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Grosse-Erdmann and Kim recently introduced the notion of bihypercyclicity for studying the existence of dense orbits under
bilinear operators. We propose an alternative notion of orbit for𝑁-linear operators that is inspired by difference equations. Under
this new notion, every separable infinite dimensional Fréchet space supports supercyclic 𝑁-linear operators, for each 𝑁 ≥ 2.
Indeed, the nonnormable spaces of entire functions and the countable product of lines support 𝑁-linear operators with residual
sets of hypercyclic vectors, for𝑁 = 2.

1. Introduction

The study of linear dynamics has attracted the interest
of a number of researchers from different areas over the
past decades. Despite the several isolated examples in the
literature due to Birkhoff [1], MacLane [2], and Rolewicz [3],
it was not until the eighties with the unpublished Ph.D. thesis
of Kitai [4] and the papers by Beauzamy [5] and by Gethner
and Shapiro [6] when the notion of hypercyclicity started to
become popular among mathematicians devoted to operator
theory and functional analysis. This interest was fostered
by the extension of the definition of chaos in the sense of
Devaney to the linear setting by Godefroy and Shapiro [7].
The state of the art on linear dynamics was first described
by Grosse-Erdmann in [8] and revisited in [9]; see also [10].
Evidences of the area’s maturity are the recent monographs of
Bayart andMatheron [11] and of Grosse-Erdmann and Peris-
Manguillot [12].

Throughout this paper, 𝑋 denotes an infinite-
dimensional separable Fréchet space over the real or
complex scalar field K and 𝐿(𝑋) denorbtes the space of
linear and continuous operators on 𝑋, endowed with
the topology of uniform convergence over bounded sets.
We recall that a linear operator 𝑇 ∈ 𝐿(𝑋) is said to be

hypercyclic if there exists some 𝑥 ∈ 𝑋 such that the orbit
Orb(𝑇, 𝑥) = {𝑥, 𝑇𝑥, 𝑇

2
𝑥, 𝑇
3
𝑥, . . .} is dense in𝑋.This notion is

equivalent to transitivity in the linear setting by the Birkhoff
Transitivity Theorem; see for instance [12, Theorem 1.16].

The notion of hypercyclicity is related to the ones of
supercyclicity and cyclicity that appeared in connection with
the invariant subspace problem; see for instance [13, 14]. We
recall that an operator 𝑇 ∈ 𝐿(𝑋) is said to be cyclic if there
is some 𝑥 ∈ 𝑋 such that its orbit has dense linear span (i.e.,
span{Orb(𝑇, 𝑥)} = 𝑋) and it is said to be supercyclic if there
exists a vector 𝑥 ∈ 𝑋 such that the set of scalar multiples of
the orbit is dense (i.e., {𝜆𝑇𝑛𝑥 : 𝜆 ∈ K, 𝑛 ∈ N

0
} = 𝑋).

Apart from these, several notions—either adapted from
other areas to the linear setting or conceived within linear
dynamics themselves—have appeared in recent years to
describe the dynamic behaviour of a linear operator: weak
mixing [15, 16], frequent hypercyclicity [17], disjoint hyper-
cyclicity [18, 19], distributional chaos [20], the specification
property [21], irregular vectors [22], Li Yorke chaos and
distributionally irregular vectors [23], and bihypercyclicity
[24], among others.

The notion of bihypercyclicity, due to Grosse-Erdmann
andKim, was introduced to extend the notion of hypercyclic-
ity from operators to bilinear operators. Let us recall their
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Figure 1: Iterates of a pair (𝑥, 𝑦) under a bilinear operator𝑀 in the sense of Grosse-Erdmann and Kim [24].

notion of orbit for a given bilinear operator𝑀 : 𝑋×𝑋 → 𝑋.
Given (𝑥, 𝑦) ∈ 𝑋 ×𝑋, we define the sequence of sets {𝑈

𝑛
}
𝑛
as

follows:

𝑈
0
:= {𝑥, 𝑦} ,

𝑈
𝑛
:= 𝑈
𝑛−1

∪ {𝑀 (𝑢, V) : 𝑢, V ∈ 𝑈
𝑛−1

} ∀𝑛 ≥ 1.

(1)

So

𝑈
0
= {𝑥, 𝑦} ,

𝑈
1
= 𝑈
0
∪ {𝑀 (𝑥, 𝑥) ,𝑀 (𝑥, 𝑦) ,𝑀 (𝑦, 𝑥) ,𝑀 (𝑦, 𝑦)} ,

𝑈
2
= 𝑈
1
∪ {𝑀 (𝑥,𝑀 (𝑥, 𝑥)) ,𝑀 (𝑥,𝑀 (𝑥, 𝑦)) ,

𝑀 (𝑥,𝑀 (𝑦, 𝑥)) ,𝑀 (𝑥,𝑀 (𝑦, 𝑦)) ,

𝑀 (𝑦,𝑀 (𝑥, 𝑥)) ,𝑀 (𝑦,𝑀 (𝑥, 𝑦)) , . . . ,

𝑀 (𝑀 (𝑥, 𝑥) , 𝑥) ,𝑀 (𝑀(𝑥, 𝑦) , 𝑥) , . . .} ,

(2)

and so on. Figure 1 shows an organized scheme for computing
the items in𝑈

0
,𝑈
1
, and𝑈

2
.Then, the orbit of (𝑥, 𝑦) under𝑀,

in the sense of Grosse-Erdmann and Kim, is defined as

OrbGE-K (𝑀, (𝑥, 𝑦)) :=

∞

⋃

𝑛=0

𝑈
𝑛
. (3)

The bilinear operator 𝑀 is said to be bihypercyclic if there
exists a pair (𝑥, 𝑦) ∈ 𝑋×𝑋 whose orbit OrbGE-K(𝑀, (𝑥, 𝑦)) is
dense in𝑋. If so, (𝑥, 𝑦) is called a bihypercyclic vector for𝑀.

Under this definition, the authors in [24] proved several
interesting results such as the lack of density of the set of bihy-
percyclic vectors of 𝑋 × 𝑋 for a bihypercyclic operator [24,
Theorem 1], the bihypercyclicity of nonzero scalar multiples
of a bihypercyclic operator [24,Theorem 2], and the existence
of bihypercyclic operators on finite-dimensional spaces [24,
Theorem 10] andon any separable Banach space [24,Theorem

11]. They also provided a general method for constructing
bihypercyclic bilinear operators [24, Proposition 4]; if one
can find a vector 𝑥 ∈ 𝑋 such that the operator 𝑇(⋅) := 𝑀(𝑥, ⋅)

is hypercyclic on 𝑋, then 𝑀 is bihypercyclic on 𝑋 × 𝑋. This
follows by noting that the orbit of a vector 𝑦 under 𝑇 lies
inside the orbit of (𝑥, 𝑦) under𝑀.

Nevertheless, the notion of iterating an𝑁-linearmapping
is not evident when 𝑁 ≥ 2 and other interpretations may be
worth considering. Our attempt is to consider an orbit of a
pair (𝑥, 𝑦) under a bilinear operator in such a way that the
iterates can be arranged sequentially, and not in a network
shape as Figure 1 shows.

Inwhat remains, we consider the following notion of orbit
for an 𝑁-linear operator, inspired in difference equations.
Whereas each state of a discrete dynamical system given by
an operator 𝑇 ∈ 𝐿(𝑋) is determined by one preceding state
(i.e., 𝑥

𝑛
= 𝑇𝑥
𝑛−1

), a state in a system given by an 𝑁-linear
operator 𝑀 ∈ 𝐿(𝑋

𝑁
, 𝑋) relies on 𝑁 preceding states (i.e.,

𝑢
𝑛
= 𝑀(𝑢

𝑛−𝑁
, . . . , 𝑢

𝑛−1
)).

Definition 1 (orbit under an 𝑁-linear operator). Let 𝑀 :

𝑋
𝑁

→ 𝑋 be an 𝑁-linear operator, where 𝑁 ≥ 2. Each
𝑁-tuple (𝑥

1
, 𝑥
2
, . . . 𝑥
𝑁
) ∈ 𝑋

𝑁 determines a unique sequence
{𝑢
𝑛
}
𝑛
⊂ 𝑋 satisfyin

𝑢
𝑖
= 𝑥
𝑖

for 𝑖 = 1, 2, . . . , 𝑁,

𝑢
𝑖
= 𝑀(𝑢

𝑖−𝑁
, 𝑢
𝑖−𝑁+1

, . . . , 𝑢
𝑖−1

) for 𝑖 > 𝑁.

(4)

We say that {𝑢
𝑛
}
𝑛
is the 𝑁-linear orbit for 𝑀 with

initial conditions (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) and denote it {𝑢

𝑛
}
𝑛

=

Orb(𝑀, (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
)).

For the case of a bilinear operator, this definition of orbit
is simpler than the one used for bihypercyclicity, thanks to
the linear order in computing the “iterates” of the initial
conditions, as Figure 2 shows.
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Figure 2: Another way of iterating a pair of initial conditions (𝑥, 𝑦)
under a bilinear operator𝑀 : 𝑋 × 𝑋 → 𝑋.

With this new type of orbit, it is natural to consider the
following definition.

Definition 2. One says that an 𝑁-linear operator 𝑀 :

𝑋
𝑁

→ 𝑋 is hypercyclic if there exists an 𝑁-tuple 𝑥 = (𝑥
1
,

𝑥
2
, . . . , 𝑥

𝑁
) ∈ 𝑋
𝑁 whose orbit (in the sense of Definition 1)

{𝑢
𝑛
}
𝑛
= Orb (𝑀, 𝑥) (5)

is dense in 𝑋. If K ⋅ Orb(𝑀, 𝑥) = {𝜆𝑢
𝑛
: 𝜆 ∈ K, 𝑛 ∈ N} is

dense, we say that 𝑀 is supercyclic. Such a vector 𝑥 ∈ 𝑋
𝑁 is

said to be hypercyclic or supercyclic for𝑀, respectively.

Definition 1 provides the following connection with the
theory of universal sequences.

Remark 3. Given a continuous 𝑁-linear map 𝑀 : 𝑋
𝑁

→

𝑋, consider the sequence {𝐿
𝑛
}
𝑛
of continuous maps 𝐿

𝑛
:

𝑋
𝑁

→ 𝑋 inductively defined as follows: for 𝑗 = 1, . . . , 𝑁,
𝐿
𝑗
(𝑥
1
, . . . , 𝑥

𝑁
) = 𝑥
𝑗
is the projection of the 𝑗th coordinate of

𝑋
𝑁 onto𝑋. For 𝑛 > 𝑁 and 𝑧 ∈ 𝑋

𝑁, we let

𝐿
𝑛
(𝑧) = 𝑀(𝐿

𝑛−𝑁
(𝑧) , . . . , 𝐿

𝑛−1
(𝑧)) . (6)

Then, the orbit of a vector 𝑥 = (𝑥
1
, . . . , 𝑥

𝑁
) ∈ 𝑋
𝑁 under𝑀 is

precisely the “orbit” of 𝑥 under the action of {𝐿
𝑛
}
𝑛
. That is,

{𝑢
𝑛
}
𝑛
= Orb (𝑀, 𝑥) = {𝐿

𝑛
𝑥}
𝑛
. (7)

In particular,𝑥 is hypercyclic for𝑀 if and only if it is universal
for the sequence {𝐿

𝑛
}
𝑛
in𝐶(𝑋

𝑁
, 𝑋) and a similar observation

holds for the supercyclic case.

Given that the set of universal vectors for a given
sequence {𝐿

𝑛
}
𝑛
in 𝐶(𝑋

𝑁
, 𝑋) is either residual or not dense

[8, Proposition 6], we immediately have the following conse-
quence.

Proposition 4. Let𝑀 be a hypercyclic𝑁-linear operator on a
Fréchet space𝑋, where𝑁 ≥ 2. Then the set

HC (𝑀) = {𝑥 ∈ 𝑋
𝑁
: 𝑂𝑟𝑏 (𝑀, 𝑥) 𝑖𝑠 𝑑𝑒𝑛𝑠𝑒 𝑖𝑛 𝑋} (8)

of hypercyclic vectors for𝑀 is either residual in𝑋𝑁 or not dense
in𝑋
𝑁.

On Section 2, we show that every separable infinite-
dimensional Fréchet space supports a supercyclic 𝑁-linear
operator, for any𝑁 ≥ 2 (Theorem 5). On Section 3, we show
that the space 𝜔 = KN, the countably infinite product of

lines, supports hypercyclic𝑁-linear operators, for any𝑁 ≥ 2.
We also show that in contrast with the set of bihypercyclic
vectors being a nondense 𝐺

𝛿
set [24, Theorem 1], the set of

hypercyclic vectors for an 𝑁-linear operator can be residual
on 𝑋
𝑁. On Section 4, we show that the space 𝐻(C) of entire

functions—which unlike 𝜔 supports continuous norms—
does support hypercyclic𝑁-linear operators, for𝑁 = 2.

2. Existence of Supercyclic 𝑁-Linear Operators

Theorem 5. Every separable infinite-dimensional Fréchet
space𝑋 supports, for each𝑁 ≥ 2, an𝑁-linear operator having
a residual set of supercyclic vectors.

The proof ofTheorem 5 makes use of the following result
by Bonet and Peris, which has been a key ingredient to
prove the existence of hypercyclic operators on Fréchet spaces
different from 𝜔.

Lemma 6 (see [25, Lemma 2]). Let 𝑋 be a separable infinite
dimensional Fréchet space 𝑋 ̸=𝜔. There are sequences {𝑦

𝑛
}
𝑛
⊂

𝑋 and {𝑓
𝑛
}
𝑛
⊂ 𝑋
 such that

(1) {𝑦
𝑛
}
𝑛
converges to 0 in 𝑋 and span {𝑦

𝑛
: 𝑛 ∈ N} is

dense in𝑋;
(2) {𝑓

𝑛
}
𝑛
is 𝑋-equicontinuous in𝑋

;
(3) 𝑓
𝑚
(𝑦
𝑛
) = 0 if 𝑛 ̸=𝑚 and 𝑓

𝑛
(𝑦
𝑛
) ∈]0, 1[ for all 𝑛 ∈ N.

With this notation, Bonet and Peris proved that the
operator

𝑆𝑦 = 𝑦 +

∞

∑

𝑛=1

1

2𝑛
𝑓
𝑛+1

(𝑦) 𝑦
𝑛 (9)

resulted in being hypercyclic on 𝑋. Lemma 6 can be
compared with the well-known result by Ovsepian and
Pełczyńsky on the existence of a fundamental total and
bounded pair of biorthogonal sequences on separable Banach
spaces [26]. This last result was used by Herzog to show that
every infinite-dimensional separable Banach space supports
a supercyclic operator [27], which was of the form

𝑅𝑦 =

∞

∑

𝑛=1

1

2𝑛
𝑓
𝑛+1

(𝑦) 𝑦
𝑛
, (10)

where {𝑦
𝑛
}
𝑛
and {𝑓

𝑛
}
𝑛
were a pair of biorthogonal sequences

given by the Ovsepian and Pełczyńsky result. This operator
𝑅 is in fact a generalized backward shift operator [7]. In
[28], Salas extended to these types of operators previous
results, due to Hilden and Wallen, on the supercyclicity of
unilateral backward weighted shifts on ℓ

𝑝
spaces [14]. The

supercyclicity of generalized backward shift operators can be
characterized in terms of having 𝑅 dense range or verifying
the supercyclicity criterion [29].

Using the operator 𝑅, but in this case using the sequences
given by Bonet and Peris lemma instead of the ones by
Ovsepian and Pełczyńsky, and taking again the tensor prod-
uct approach, we can prove that every separable infinite
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dimensional Fréchet space 𝑋 supports an 𝑁-supercyclic
operator.We point out that the case𝑋 = 𝜔will be established
once we show Example 9.

We also use the following lemma, due toGrosse-Erdmann
[30].

Lemma 7. Let {𝐿
𝑛
}
𝑛
be a sequence of continuous mappings

𝐿
𝑛
: 𝑋 → 𝑌, 𝑛 ∈ N, where 𝑋 and 𝑌 are topological vector

spaces. If𝑋 is a Baire space and 𝑌 is metrizable, then the set of
universal vectors for {𝐿

𝑛
}
𝑛
is residual in𝑋 if and only if the set

{(𝑥, 𝐿
𝑛
𝑥) : 𝑥 ∈ 𝑋, 𝑛 ∈ N} is dense in𝑋 × 𝑌.

Proof of Theorem 5. Consider the𝑁-linear operator𝑀 = 𝑓
1
⊗

⋅ ⋅ ⋅ ⊗ 𝑓
1
⊗ 𝑅, where 𝑁 ≥ 2 is fixed. That is, 𝑀 : 𝑋

𝑁
→ 𝑋 is

given by

𝑀(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) = 𝑓
1
(𝑥
1
) 𝑓
1
(𝑥
2
) ⋅ ⋅ ⋅ 𝑓

1
(𝑥
𝑁−1

) 𝑅𝑥
𝑁
.

(11)

Notice that, for any given vectors 𝑎
1
, . . . , 𝑎

𝑁
in𝑋, the orbit

Orb (𝑀, (𝑎
1
, . . . , 𝑎

𝑁
)) = (𝑢

𝑛
)
𝑛≥1

(12)

satisfies

(𝑢
1
, . . . , 𝑢

𝑁
) = (𝑎

1
, . . . , 𝑎

𝑁
) ,

𝑢
𝑁+ℓ

= 𝐶
ℓ
𝑅
ℓ
𝑎
𝑁
, ∀ℓ ∈ N,

(13)

with the scalar 𝐶
ℓ
depending only on the scalars in the set

𝐴
ℓ
= {𝑓
1
(𝑎
𝑗
)}
1≤𝑗≤𝑁−1

∪ {𝑓
𝑗
(𝑎
𝑁
)}
1≤𝑗≤ℓ−1

, (14)

where 𝐶
ℓ
= 0 if and only if 0 ∈ 𝐴

ℓ
. Notice also that for any

𝑦 ∈ span{𝑦
1
, 𝑦
2
, . . .} of the form 𝑦 = ∑

𝑟

𝑛=1
𝑎
𝑖
𝑦
𝑖
with 𝑟 ∈ N and

𝑘 ∈ N we have

𝑅
𝑘
𝑦 =

𝑟−𝑘

∑

𝑛=1

𝑎
𝑛+𝑘

𝐷
𝑘,𝑛
𝐹
𝑘,𝑛
𝑦
𝑛
, (15)

where 𝐷
𝑘,𝑛

= 2
−𝑘(2𝑛+𝑘−1)/2 and 𝐹

𝑘,𝑛
= ∏
𝑘

𝑖=1
𝑓
𝑛+𝑖

(𝑦
𝑛+𝑖

) for each
𝑘 > 𝑟 and 𝑅

𝑘
𝑦 = 0 for each 𝑘 ≤ 𝑟. Now, let 𝑎

1
, . . . , 𝑎

𝑁
, and

𝑏 be vectors in the linear span of {𝑦
1
, 𝑦
2
, . . .} and let 𝜀 > 0 be

given. By Remark 3 and Lemma 7, it suffices to show there
exist vectors 𝑢

1
, . . . , 𝑢

𝑁
in𝑋, a scalar 𝜆, and a positive integer

𝑛 so that

𝑑
𝑋
𝑁 ((𝑢
1
, . . . , 𝑢

𝑁
) , (𝑎
1
, . . . , 𝑎

𝑁
)) < 𝜖,

𝑑 (𝜆𝐿
𝑛
(𝑢
1
, . . . , 𝑢

𝑁
) , 𝑏) < 𝜖,

(16)

where 𝑑
𝑋
𝑁 and 𝑑 are the metrics on 𝑋

𝑁 and 𝑋, respectively,
and {𝐿

𝑘
}
𝑘
is the sequence in 𝐶(𝑋

𝑁
, 𝑋) associated with𝑀 by

relation (6).
Without loss of generality, we may assume that 𝑏 =

∑
𝑟

𝑛=1
𝑏
𝑛
𝑦
𝑛
and that 𝑎

𝑗
= ∑
𝑟

𝑛=1
𝑎
𝑗,𝑛
𝑦
𝑛
with 𝑎

𝑗,𝑛
̸= 0 ̸= 𝑏
𝑛
for each

𝑗 = 1, . . . , 𝑁 and 𝑛 = 1, . . . 𝑟 for some 𝑟 ∈ N. Consider the
vectors 𝑢

𝑗
= 𝑎
𝑗
for 1 ≤ 𝑗 ≤ 𝑁 − 1 and

𝑢
𝑁
= 𝑎
𝑁
+ 𝛿

𝑟

∑

𝑗=1

𝑏
𝑗

𝐷
𝑟,𝑗
𝐹
𝑟,𝑛

𝑦
𝑗+𝑟

, (17)

where 𝛿 > 0 is chosen small enough so that 𝑑(𝑢
𝑁
, 𝑎
𝑁
) < 𝜖.

Then

𝐿
𝑁+𝑟

(𝑢
1
, . . . , 𝑢

𝑁
) = 𝑢
𝑁+𝑟

= 𝐶
𝑟
𝑅
𝑟
𝑢
𝑁
= 𝐶
𝑟
𝛿𝑏, (18)

and by (14) the scalar 𝐶
𝑟
is nonzero, as

0 ∉ 𝐴
𝑟
= {𝑓
1
(𝑎
1
) , . . . , 𝑓

1
(𝑎
𝑁−1

) , 𝑓
1
(𝑏) ,

𝑓
2
(𝑏) , . . . , 𝑓

𝑟−1
(𝑏)} .

(19)

So (16) is satisfied taking 𝑛 = 𝑁 + 𝑟 and 𝜆 = 1/𝐶
𝑟
𝛿.

3. Hypercyclic 𝑁-Linear Operators on 𝜔

Let us consider the space 𝜔 endowed with the product
topology. This can be given either by the metric

𝑑 (𝑥, 𝑦) :=

∞

∑

𝑖=1

1

2𝑖

𝑥 (𝑖) − 𝑦 (𝑖)


1 +
𝑥 (𝑖) − 𝑦 (𝑖)



for every 𝑥 = (𝑥 (𝑖))
𝑖
,

𝑦 = (𝑦 (𝑖))
𝑖
∈ 𝜔,

(20)

or by the family of continuous seminorms {𝑝
𝑛
}
𝑛∈N defined as

𝑝
𝑛
(𝑥) := sup {|𝑥 (𝑖)| ; 𝑖 ≤ 𝑛} for every 𝑥 ∈ 𝜔. (21)

LetD := {𝑔
𝑛
}
𝑛
= {(𝑔
𝑛
(1), 𝑔
𝑛
(2), . . .)}

𝑛
denote a countable

dense subset of𝜔 satisfying𝑔
𝑛
(𝑗) = 0 if and only if 𝑗 > 𝑛. Also,

𝐵 denotes the unweighted backward shift operator defined
over a sequence of numbers 𝑥 = (𝑥(1), 𝑥(2), 𝑥(3), . . .) as

𝐵 (𝑥 (1) , 𝑥 (2) , 𝑥 (3) , . . .) = (𝑥 (2) , 𝑥 (3) , 𝑥 (4) , . . .) . (22)

The hypercyclicity phenomenon on 𝜔 has been already
considered as a particular case of Fréchet spaces, since it is
the furthest Fréchet space from having a continuous norm;
see, for instance, [25, 31–33].Themain result of this section is
the following.

Theorem 8. For each integer 𝑁 ≥ 2, there exists an 𝑁-linear
operator on 𝜔 that supports a dense𝑁-linear orbit.

We show Theorem 8 by providing two examples of such
operators.The first one is constructed as a tensor product like
[24, Example 1].

Example 9. Let 𝑁 ≥ 2 be fixed and consider the 𝑁-linear
operator 𝑀 = 𝑒



1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒



1
⊗ 𝐵 on 𝜔, where 𝑒



1
is the first

coordinate functional on 𝜔. That is,𝑀 : 𝜔
𝑁

→ 𝜔 is given by

𝑀(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) = 𝑒


1
(𝑥
1
) 𝑒


1
(𝑥
2
) ⋅ ⋅ ⋅ 𝑒


1
(𝑥
𝑁−1

) 𝐵𝑥
𝑁
. (23)

Then, 𝑀 is hypercyclic. To see this, notice that for any
vector 𝑥 in 𝜔 the orbit

{𝑢
𝑛
}
𝑛
= Orb (𝑀, (𝑒

1
, . . . , 𝑒

1
, 𝑥)) (24)

is the following: 𝑢
1
= ⋅ ⋅ ⋅ = 𝑢

𝑁−1
= 𝑒
1
, 𝑢
𝑁

= 𝑥, 𝑢
𝑁+1

= 𝐵𝑥,
and for each ℓ ≥ 𝑁 + 2 we have

𝑢
ℓ
= 𝐶
ℓ
𝐵
ℓ−𝑁

𝑥, (25)
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where

𝐶
ℓ
:= 𝑥(1)

𝐹ℓ−𝑁−1𝑥(2)
𝐹ℓ−𝑁−2 ⋅ ⋅ ⋅ 𝑥(ℓ − 𝑁 − 1)

𝐹1 (26)

and where {𝐹
𝑛
}
𝑛
is the Fibonacci sequence of order 𝑁 and

seed

(1, 2, . . . , 2
𝑁−2

, 2
𝑁−1

− 1) . (27)

That is, {𝐹
𝑛
}
𝑛
is recursively defined by

𝐹
𝑛
=

{{

{{

{

2
𝑛−1

, if 𝑛 = 1, 2, . . . , 𝑁 − 1,

2
𝑛−1

− 1, if 𝑛 = 𝑁,

𝐹
𝑛−𝑁

+ 𝐹
𝑛−𝑁+1

+ ⋅ ⋅ ⋅ + 𝐹
𝑛−1

, if 𝑛 > 𝑁.

(28)

We now construct 𝑥 ∈ 𝜔 so that Orb((𝑒
1
, . . . , 𝑒

1
, 𝑥),𝑀) is

dense in 𝜔, as follows: let {𝑛
𝑘
}
𝑘
be a sequence of integers so

that 𝑛
1
:= 1 and 𝑛

𝑘+1
> (𝑘 + 𝑁)

2
+ 𝑛
𝑘
for all 𝑘 ∈ N and let

D = {𝑔
𝑛
}
𝑛
be a dense sequence in 𝜔 so that each 𝑔

𝑛
satisfies

𝑔
𝑛
(𝑗) ̸= 0 if and only if 1 ≤ 𝑗 ≤ 𝑛.
We define the first 𝑛

2
− 𝑁 coordinates of 𝑥 by

(𝑥 (1) , 𝑥 (2) , . . . , 𝑥 (𝑛
2
− 𝑁)) = (𝑔

1
(1) , 1, . . . , 1) , (29)

and for𝑁 + 2 ≤ ℓ ≤ 𝑛
2
− 𝑁 we let 𝐶

ℓ
be defined as in (26).

Next, we define

(𝑥 (𝑛
2
− 𝑁 + 1) , . . . , 𝑥 (𝑛

3
− 𝑁))

= (
𝑔
2
(1)

𝐶
𝑛2−𝑁

,
𝑔
2
(2)

𝐶
𝑛2−𝑁

, 1, . . . , 1) ,

(30)

and for 𝑛
2
−𝑁+1 ≤ ℓ ≤ 𝑛

3
−𝑁 we again let 𝐶

ℓ
be defined by

(26). Inductively, having defined 𝑥(𝑗) and 𝐶
𝑗
for 𝑛
𝑘−1

− 𝑁 <

𝑗 ≤ 𝑛
𝑘
− 𝑁, we define 𝑥(𝑗) and 𝐶

𝑗
for 𝑛
𝑘
− 𝑁 < 𝑗 ≤ 𝑛

𝑘+1
− 𝑁

as
𝑥 (𝑗)

=

{{

{{

{

𝑔
𝑘+1

(𝑗 − 𝑛
𝑘
+ 𝑁)

𝐶
𝑛𝑘−𝑁

, if 𝑛
𝑘
− 𝑁 < 𝑗 ≤ 𝑛

𝑘
− 𝑁 + 𝑘 + 1,

1, if 𝑛
𝑘
− 𝑁 + 𝑘 + 2 ≤ 𝑗 ≤ 𝑛

𝑘+1
− 𝑁,

(31)

and 𝐶
𝑗
is defined as in (26). So, we have defined 𝑥 in 𝜔 of the

form

𝑥 = (𝑔
1
(1) , 1, . . . , 1,

𝑔
2
(1)

𝐶
𝑛2−𝑁

,
𝑔
2
(2)

𝐶
𝑛2−𝑁

, 1, . . . , 1,
𝑔
3
(1)

𝐶
𝑛3
− 𝑁

,

𝑔
3
(2)

𝐶
𝑛3
− 𝑁

,
𝑔
3
(3)

𝐶
𝑛3
− 𝑁

, 1, . . .) .

(32)

Finally, to prove the denseness of Orb(𝑀, (𝑒
1
, . . . , 𝑒

1
, 𝑥))

we take an arbitrary 𝑦 in 𝜔 and 𝜖 > 0. Let 𝑘 ∈ N be large
enough so that ∑

𝑗≥𝑘
(1/2
𝑗
) < 𝜖/2 and 𝑑(𝑔

𝑘
, 𝑦) < 𝜖/2. Then,

𝑑 (𝑢
𝑛𝑘
, 𝑦) ≤

𝜖

2
+ 𝑑 (𝑢

𝑛𝑘
, 𝑔
𝑘
) ≤

𝜖

2
+

𝜖

2
= 𝜖 (33)

since by (25) the first 𝑘 coordinates of 𝑢
𝑛𝑘
− 𝑔
𝑘
are all zero.

Remark 10. We note that the set HC(𝑀) of hypercyclic
vectors for the operator𝑀 of the previous example is residual
in 𝜔
𝑁.

Proof of Remark 10. By Proposition 4, it suffices to verify that
HC(𝑀) is dense in 𝜔

𝑁. The orbit {𝑈
𝑛
}
𝑛

= Orb(𝑀, 𝑥) of a
given 𝑥 = (𝑥

1
, . . . , 𝑥

𝑁
) in 𝑋

𝑁 is given by (𝑈
1
, . . . , 𝑈

𝑁
) =

(𝑥
1
, . . . , 𝑥

𝑁
), 𝑈
𝑁+1

= 𝑥
1
(1)𝑥
2
(1) ⋅ ⋅ ⋅ 𝑥

𝑁−1
(1)𝐵𝑥

𝑁
, and for ℓ ≥

2

𝑈
𝑁+ℓ

= 𝐴
ℓ
𝑄
ℓ
𝐵
ℓ
𝑥
𝑁
, (34)

where

𝐴
ℓ
=

𝑁−2

∏

𝑗=1

(𝑥
𝑗
(1))
𝐹𝑗,ℓ

,

𝑄
ℓ
= (𝑥
𝑁−1

(1))
𝐹𝑁,ℓ

ℓ−1

∏

𝑘=1

(𝑥
𝑁
(𝑘))
𝐹𝑁,ℓ−𝑘

(35)

and where each {𝐹
𝑘,ℓ
}
ℓ
is an𝑁-Fibonacci sequence as follows.

For 1 ≤ 𝑘 ≤ 𝑁 − 1,

𝐹
𝑘,1

= 1

𝐹
𝑘,2

= 2

𝐹
𝑘,3

= 2
2

...

𝐹
𝑘,𝑘−1

= 2
𝑘−2

𝐹
𝑘,𝑘

= 2
𝑘−1

− 1

𝐹
𝑘,𝑘+1

= 𝐹
𝑘,1

+ 𝐹
𝑘,2

+ ⋅ ⋅ ⋅ + 𝐹
𝑘,𝑘

𝐹
𝑘,𝑘+2

= 𝐹
𝑘,1

+ 𝐹
𝑘,2

+ ⋅ ⋅ ⋅ + 𝐹
𝑘,𝑘+1

...

𝐹
𝑘,𝑁

= 𝐹
𝑘,1

+ 𝐹
𝑘,2

+ ⋅ ⋅ ⋅ + 𝐹
𝑘,𝑁−1

𝐹
𝑘,ℓ

= 𝐹
𝑘,ℓ−𝑁

+ 𝐹
𝑘,ℓ−𝑁+1

+ ⋅ ⋅ ⋅ + 𝐹
𝑘,ℓ−1

for ℓ ≥ 𝑁 + 1.

(36)

For 𝑘 = 𝑁,

𝐹
𝑁,1

= 1

𝐹
𝑁,2

= 2

𝐹
𝑁,3

= 2
2

...

𝐹
𝑁,𝑁−1

= 2
𝑁−2

𝐹
𝑁,𝑁

= 2
𝑁−1

− 1

𝐹
𝑁,ℓ

= 𝐹
𝑁,ℓ−𝑁

+ 𝐹
𝑁,ℓ−𝑁+1

+ ⋅ ⋅ ⋅ + 𝐹
𝑁,ℓ−1

for ℓ ≥ 𝑁 + 1.

(37)
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Let 𝑎
1
, . . . , 𝑎

𝑁
in span{𝑒

1
, 𝑒
2
, . . .} be given and 𝜖 > 0. We want

to find some 𝑥 = (𝑥
1
, . . . , 𝑥

𝑁
) in HC(𝑀) with

𝑑 (𝑎
𝑗
, 𝑥
𝑗
) < 𝜖 for 𝑗 = 1, . . . , 𝑁. (38)

Let 𝑟 be large enough so that∑
𝑘≥𝑟

(1/2
𝑘
) < 𝜀. Perturbing each

𝑎
𝑗
if necessary, we may assume without loss of generality that

𝑒


1
(𝑎
𝑗
) = 𝑎

𝑗
(1) ̸= 0 for 𝑗 = 1, . . . , 𝑁 and that 𝑎

𝑁
= (𝑎
𝑁
(𝑗))
𝑗

with 𝑎
𝑁
(𝑗) ̸= 0 if and only if 1 ≤ 𝑗 ≤ 𝑟. Let D := {𝑔

𝑛
}
𝑛
=

{(𝑔
𝑛
(1), 𝑔
𝑛
(2), . . .)}

𝑛
denote a countable dense subset of 𝜔

satisfying 𝑔
𝑛
(𝑗) = 0 if and only if 𝑗 > 𝑛 and let {𝑛

𝑘
}
𝑘
be a

sequence of positive integers satisfying 𝑛
𝑘+1

> (𝑟 + 𝑁 + 𝑘)
2
+

𝑛
𝑘
. Consider the vectors 𝑥

𝑗
= 𝑎
𝑗
for 𝑗 = 1, . . . 𝑁 − 1 and

𝑥
𝑁
= (𝑎

𝑁
(1) , . . . , 𝑎

𝑁
(𝑟) , 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛1−𝑁−𝑟−1

, 𝑥
𝑁
(𝑛
1
− 𝑁) , 𝑔

1
(1) ,

1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛2−𝑛1−2

, 𝑥
𝑁
(𝑛
2
− 𝑁) , 𝑔

2
(1) , 𝑔

2
(2) , 1, . . .) ,

(39)

where the coordinates 𝑥(𝑛
𝑘
− 𝑁) (𝑘 ∈ N) of 𝑥

𝑁
are to be

determined. Notice that 𝑑(𝑎
𝑁
, 𝑥
𝑁
) < 𝜖 by our selection of 𝑟

regardless of how the 𝑥(𝑛
𝑘
−𝑁)’s are chosen. Now each scalar

𝐶
ℓ
= 𝐴
ℓ
𝑄
ℓ
in (34) depends only on

{𝑥
𝑗
(1)}
1≤𝑗≤𝑁

∪ {𝑥
𝑁
(𝑖)}
1≤𝑖≤ℓ−1

(40)

and every scalar 𝐶
ℓ
will be nonzero as long as each of the

𝑥(𝑛
𝑘
− 𝑁)’s are nonzero. In particular, by (34) we can define

such {𝑥
𝑁
(𝑛
𝑘
− 𝑁)}

𝑘
so that

𝑈
𝑁+𝑛𝑘

(𝑗) = 𝑔
𝑘
(𝑗) for each 𝑗 = 1, . . . , 𝑘 and each 𝑘 ≥ 2.

(41)

So 𝑥 = (𝑥
1
, . . . , 𝑥

𝑁
) is in HC(𝑀) and the conclusion follows.

We next provide another example of a hypercyclic 𝑁-
linear operator on 𝜔, avoiding the tensor product technique.
In Example 11, each coordinate of an element in𝑋

𝑁 is used to
conform the iteration under the multilinear operator𝑀.This
allows us to provide amuch simpler expression of some initial
conditions that yield a dense orbit under𝑀.We point out that
since roots of different orders are taken, we only consider this
example on 𝜔 = CN.

Example 11. Let 𝑁 ≥ 2 be fixed and consider the 𝑁-linear
operator𝑀 : 𝜔

𝑁
→ 𝜔, where 𝜔 = CN, given by

𝑀((𝑥
1
(𝑖))
𝑖
, . . . , (𝑥

𝑁
(𝑖))
𝑖
) := (

𝑁

∏

ℓ=1

𝑥
ℓ
(𝑖 + 𝑁 + ℓ + 1))

𝑖

.

(42)

Let {𝑛
𝑘
}
𝑘
be a sequence of integers so that 𝑛

1
:= 1 and

𝑛
𝑘+1

> 𝑘
2
+𝑛
𝑘
for all 𝑘 ∈ N and let {𝐺

𝑛
}
𝑛
denote the Fibonacci

sequence of integers recursively defined by

𝐺
𝑛
:= {

1, if 𝑛 = 1, 2, . . . , 𝑁,

𝐺
𝑛−𝑁

+ 𝐺
𝑛−𝑁+1

+ ⋅ ⋅ ⋅ + 𝐺
𝑛−1

, if 𝑛 > 𝑁.

(43)

Taking again the setD, we consider the vector 𝑥 = (𝑥(𝑛))
𝑛
in

𝜔 given by

𝑥 (𝑖) = {
𝑔
1/𝐺𝑛
𝑘

𝑘,𝑗
, if 𝑖 = 𝑛

𝑘
+ 𝑗 for (𝑘, 𝑗) ∈ N2, 𝑗 ≤ 𝑘,

0, otherwise.
(44)

That is, 𝑥 is of the form

𝑥 := (𝑔
1/𝐺𝑛1

1,1
, 0, . . . , 0, 𝑔

1/𝐺𝑛2

2,1
, 𝑔
1/𝐺𝑛2

2,2
, 0, . . . , 0, 𝑔

1/𝐺𝑛3

3,1
, 𝑔
1/𝐺𝑛3

3,2
,

𝑔
1/𝐺𝑛3

3,3
, 0, . . .) ,

(45)

where in each case 𝑔
1/𝐺𝑛
𝑘

𝑘,𝑗
denotes any of the roots of 𝑧𝐺𝑛𝑘 −

𝑔
𝑘,𝑗
. By (42), the 𝑁-linear orbit of the initial conditions

(𝑥, 𝐵𝑥, . . . , 𝐵
𝑁−1

𝑥) under𝑀 is given by

𝑢
𝑛
= (𝑥
𝐺𝑛

𝑛
, 𝑥
𝐺𝑛

𝑛+1
, 𝑥
𝐺𝑛

𝑛+2
, . . .) ∀𝑛 > 𝑁, (46)

which is dense in 𝜔. This last part can be proved in a similar
way as we did with Example 9.

4. Hypercyclic 𝑁-Linear Operators on H(C)

One may wonder whether lacking a continuous norm, such
as 𝜔 does, is a requirement for a space to support hypercyclic
𝑁-linear operators. We answer this in the negative, with the
following.

Theorem 12. The space H(C) supports a hypercyclic bilinear
operator.

The proof of Theorem 12 relies on Lemmas 13 and 14.
First, let us introduce some notation. Let us define the
antiderivative operator onH(C) as 𝐼(ℎ)(𝑧) = ∫

𝑧

0
ℎ(𝑤)𝑑𝑤 for

every entire function ℎ(𝑧). It is clear that, on the monomials
𝑧
𝑛, 𝑛 ∈ N

0
, this operator returns 𝐼(𝑧𝑛) = 𝑧

𝑛+1
/(𝑛+1) and that

lim
𝑘→∞

𝐼
𝑘
(𝑧
𝑛
) = 0 in 𝐻(C). Thus, the equicontinuity of any

finite collection of iterates of the derivative operator on𝐻(C)

immediately gives the following.

Lemma 13. Let 𝑃(𝑧) be a complex polynomial. Let 𝑅, 𝜀 > 0

and let 𝑗
0
∈ N; there is some 𝑘

0
∈ N such that if 𝑘 ≥ 𝑘

0
and

𝑄(𝑧) = 𝐼
𝑘
𝑃(𝑧), then

sup
|𝑧|≤𝑅


𝑄
(𝑗)

(𝑧)

< 𝜀 ∀𝑗 = 1, . . . , 𝑗

0
. (47)

If {𝐹
𝑘
}
𝑘
is a Fibonacci sequence of order𝑁 ≥ 2 (i.e., 𝐹

ℓ
=

𝐹
ℓ−1

+ ⋅ ⋅ ⋅ + 𝐹
ℓ−𝑁

for ℓ > 𝑁 where 𝐹
1
, . . . , 𝐹

𝑁
∈ N are given),

then

𝜑 = lim
𝑛→∞

𝐹
𝑛

𝐹
𝑛−1

, (48)

where 𝜑 is the real solution of 𝑥 + 𝑥
−𝑁

= 2 that is closest to 2.
Hence, by Lemma 13 we have the following.
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Lemma 14. Let 𝑃(𝑧) be a complex polynomial and let {𝐹
𝑛
}
𝑛
be

the Fibonacci sequence defined in (28). Let 𝑎
0
, . . . , 𝑎

𝑠
be a finite

sequence of complex numbers satisfying


𝑎
𝜑
𝑠

0
⋅ 𝑎
𝜑
𝑠−1

1
⋅ ⋅ ⋅ 𝑎
𝜑

𝑠−1
𝑎
𝑠


> 1, (49)

where 𝜑 is the real solution of 𝑥 + 𝑥
−𝑁

= 2 that is closest to
2. Let also 𝜀 > 0, 𝑅 > 0, and 𝑗

0
∈ N. Then, there exists some

𝑘
0
∈ N such that for all 𝑘 ≥ 𝑘

0

sup
|𝑧|≤𝑅



(𝐼
𝑘
𝑃)
(𝑗)

(𝑧)

𝑎
𝐹𝑘

0
⋅ 𝑎
𝐹𝑘−1

1
⋅ ⋅ ⋅ 𝑎
𝐹𝑘−𝑠
𝑠



< 𝜀, (50)

for all 𝑗 = 1, . . . , 𝑗
0
.

Proof of Theorem 12. Consider the bilinear operator 𝑀 :

𝐻(C) × 𝐻(C) → 𝐻(C),

𝑀(𝑔, 𝑓) = (𝛿
0
⊗ 𝐷) (ℎ, 𝑓) = 𝑔 (0)𝐷𝑓, (51)

where 𝛿
0
is the evaluation at 𝑧 = 0 and 𝐷 is the operator

of complex differentiation on 𝐻(C). We seek a hypercyclic
vector for 𝑀 of the form (𝑔, 𝑓), with 𝑔 ≡ 1. Notice that
for any 𝑓(𝑧) = ∑

∞

𝑗=0
𝑥
𝑗
(𝑧
𝑗
/𝑗!) ∈ 𝐻(C) the orbit {𝑢

𝑛
}
𝑛

=

Orb(𝑀, (1, 𝑓)) is given by (𝑢
1
, 𝑢
2
, 𝑢
3
) = (1, 𝑓,𝐷𝑓) and

𝑢
3+𝑛

= 𝑐
𝑛
𝐷
𝑛+1

𝑓, (52)

where

𝑐
𝑛
=

𝑛−1

∏

𝑗=0

𝑥
𝐹𝑛−𝑗

𝑗
(53)

and where {𝐹
𝑛
}
𝑛
is the Fibonacci sequence in (28) given by

𝐹
1
= 𝐹
2
= 1 and 𝐹

𝑛
= 𝐹
𝑛−2

+ 𝐹
𝑛−1

for 𝑛 > 2. The construction
of the function 𝑓(𝑧) is inspired by the construction of a
hypercyclic function for the derivative operator in [34]. We
first consider a dense sequence of polynomials

P =
{

{

{

𝑃
𝑛
(𝑧) =

𝑑𝑛

∑

𝑗=0

𝑝
𝑛,𝑗

𝑗!
𝑧
𝑗
}

}

}𝑛

(54)

satisfying, for each 𝑛 ∈ N that

(a) 𝑑
2𝑛

= 𝑑
2𝑛−1

= 𝑛, and 𝑝
2𝑛−1,𝑗

𝑝
2𝑛,𝑗

= 1 (𝑗 = 0, . . . , 𝑛),
and

(b) 0 < 𝐻
2𝑛

< 1 < 𝐻
2𝑛−1

, where for each 𝑘 the scalar 𝐻
𝑘

associated to 𝑃
𝑘
is defined as

𝐻
𝑘
= 𝐻
𝑘
(𝑃
𝑘
) =

𝑑𝑘

∏

𝑗=0


𝑝
𝑘,𝑗



𝜑
𝑑
𝑘
−𝑗

. (55)

(It is simple to see that such P exists: first get a dense
sequence P

1
= {𝑄
𝑛
(𝑧) = ∑

𝑛

𝑗=0
(𝑞
𝑛,𝑗
/𝑗!)𝑧
𝑗
}
𝑛
and perturb if

necessary the coefficients of each 𝑄
𝑛
by at most 2−2𝑛 so that

𝐻
𝑛

̸= 0, 1. The resulting sequence, which we call P
2
, is also

dense. For each polynomial 𝑄
𝑛
(𝑧) = ∑

𝑛

𝑗=0
(𝑞
𝑛,𝑗
/𝑗!)𝑧
𝑗 in P

2
,

the polynomial 𝑄
𝑛
(𝑧) = ∑

𝑛

𝑗=0
(1/𝑗!𝑞

𝑛,𝑗
)𝑧
𝑗 satisfies 𝐻

𝑛
(𝑄
𝑛
) =

1/(𝐻
𝑛
(𝑄
𝑛
)). ThenP results after reorderingP

2
∪ {𝑄 : 𝑄 ∈

P
2
}.) We also consider another dense family of functions

P̃ = {�̃�
𝑛
(𝑧)}
𝑛
defined from the polynomials inP as

�̃�
𝑛
(𝑧) := 𝑃

𝑛
(𝑧) +

∞

∑

𝑖=𝑑𝑛+1

1

𝑖!
𝑧
𝑖
. (56)

Several Fibonacci sequences {𝐹𝑗,𝑖
𝑛,𝑘
}
𝑘
will be defined at each

step 𝑛 of the inductive construction of 𝑓, and so that 𝐹𝑗,𝑖
𝑛,𝑘

denotes the power of the coefficient 𝑝
𝑗,𝑖

of 𝑃
𝑗
that appears

in the factor 𝑐
𝑛
in the (3 + 𝑛)-th iterate of the orbit of (1, 𝑓)

given by (53). All these Fibonacci sequences are of order
𝑁 = 2, and thus we only define in the proof the first two
non-zero terms of each such sequences. We also introduce
the following notation:

𝐽
𝑗
:= (𝑝
𝑗,0
)
𝜑
𝑑𝑗

⋅ (𝑝
𝑗,1
)
𝜑
𝑑𝑗−1

⋅ ⋅ ⋅ (𝑝
𝑗,𝑑𝑗−1

)

𝜑

⋅ 𝑝
𝑗,𝑑𝑗

for 𝑘 ∈ N,

𝐽
𝑗

𝑛,𝑘
:= (𝑝
𝑗,0
)
𝐹
𝑗,0

𝑛,𝑘

⋅ (𝑝
𝑗,1
)
𝐹
𝑗,1

𝑛,𝑘

⋅ ⋅ ⋅ (𝑝
𝑗,𝑑𝑗−1

)

𝐹
𝑗,𝑑𝑗−1

𝑛,𝑘

⋅ (𝑝
𝑗,𝑑𝑗

)

𝐹
𝑗,𝑑𝑗

𝑛,𝑘

for 𝑗, 𝑛, 𝑘 ∈ N,

𝐻
𝑗

𝑛,𝑘
:=



(𝑝
𝑗,0
)
𝐹
𝑗,0

𝑛,𝑘
/𝐹
𝑗,𝑑𝑗

𝑛,𝑘

⋅ (𝑝
𝑗,1
)
𝐹
𝑗,1

𝑛,𝑘
/𝐹
𝑗,𝑑𝑗

𝑛,𝑘

⋅ ⋅ ⋅ (𝑝
𝑗,𝑑𝑗−1

)

𝐹
𝑗,𝑑𝑗−1

𝑛,𝑘
/𝐹
𝑗,𝑑𝑗

𝑛,𝑘

⋅ (𝑝
𝑗,𝑑𝑗

)



for 𝑗, 𝑛, 𝑘 ∈ N.

(57)

Clearly, the following relation holds


𝐽
𝑗

𝑛,𝑘


= 𝐻
𝑗

𝑛,𝑘

𝐹
𝑗,𝑑𝑗

𝑛,𝑘

∀𝑗, 𝑛, 𝑘 ∈ N. (58)

Now, we are ready to construct 𝑓(𝑧).

Step 1. Let 𝑘
1
= 0, and define 𝑄

1
(𝑧) = 𝑃

1
(𝑧).

Step 2. We first let {𝐹1,0
2,𝑘

}
𝑘
and {𝐹

1,1

2,𝑘
}
𝑘
denote the Fibonacci

sequences whose first non-zero terms are 𝐹1,𝑖
2,𝑘+𝑖+1

= 𝐹
𝑘
for 𝑖 =

0, 1 and 𝑘 = 1, 2. Next we define 𝑄
2
(𝑧) = (𝐼

𝑘2+1(𝑃
2
(𝑧)))/𝐽

1

2,𝑘2
,

where 𝑘
2
∈ N is chosen so that

(2.1) 𝑘
2
> 𝑘
1
+ 𝑑
1
+ 2,

(2.2) |𝐻1
2,𝑘

− 𝐻
1
| < (𝐻

1
− 1)/2 for all 𝑘 ≥ 𝑘

2
− 1,

(2.3) |𝐽1
2,𝑘
| > 1 for all 𝑘 ≥ 𝑘

2
− 1, and

(2.4) |𝑄
2
(𝑧)| < 1/2

2 for all |𝑧| ≤ 2.

Conditions (2.2) and (2.3) are obtained thanks to (48)
and the fact that 𝐻

1
> 1, and Condition (2.4) is obtained
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from Lemma 14. We finish this step defining 𝑄
1
(𝑧) =

∑
𝑘2

𝑖=𝑑1+1
(1/𝑖!)𝑧

𝑖. Notice that for any ℎ ∈ 𝐻(C) the orbit

{�̃�
𝑛
}
𝑛
= Orb (𝑀, (1, 𝑄

1
+ 𝑄
1
+ 𝑄
2
+ 𝐼
𝑘2+𝑑2ℎ)) (59)

satisfies that Π
𝑑2
(�̃�
3+𝑘2

) = 𝑃
2
, where for 𝑘 ≥ 0 we let

Π
𝑘
(𝑔)(𝑧) = ∑

𝑘

𝑗=0
𝑔
(𝑗)
(0)(𝑧
𝑗
/𝑗!) (𝑔 ∈ 𝐻(C)).

Step 3. We let {𝐹
1,0

3,𝑘
}
𝑘
and {𝐹

1,1

3,𝑘
}
𝑘
denote the Fibonacci

sequences whose first non-zero terms are given by

𝐹
1,𝑖

3,1
= 𝐹
1,𝑖

3,2
= 𝐹
1,𝑖

2,𝑘2−1
for 𝑖 = 0, 1,

𝐹
2,𝑖

3,𝑘+𝑖+1
= 𝐹
𝑘

for 𝑖 = 0, 1; 𝑘 = 1, 2,

(60)

and define 𝑄
3
(𝑧) = (𝐼

𝑘3+1(𝑃
3
(𝑧)))/(𝐽

1

3,𝑘3−𝑘2
𝐽
2

3,𝑘3−𝑘2
), where

𝑘
3
∈ N satisfies

(3.1) 𝑘
3
+ 1 > 𝑘

2
+ 𝑑
2
+ 2,

(3.2) |𝐻2
3,𝑘

− 𝐻
2
| < (1 − 𝐻

2
)/2 for all 𝑘 ≥ 𝑘

3
− 1.

(3.3) |𝐽1
3,𝑘−𝑘2

𝐽
2

3,𝑘−𝑘2
| > 1 for all 𝑘 ≥ 𝑘

3
− 1.

(3.4) |𝑄
3
(𝑧)| < 1/2

3, |𝑄
3
(𝑧)| < 1/2

3
, . . . , |𝑄

(𝑘2)

3
(𝑧)| <

1/2
3 for all |𝑧| ≤ 3.

Condition (3.2) holds again thanks to (48). To see why
Condition (3.3) can be obtained, recall that 0 < 𝐻

2
< 1 < 𝐻

1

thanks to the order in which the polynomials𝑃
1
= 𝑝
1,0

+𝑝
1,1
𝑧

and 𝑃
2

= 1/𝑝
1,0

+ (1/𝑝
1,1
)𝑧 appear in the dense sequence

P given in (54). Notice also that the quotients 𝐹1,0
3,𝑘

/𝐹
1,1

3,𝑘
are

eventually constant and coincide with 𝐹
1,0

2,𝑘2−1
/𝐹
1,1

2,𝑘2−1
, so that

𝐻
1

3,𝑘
coincides with 𝐻

1

2,𝑘2−1
and thus 𝐻1

3,𝑘
> 1 eventually by

(2.2). On the other hand𝐻
2

3,𝑘
< 1 for all 𝑘 ≥ 𝑘

2
by Condition

(3.2). All this together with (58) allow us to obtain (3.3), since
lim
𝑘→∞

𝐹
1,𝑑1

3,𝑘
− 𝐹
2,𝑑2

3,𝑘
= ∞ by construction. Condition (3.4)

can now be obtained as a combination of Lemma 13 and (3.3).
Finally, we let 𝑄

2
(𝑧) = (1/𝐽

1

2,𝑘2
)(∑
𝑘3

𝑖=𝑘2+𝑑2+1
(1/𝑖!)𝑧

𝑖
), and as in

Step 2 for any ℎ ∈ 𝐻(C) the orbit

{�̃�
𝑛
}
𝑛
= Orb (𝑀, (1, 𝑄

1
+ 𝑄
1
+ 𝑄
2
+ 𝑄
2
+ 𝑄
3
+ 𝐼
𝑘3+𝑑3ℎ))

(61)

satisfies that Π
𝑑3
(�̃�
3+𝑘3

) = 𝑃
3
.

Step 4.We define the Fibonacci sequences needed in this step,
{𝐹
𝑗,𝑖

4,𝑘
}
𝑘
with 𝑗 = 1, 2, 3. The first two non-zero terms of each

sequence are given by

𝐹
𝑗,𝑖

4,1
= 𝐹
𝑗,𝑖

4,2
= 𝐹
𝑗,𝑖

3,𝑘3−1
for 𝑗 = 1, 2; 𝑖 = 0, 1,

𝐹
3,𝑖

4,𝑘+𝑖+1
= 𝐹
𝑘

for 𝑖 = 0, 1, 2; 𝑘 = 1, 2.

(62)

We set 𝑄
4
(𝑧) = 𝐼

𝑘4+1(𝑃
4
(𝑧))/𝐽

1

4,𝑘4−𝑘3
𝐽
2

4,𝑘4−𝑘3
𝐽
3

4,𝑘4−𝑘3
, where

𝑘
4
∈ N is chosen to satisfy the following:

(4.1) 𝑘
4
+ 1 > 𝑘

3
+ 𝑑
3
+ 2,

(4.2) |𝐻3
4,𝑘

− 𝐻
3
| < (𝐻

3
− 1)/2 for all 𝑘 ≥ 𝑘

4
− 1,

(4.3) |𝐽1
4,𝑘−𝑘3

𝐽
2

4,𝑘−𝑘3
𝐽
3

4,𝑘−𝑘3
| > 1 for all 𝑘 ≥ 𝑘

4
− 1, and

(4.4) |𝑄
4
(𝑧)| < 1/2

4, |𝑄
4
(𝑧)| < 1/2

4
, . . . , |𝑄

(𝑘3)

4
(𝑧)| <

1/2
4 for all |𝑧| ≤ 4.

Condition (4.2) is given by (48). Let us proceed to check
condition (4.3). The idea is very similar to the one used for
condition (3.3). By the definition of the Fibonacci sequences
in this step, the quotients 𝐹

1,0

4,𝑘
/𝐹
1,1

4,𝑘
are constant for every

𝑘 ∈ N and coincide with 𝐹
1,0

3,𝑘3−1
/𝐹
1,1

3,𝑘3−1
. Therefore 𝐻

1

4,𝑘
> 1

for every 𝑘 ∈ N. Analogously, 𝐹2,0
4,𝑘

/𝐹
2,1

4,𝑘
is constant for every

𝑘 ∈ N and coincides with 𝐹
2,0

3,𝑘3−1
/𝐹
2,1

3,𝑘3−1
. This gives 𝐻2

4,𝑘
< 1.

Again, since lim
𝑘→∞

𝐹
1,𝑑1

4,𝑘
− 𝐹
2,𝑑2

4,𝑘
= ∞ by construction, then

|𝐽
1

4,𝑘−𝑘3
𝐽
2

4,𝑘−𝑘3
| > 1 for all 𝑘 ≥ 𝑘

3
. In addition, |𝐽3

4,𝑘−𝑘3
| > 1

by condition (4.2) since 𝐻
3
is greater than 1 by definition.

Combining these estimations we get (4.3). Lastly, condition
(4.4) can be obtained from Lemma 13 using condition (4.3).

We also take 𝑄
3
(𝑧) = (1/𝐽

1

2,𝑘3−𝑘2
𝐽
2

2,𝑘3−𝑘2
) ∑
𝑘4

𝑖=𝑘3+𝑑3+1
(1/𝑖!)𝑧

𝑖

so that, as in Steps 2 and 3, for any ℎ ∈ 𝐻(C) the orbit

{�̃�
𝑛
}
𝑛
= Orb (𝑀, (1, 𝑄

1
+ 𝑄
1
+ 𝑄
2

+𝑄
2
+ 𝑄
3
+ 𝑄
3
+ 𝑄
4
+ 𝐼
𝑘4+𝑑4ℎ))

(63)

satisfies that Π
𝑑4
(�̃�
3+𝑘4

) = 𝑃
4
.

Step n. Let us assume that we have done the previous 𝑛 −

1 steps. Let us start with the definition of the Fibonacci
sequences, {𝐹𝑗,𝑖

𝑛,𝑘
}
𝑘
. The first non-zero terms of each sequence

are the following ones:

𝐹
𝑗,𝑖

𝑛,1
= 𝐹
𝑗,𝑖

𝑛,2
= 𝐹
𝑗,𝑖

𝑛−1,𝑘𝑛−1−1
for 𝑗 = 1, . . . , 𝑛 − 1; 𝑖 = 0, . . . , 𝑑

𝑗
,

𝐹
𝑛−1,𝑖

𝑛,𝑘+𝑖+1
= 𝐹
𝑘

for 𝑖 = 0, . . . , 𝑑
𝑛−1

, 𝑘 = 1, 2.

(64)

We define 𝑄
𝑛
(𝑧) = 𝐼

𝑘𝑛+1(𝑃
𝑛
(𝑧))/∏

𝑛−1

𝑗=1
𝐽
𝑗

𝑛,𝑘𝑛−𝑘𝑛−1
, where

𝑘
𝑛
∈ N satisfies:

(n.1) 𝑘
𝑛
+ 1 > 𝑘

𝑛−1
+ 𝑑
𝑛−1

+ 2,
(n.2.1) if 𝑛 is odd, then |𝐻

𝑛−1

𝑛,𝑘
− 𝐻
𝑛−1

| < (1 − 𝐻
𝑛−1

)/2

for all 𝑘 ≥ 𝑘
𝑛
− 1,

(n.2.2) if 𝑛 is even, then |𝐻
𝑛−1

𝑛,𝑘
−𝐻
𝑛−1

| < (𝐻
𝑛−1

− 1)/2

for all 𝑘 ≥ 𝑘
𝑛
− 1,

(n.3) |∏𝑛−1
𝑗=1

𝐽
𝑗

𝑛,𝑘−𝑘𝑛−1
| > 1 for all 𝑘 ≥ 𝑘

𝑛
− 1, and

(n.4) |𝑄
𝑛
(𝑧)| < 1/2

𝑛, |𝑄
𝑛
(𝑧)| < 1/2

𝑛
, . . . , |𝑄

(𝑘𝑛−1)

𝑛
(𝑧)| <

1/2
𝑛 for all |𝑧| ≤ 𝑛.

Both conditions (n.2.1) and (n.2.2) can be deduced using
the formula (48). For proving condition (𝑛.3), we first prove
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that |𝐽𝑗0
𝑛,𝑘−𝑘𝑛−1

𝐽
𝑗0+1

𝑛,𝑘−𝑘𝑛−1
| > 1 for every odd number 𝑗

0
≤ 𝑛 − 2

and 𝑘 ≥ 𝑘
𝑛−1

. This is due to the general fact that the quotients
𝐹
𝑗,𝑖

𝑛,𝑘
/𝐹
𝑗,𝑑𝑗

𝑛,𝑘
are constant for all 𝑗 ≤ 𝑛 − 1 and for all 𝑖 =

0, . . . , 𝑑
𝑗
−1, since each one coincides with 𝐹

𝑗,𝑖

𝑛−1,𝑘𝑛−1
/𝐹
𝑗,𝑑𝑗

𝑛−1,𝑘𝑛−1
,

respectively. So that 𝐻𝑗
𝑛,𝑘

coincides with 𝐻
𝑗

𝑛−1,𝑘𝑛−1−1
. By the

previous steps 𝐻
𝑗

𝑛,𝑘
> 1 if 𝑗 is odd and 𝐻

𝑗

𝑛,𝑘
< 1 if 𝑗 is

even. Taking this into account and since lim
𝑘→∞

𝐹
𝑗0 ,𝑑𝑗0

𝑛,𝑘
−

𝐹
𝑗0+1,𝑑𝑗0+1

𝑛,𝑘
= ∞, then |𝐽

𝑗0

𝑛,𝑘−𝑘𝑛−1
𝐽
𝑗0+1

𝑛,𝑘−𝑘𝑛−1
| > 1 for all 𝑘 large

enough.
Now, if 𝑛 − 1 is even, then condition (n.3) is obtained

applying the previous argument (𝑛 − 1)/2 with all the odd
numbers 𝑗

0
≤ 𝑛 − 2. If 𝑛 − 1 is odd, we apply the previous

argument to all odd numbers 𝑗
0

≤ 𝑛 − 3 and we have
still to show that |𝐽𝑛−1

𝑛,𝑘−𝑘𝑛−1
| > 1 for all 𝑘 large enough, but

this holds by condition (n.2.2) and (58) since 𝐻
𝑛−1

> 1

by definition. Combining these estimations we get (n.3). As
before, condition (n.4) can be obtained from Lemma 13 using
condition (n.3).

We finish this step defining 𝑄
𝑛−1

(𝑧) =

(1/∏
𝑛−1

𝑗=1
𝐽
𝑗

𝑛−1,𝑘𝑛−𝑘𝑛−1
) ∑
𝑘𝑛

𝑖=𝑘𝑛−1+𝑑𝑛−1+1
(1/𝑖!)𝑧

𝑖. Now, for any
ℎ ∈ 𝐻(C) the orbit

{�̃�
𝑛
}
𝑛
= Orb (𝑀, (1, 𝑄

1
+ 𝑄
1
+ 𝑄
2

+ 𝑄
2
+ . . . 𝑄

𝑛−1
+ 𝑄
𝑛−1

+ 𝑄
𝑛
𝐼
𝑘𝑛+𝑑𝑛ℎ))

(65)

satisfies that Π
𝑑𝑛
(�̃�
3+𝑘𝑛

) = 𝑃
𝑛
.

To sum up, our function 𝑓(𝑧) will be defined as 𝑓(𝑧) =

∑
∞

𝑖=1
𝑄
𝑖
(𝑧) + 𝑄

𝑖
(𝑧). Clearly, it is well defined for every 𝑧 ∈

C and converges uniformly on bounded sets of C, because
of statements (∗.4) and the fact that the sum ∑

∞

𝑖=1
|𝑄
𝑖
(𝑧)| is

bounded in modulus by 𝑒|𝑧|.
Now, take an arbitrary function 𝑔 ∈ H(C) and 𝑅, 𝜀 > 0.

We choose 𝑛
0
∈ N such that 𝑅 < 𝑛

0
and 2
−𝑛0 < 𝜀/4. Then we

take 𝑛 ≥ 𝑛
0
such that

(i) max
|𝑧|≤𝑛0

|𝑔(𝑧) − �̃�
𝑛
(𝑧)| < 𝜀/2,

(ii) ∑∞
𝑖=𝑑𝑛+1+1

(1/𝑛!) < 𝜀/8 and

(iii) max
|𝑧|≤𝑛0

∑
∞

𝑖=𝑘𝑛+1+𝑑𝑛+1−𝑘𝑛
(|𝑧|
𝑖
/𝑖!) < 𝜀/8.

We will see that max
|𝑧|≤𝑛0

|𝑔(𝑧) − 𝑢
3+𝑘𝑛

(𝑧)| < 𝜀. This holds
using the aforementioned estimations and the statements
(∗.4).

max
|𝑧|≤𝑛0


𝑔 (𝑧) − 𝑢

3+𝑘𝑛
(𝑧)


≤ max
|𝑧|≤𝑛0


𝑔 (𝑧) − �̃�

𝑛
(𝑧)



+

∞

∑

𝑖=𝑑𝑛+1+1

1

𝑛!

+ max
|𝑧|≤𝑛0

∞

∑

𝑖=𝑛+1


𝑄
(𝑘𝑛)

𝑖
(𝑧) + 𝑄

(𝑘𝑛)

𝑖
(𝑧)



<
𝜀

2
+

𝜀

8
+

𝜀

4
+

𝜀

8
= 𝜀.

(66)

Remark 15. The map 𝐽 : 𝐻(C) → 𝜔, 𝐽(𝑓) = (𝑓
(𝑛)
(0))
∞

𝑛=0
, is

continuous, injective, of dense range, and satisfies that 𝐵𝐽 =

𝐽𝐷, where 𝐵 is the backward shift on 𝜔 and 𝐷 the derivative
operator on 𝐻(C). So for any 𝑔 ∈ 𝐻(C) the image of
Orb(𝛿

0
⊗𝐷, (1, 𝑔)) under 𝐽 is the orbit Orb(𝑒

0
⊗𝐵, (𝑒

0
, 𝐽(𝑔))).

In particular, (𝑒
0
, 𝐽(𝑔)) ∈ 𝜔

2 is hypercyclic for 𝑒
0
⊗𝐵whenever

(1, 𝑔) ∈ 𝐻(C)
2 is hypercyclic for 𝛿

0
⊗ 𝐷, what together

with the example constructed to show Theorem 12 gives
another proof of the hypercyclicity of the 𝑁-linear operator
in Example 9 for the case𝑁 = 2.

5. Final Comments

We have not come up with examples of hypercyclic𝑁-linear
operators on Banach spaces. Hence, we pose the following.

Problem 16. Does any Banach space support a hypercyclic𝑁-
linear operator, for some𝑁 ≥ 2?

We note that if 𝑀 : 𝑋
𝑁

→ 𝑋 is an 𝑁-linear operator
with 𝑁 ≥ 2 and (𝑋, ‖ ⋅ ‖) being a Banach space, the set of
hypercyclic vectors for 𝑀 must be nondense in 𝑋

𝑁. Indeed,
the continuity of𝑀 together with the fact that𝑁 ≥ 2 ensures
that any (𝑥

1
, . . . , 𝑥

𝑁
) in𝑋

𝑁 with

max {𝑥1
 , . . . ,

𝑥𝑁
} ≤

1

‖𝑀‖ + 1
(67)

satisfies that the orbit Orb(𝐿, (𝑥
1
, . . . , 𝑥

𝑁
)) converges to zero,

where

‖𝑀‖ = sup { 𝐿 (𝑧
1
, . . . , 𝑧

𝑁
)
 : 𝑧𝑗 ∈ 𝑋,


𝑧
𝑗


≤ 1 (𝑗 = 1, . . . , 𝑁)} .

(68)

We note that, by the above argument, a Banach space even
lacks hypercyclic subspaces of dimension one for any 𝑁-
linear operator with𝑁 ≥ 2.

In view of Proposition 4 and Remark 10, it is also natural
to ask.

Problem 17. Must the set of hypercyclic vectors of an𝑁-linear
operator be dense in𝑋

𝑁?

Of course, an affirmative answer to Problem 16 gives a
negative answer to Problem 17 and an affirmative answer to
Problem 17 gives a negative answer to Problem 16.

To conclude, we note that it is natural to seek extensions of
results and notions in linear dynamics to𝑁-linear dynamics.
For instance, we may propose the following notion of chaos
for𝑁-linear operators, motivated by the notion of Devaney-
chaos in linear dynamics [35].
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Definition 18. A vector 𝑥 ∈ 𝑋
𝑁 is said to have a periodic

orbit under an 𝑁-linear operator 𝑀 : 𝑋
𝑁

→ 𝑋 whenever
there exist some 𝑦 ∈ 𝑋 and some 𝑘 > 1 such that 𝑢

1
=

𝑢
𝑛𝑘

= 𝑦 for all 𝑛 ∈ N. Such a vector is said to be 𝑘-periodic
for 𝑀. We say that 𝑀 is 𝑁-linear Devaney chaotic if it is
a hypercyclic 𝑁-linear operator and it has a dense set of
periodic orbits.

We note next that the 𝑁-linear operators of Examples
9 and 11 are also Devaney chaotic. Concerning Exam-
ple 9, consider a dense sequence of eventually null ele-
ments of 𝜔, namely, {𝑔

𝑛
}
𝑛≥𝑁+2

with 𝑔
𝑛
(𝑖) ̸= 0 if and only

if 𝑖 ≤ 𝑛. Then, for every element 𝑔
𝑛
we define the

corresponding vector

𝑥
𝑛
(𝑘)

=

{{

{{

{

𝑔
𝑛
(𝑘) , if 𝑘 ≤ 𝑛,

𝑔
𝑛
(𝑘

)

(𝐶
𝑛+𝑁+1

)
𝑝
, if 𝑘 = 𝑛𝑝 + 𝑘


, 1 ≤ 𝑘


≤ 𝑛, 𝑝 ∈ N,

(69)

where 𝐶
𝑛+𝑁+1

is defined in (26). Let us also define the
elements

𝑥


𝑛
(𝑘) =

{{{

{{{

{

1

𝑔
𝑛
(1)

, if 𝑘 = 1,

0, elsewhere,

𝑥


𝑛
(𝑘) =

{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{

{

1,

if 𝑘 ≤ 𝑛 − 𝑁,

𝑔
𝑛
(𝑘) ,

if 𝑘 = 𝑛 − 𝑁 + 𝑘
with 1 ≤ 𝑘


≤ 𝑛,

𝑔
𝑛
(𝑘

)

(𝐶
𝑛+𝑁+1

)
𝑝−1

,

if 𝑘 = 𝑝𝑛 − 𝑁 + 𝑘

, 1 ≤ 𝑘


≤ 𝑛, 2 ≤ 𝑝.

(70)

It follows that the initial conditions (𝑥
𝑛
, 𝑥


𝑛
, 𝑒
1
, . . . , 𝑒

1
, 𝑥


𝑛
)

force 𝑥
𝑛
to be an 𝑛-periodic point for the operator𝑀 defined

on (23). Finally, the vectors {𝑥
𝑛
}
𝑛
are dense because of the

denseness of {𝑔
𝑛
}
𝑛≥𝑁+2

.
Let us proceed with Example 11. Consider a dense

sequence of eventually null elements of 𝜔, namely, {𝑔
𝑛
}
𝑛≥𝑁

with 𝑔
𝑛
(𝑖) ̸= 0 if and only if 𝑖 ≤ 𝑛. Then, for every element 𝑔

𝑛
,

we define the corresponding vector

𝑥
𝑛
(𝑘)

= {
𝑔
𝑛
(𝑘) , if 1 ≤ 𝑘 ≤ 𝑛,

𝑔
𝑛
(𝑘

)
1/𝐺𝑛𝑝+1

, if 𝑘 = 𝑛𝑝 + 𝑘

, 1 ≤ 𝑘


≤ 𝑛, 𝑝 ∈ N,

(71)

where𝑔
𝑛
(𝑘

)
1/𝐺𝑛𝑝+1 denotes one of the roots of 𝑧𝐺𝑛𝑝+1−𝑔

𝑛
(𝑘

). It

follows that the initial conditions (𝑥
𝑛
, 𝐵𝑥
𝑛
, 𝐵
2
𝑥
𝑛
, . . . , 𝐵

𝑁−1
𝑥
𝑛
)

force 𝑥
𝑛
to be an 𝑛-periodic point for the operator𝑀 defined

on (42). To sum up, the set of periodic points for𝑀 is dense
in 𝜔.
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