝜎(2)
, . . . , 𝑚

𝜎(𝑛−1)
≥ 𝑚

0

𝜎(𝑛−1)
,

where 𝑚
0

𝜎(𝑛−1)
depends on 𝑚

𝜎(1)
, 𝑚
𝜎(2)

, . . . , 𝑚
𝜎(𝑛−2)

, so that
lim
𝑚
𝜎(𝑛)

|𝐴(𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)| > 1 − (𝜖/2), we can find

𝑚
0

𝜎(𝑛)
that depends on 𝑚

𝜎(1)
, 𝑚
𝜎(2)

, . . . , 𝑚
𝜎(𝑛−1)

, such that for
every𝑚

𝜎(𝑛)
≥ 𝑚
0

𝜎(𝑛)


𝐴 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

> 1 −

𝜖

2
. (67)

Then,

𝐵 (𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

= 1 −

𝜖

2
, (68)

and then ‖𝐵‖ = 1 − (𝜖/2). Moreover, given 𝜎 ∈ 𝑃 and
𝛿 > 0 we can take 𝑚

𝜎(1)
≤ ⋅ ⋅ ⋅ ≤ 𝑚

𝜎(𝑛)
big enough so that

𝐴(𝑃)(𝑒
𝑘(1,𝑚

1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
) ≥ 1 − 𝛿. Hence,


𝐴 (𝑃, 𝜖) (𝑒

𝑘(1,𝑚
1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

≥ 1 −

𝜖

2
+
𝜖

2
(1 − 𝛿) (69)

and so ‖𝐴(𝑃, 𝜖)‖ ≥ 1−(𝜖/2)+(𝜖/2)(1−𝛿).Thus, ‖𝐴(𝑃, 𝜖)‖ = 1.
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Notice that |𝐴(𝑃, 𝜖)(𝑥
1
, . . . , 𝑥

𝑛
) − 𝐵(𝑥

1
, . . . , 𝑥

𝑛
)| ≤ (𝜖/2),

for all 𝑥
1
, . . . , 𝑥

𝑛
∈ ℓ
1
; hence

‖𝐴 (𝑃, 𝜖) − 𝐴‖ ≤ ‖𝐴 (𝑃, 𝜖) − 𝐵‖ + ‖𝐵 − 𝐴‖ ≤ 𝜖. (70)

Now we show that 𝐴(𝑃, 𝜖)
𝜎
is norm attaining if and only

if 𝜎 ∈ 𝑃.
If 𝜎 ∉ 𝑃 and we assume that there is (𝑥∗∗

1
, . . . , 𝑥

∗∗

𝑛
) ∈

𝐵
ℓ
∗∗

1

× ⋅ ⋅ ⋅ × 𝐵
ℓ
∗∗

1

such that 𝐴(𝑃, 𝜖)
𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
) = 1, since

𝐴(𝑃)
𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
) < 1, then 1 < |𝐵

𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
)| + (𝜖/2).

Hence |𝐵
𝜎
(𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
)| > 1 − (𝜖/2), which is impossible.

Take now 𝜎 ∈ 𝑃. From (68) we have for 𝑚
𝜎(1)

≤ ⋅ ⋅ ⋅ ≤

𝑚
𝜎(𝑛)


𝐴 (𝑃, 𝜖) (𝑒

𝑘(1,𝑚
1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)

= 1 −

𝜖

2
+
𝜖

2

𝑛

∏

𝑖=1

𝑚
𝑖

𝑚
𝑖
+ 1

.

(71)

Hence

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑃, 𝜖) (𝑒

𝑘(1,𝑚
1
,𝜎)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
,𝜎)
)


= lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞

1 −
𝜖

2
+
𝜖

2

𝑛

∏

𝑖=1

𝑚
𝑖

𝑚
𝑖
+ 1

= 1

(72)

so 𝐴(𝑃, 𝜖)
𝜎

is norm attaining at a point (𝑥
∗∗

1
, . . . , 𝑥

∗∗

𝑛
),

where each 𝑥
∗∗

𝑗
is a weak-star cluster point of the sequence

{𝑒
𝑘(𝑗,𝑚

𝑗
,𝜎)
}
∞

𝑚
𝑗
=1
, 𝑗 = 1, . . . , 𝑛.

If 𝑃 = 0, for every ℎ, by taking 𝜀 = (1/ℎ), the
process above gives the existence of a sequence of 𝑛-tuples
{(𝑘
1
(ℎ), . . . , 𝑘

𝑛
(ℎ))}
∞

ℎ=1
in N𝑛 such that each {𝑘

𝑗
(ℎ)}
∞

ℎ=1
is

strictly increasing, 𝑗 = 1, . . . , 𝑛, and


𝐴 (𝑒
𝑘
1
(ℎ)
, . . . , 𝑒

𝑘
𝑛
(ℎ))

)

> 1 −

1

ℎ
. (73)

We define

𝐶 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

=

{{{{

{{{{

{

(
𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1

)

𝑛

if (𝑘
1
, . . . , 𝑘

𝑛
) = (𝑘

1
(ℎ) , . . . , 𝑘

𝑛
(ℎ))

for some ℎ ∈ N,

0 otherwise
(74)

and 𝐴(𝑃, 𝜖) at (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) as

𝐴 (𝑃, 𝜖) (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) := 𝐵 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

)

+ sign (𝐵 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

))

×
𝜖

2
𝐶 (𝑒
𝑘
1

, . . . , 𝑒
𝑘
𝑛

) .

(75)

Notice that as before ‖𝐴(𝑃, 𝜖)‖ ≤ ‖𝐵‖ + (𝜖/2)‖𝐶‖ = 1, and,
since


𝐴 (𝑃, 𝜖) (𝑒

𝑘
1
(ℎ)
, . . . , 𝑒

𝑘
𝑛
(ℎ)
)


=

𝐵 (𝑒
𝑘
1
(ℎ)
, . . . , 𝑒

𝑘
𝑛
(ℎ)
)

+ (

𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1

)

𝑛

= 1 −
𝜀

2
+
𝜀

2
(

𝑘
1
(ℎ)

𝑘
1
(ℎ) + 1

)

𝑛

,

(76)

for every ℎ such that (1/ℎ) < (𝜖/2), we obtain that ‖𝐴(𝑃, 𝜖)‖ =
1. Since, by Lemma 12,𝐶does not attain the normat any point
of 𝐵
ℓ
∗∗

1

neither can 𝐴(𝑃, 𝜖). To conclude the proof, notice
‖𝐴(𝑃, 𝜖) − 𝐴‖ ≤ ‖𝐴(𝑃, 𝜖) − 𝐵‖ + ‖𝐵 − 𝐴‖ ≤ 𝜖/2 + 𝜖/2 = 𝜖.

Remark 15. If the conjecture in Remark 11 was true, we could
get the following result. Let 𝐴 ∈ L(

𝑛
ℓ
1
) of norm one. The

following are equivalent.

(1) For every 𝜖 > 0 and every 𝜎 ∈ Σ
𝑛
, there exist

subsequences {𝑒
𝑘(𝑖,𝑚
𝑖
)
}
∞

𝑚
𝑖
=1

(that depend on 𝜎 and 𝜖)
of the sequence {𝑒

𝑘
}
∞

𝑘=1
so that

lim
𝑚
𝜎(1)
→∞

⋅ ⋅ ⋅ lim
𝑚
𝜎(𝑛)
→∞


𝐴 (𝑒
𝑘(1,𝑚

1
)
, . . . , 𝑒

𝑘(𝑛,𝑚
𝑛
)
)

> 1 − 𝜖. (77)

(2) For every 𝜖 > 0 and each subset 𝑃 ⊆ Σ
𝑛
, there

exists 𝐴(𝑃, 𝜖) ∈ L(
𝑛
ℓ
1
) with ‖𝐴(𝑃, 𝜖)‖ = 1 such that

‖𝐴(𝑃, 𝜖) − 𝐴‖ ≤ 𝜖, and 𝐴(𝑃, 𝜖)
𝜎
is norm attaining if

and only if 𝜎 ∈ 𝑃.
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de France, vol. 106, no. 1, pp. 3–24, 1978.

[10] A. M. Davie and T. W. Gamelin, “A theorem on polynomial-
star approximation,” Proceedings of the American Mathematical
Society, vol. 106, no. 2, pp. 351–356, 1989.

[11] P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach
spaces and Banach Algebras, vol. 1547 of Lecture Notes in
Mathematics, Springer, Berlin, Germany, 1993.


