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We establish certain new fractional integral inequalities for the differentiable functions whose derivatives belong to the space
𝐿𝑝([1,∞)), related to the weighted version of the Chebyshev functional, involving Hadamard’s fractional integral operators. As
an application, particular results have been also established.

1. Introduction

In 1882, Chebyshev [1] gave the following inequality.
If𝑓, 𝑔 : [𝑎, 𝑏] → R+ are absolutely continuous functions,

whose first derivatives 𝑓 and 𝑔
 are bounded and

𝑇 (𝑓, 𝑔) =
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡) 𝑑𝑡

− (
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡)(
1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑔 (𝑡) 𝑑𝑡) ,

(1)

then

𝑇 (𝑓, 𝑔)
 ≤

1

12
(𝑏 − 𝑎)

2
𝑓
∞


𝑔
∞

, (2)

where ‖ ⋅ ‖∞ denotes the norm in 𝐿∞[𝑎, 𝑏].
The Chebyshev functional (1) has many applications in

numerical quadrature, transform theory, probability, study
of existence for solutions of differential equations, and in
statistical problems. Moreover, in the theory of approxima-
tions, under various assumptions (Chebyshev inequalities,
Grüss inequality, etc.), Chebyshev functionals are useful
to give lower bound or upper bounds for the functions.

Therefore, in the literature, we found several extensions
and generalizations of these classical integral inequalities,
including fractional calculus and 𝑞-calculus operators also
(see [2–14]).

Our work in the present paper is based on a weighted
version of the Chebyshev functional (see [1]):

𝑇 (𝑓, 𝑔, 𝑝) = ∫

𝑏

𝑎

𝑝 (𝑡) 𝑑𝑡 ∫

𝑏

𝑎

𝑓 (𝑡) 𝑔 (𝑡) 𝑝 (𝑡) 𝑑𝑡

− ∫

𝑏

𝑎

𝑓 (𝑡) 𝑝 (𝑡) 𝑑𝑡 ∫

𝑏

𝑎

𝑔 (𝑡) 𝑝 (𝑡) 𝑑𝑡,

(3)

where 𝑓 and 𝑔 are two integrable functions on [𝑎, 𝑏] and
𝑝(𝑡) is a positive and integrable function on [𝑎, 𝑏]. In 2000,
Dragomir [15] derived the following inequality:

2
𝑇 (𝑓, 𝑔, 𝑝)



≤

𝑓
𝑟


𝑔
𝑠

[∬

𝑏

𝑎

𝑥 − 𝑦
 𝑝 (𝑥) 𝑝 (𝑦) 𝑑𝑥 𝑑𝑦] ,

(4)

where 𝑓 and 𝑔 are two differentiable functions and 𝑓

∈

𝐿𝑟(𝑎, 𝑏), 𝑔

∈ 𝐿 𝑠(𝑎, 𝑏), 𝑟 > 1, and 𝑟

−1
+ 𝑠
−1

= 1. Recently,
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Dahmani et al. [16] added one more dimension to this study
by introducing generalization of inequality (4), involving
Riemann-Liouville fractional integrals. Moreover, Purohit
and Raina [17–19] and Baleanu et al. [20, 21] introduced
certain generalized integral inequalities for synchronous
functions, involving the various fractional hypergeomet-
ric integral operators, while Tariboon et al. [22] studied
Riemann-Liouville fractional integral inequalities.

In 1892, Hadamard [23] introduced a fractional deriva-
tive, which differs from the Riemann-Liouville and Caputo
derivatives in the sense that the kernel of the integral contains
logarithmic function of arbitrary exponent. For details and
fundamental properties of Hadamard fractional derivative
and integral can be found in [24–28]. Recently, some results
on fractional integral inequalities have been derived by using
Hadamard fractional integrals (see [29–32]).

In this paper, we establish certain integral inequalities
related to the weighted Chebyshev’s functional (3) in the
case of differentiable functions whose derivatives belong to
the space 𝐿𝑝([1,∞)), involving Hadamard fractional integral
operators [23]. We also develop some integral inequalities for
the fractional integrals by suitably choosing the function𝑝(𝑡),
as special cases of our findings.

Firstly, we mention below the basic definitions and nota-
tions of some well-known operators of fractional calculus,
which shall be used in the sequel.

The Hadamard fractional integral of order 𝛼 ∈ R+ of a
function 𝑓(𝑡), for all 𝑡 > 1, is defined as [28]

𝐻𝐽
𝛼
{𝑓 (𝑡)} =

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

𝑓 (𝜏)
𝑑𝜏

𝜏
. (5)

Further, the Hadamard fractional derivative of order 𝛼 ∈ [𝑛−
1, 𝑛), 𝑛 ∈ Z+, of a function 𝑓(𝑡) is given by

𝐻𝐷
𝛼
{𝑓 (𝑡)} =

1

Γ (𝑛 − 𝛼)
(𝑡

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

1

(log 𝑡
𝜏
)

𝑛−𝛼−1

𝑓 (𝜏)
𝑑𝜏

𝜏
.

(6)

Our results in this paper are based on the following prelim-
inary assertions giving composition formula of Hadamard
fractional integral and derivatives with a power function ([4])

𝐻
𝐽
𝛼
(log 𝑡)𝜇−1 =

Γ (𝜇)

Γ (𝜇 + 𝛼)
(log 𝑡)𝜇+𝛼−1,

𝐻
𝐷
𝛼
(log 𝑡)𝜇−1 =

Γ (𝜇)

Γ (𝜇 − 𝛼)
(log 𝑡)𝜇−𝛼−1,

(7)

where 0 < 𝛼 < 1.

2. Main Results

Our results in this section are related to the Chebyshev’s
functional (3) in the case of differentiable mappings whose
derivatives belong to the space 𝐿𝑝([1,∞)) and satisfying
Holder’s inequality. Here, we obtain certain new integral
inequalities which give an estimation for the fractional
integral of a product in terms of the product of the individual
function fractional integrals, involving Hadamard fractional
integral operators.

Theorem 1. Let 𝑝 be a positive function and let 𝑓 and 𝑔 be
two differentiable functions on [1,∞). If𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈
𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟

−1
+ 𝑠
−1
= 1, then, for all 𝑡 > 1 and 𝛼 > 0,

2
𝐻𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} −

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡)}

×
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)}



≤


𝑓
𝑟


𝑔
𝑠

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠
𝑡(
𝐻
𝐽
𝛼
{𝑝(𝑡)})

2
.

(8)

Proof. We define

H (𝜏, 𝜌) = (𝑓 (𝜏) − 𝑓 (𝜌)) (𝑔 (𝜏) − 𝑔 (𝜌)) , (9)

𝐹 (𝑡, 𝜏) =
(log (𝑡/𝜏))𝛼−1

𝜏Γ (𝛼)
, 𝜏 ∈ (1, 𝑡) , 𝑡 > 1. (10)

We observe that the function 𝐹(𝑡, 𝜏) remains positive, for all
𝜏 ∈ (1, 𝑡) (𝑡 > 1). Multiplying both sides of (9) by 𝐹(𝑡, 𝜏)𝑝(𝜏)
and integrating with respect to 𝜏 from 1 to 𝑡, we get

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡
𝜏
)

𝛼−1𝑝 (𝜏)

𝜏
H (𝜏, 𝜌) 𝑑𝜏

=
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)} − 𝑓 (𝜌)

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)}

− 𝑔 (𝜌)
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡)} + 𝑓 (𝜌) 𝑔 (𝜌)

𝐻
𝐽
𝛼
{𝑝 (𝑡)} .

(11)

Next, multiplying both sides of (11) by 𝐹(𝑡, 𝜌)𝑝(𝜌) and
integrating with respect to 𝜌 from 1 to 𝑡, we can write

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌
H (𝜏, 𝜌) 𝑑𝜏 𝑑𝜌

= 2 (
𝐻
𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{𝑝(𝑡)𝑓(𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)}) .

(12)

In view of (9), we have

H (𝜏, 𝜌) = ∬

𝜌

𝜏

𝑓

(𝑦) 𝑔

(𝑧) 𝑑𝑦 𝑑𝑧. (13)

Using the following Hölder’s inequality for 𝑟 > 1 and 𝑟−1 +
𝑠
−1
= 1,


∬

𝜌

𝜏

𝑓 (𝑦) 𝑔 (𝑧) 𝑑𝑦 𝑑𝑧



≤



∬

𝜌

𝜏

𝑓 (𝑦)


𝑟
𝑑𝑦𝑑𝑧



𝑟
−1



∬

𝜌

𝜏

𝑔 (𝑧)


𝑠
𝑑𝑦𝑑𝑧



𝑠
−1

,

(𝑟
−1
+ 𝑠
−1
= 1) ,

(14)
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we obtain

H (𝜏, 𝜌)
 ≤



∬

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦𝑑𝑧



𝑟
−1



∬

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑦𝑑𝑧



𝑠
−1

.

(15)

Since



∬

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦𝑑𝑧



𝑟
−1

=
𝜏 − 𝜌



𝑟
−1



∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑟
−1

,



∬

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑦𝑑𝑧



𝑠
−1

=
𝜏 − 𝜌



𝑠
−1



∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑠
−1

,

(16)

therefore, inequality (15) reduces to

H (𝜏, 𝜌)
 ≤

𝜏 − 𝜌




∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑟
−1



∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑠
−1

.

(17)

It follows from (12) that

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

H (𝜏, 𝜌)
 𝑑𝜏 𝑑𝜌

≤
1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

𝜏 − 𝜌


×



∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑟
−1



∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑠
−1

𝑑𝜏 𝑑𝜌.

(18)

Applying again Hölder’s inequality on the right-hand side of
(18), we get

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤ [
1

Γ𝑟 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

𝜏 − 𝜌


×



∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑑𝜏 𝑑𝜌]

𝑟
−1

× [
1

Γ𝑠 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌





∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑑𝜏 𝑑𝜌]

𝑠
−1

.

(19)

In view of the fact that


∫

𝜌

𝜏

𝑓(𝑦)


𝑝
𝑑𝑦



≤
𝑓


𝑝

𝑝
, (20)

we get

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

H (𝜏, 𝜌)
 𝑑𝜏 𝑑𝜌

≤ [

[


𝑓


𝑟

𝑟

Γ𝑟 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌
]

]

𝑟
−1

× [

[


𝑔


𝑠

𝑠

Γ𝑠 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌
]

]

𝑠
−1

.

(21)

From (21), we obtain

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

H (𝜏, 𝜌)
 𝑑𝜏 𝑑𝜌

≤


𝑓
𝑟


𝑔
𝑠

Γ2 (𝛼)
[∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌]

𝑟
−1

× [∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝(𝜏)𝑝(𝜌)

𝜏𝜌

𝜏 − 𝜌
 𝑑𝜏 𝑑𝜌]

𝑠
−1

.

(22)

Using the relation 𝑟−1 +𝑠−1 = 1, the above inequality yields to

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

H (𝜏, 𝜌)
 𝑑𝜏 𝑑𝜌

≤


𝑓
𝑟


𝑔
𝑠

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌.

(23)

On the other hand, (12) gives

2
𝐻𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)}



≤
1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌.

(24)
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On making use of (23) and (24), the left-hand side of
inequality (8) follows very easily.

Now, to prove the right-hand side of inequality (8), we
observe that 1 ≤ 𝜏 ≤ 𝑡, 1 ≤ 𝜌 ≤ 𝑡, and therefore,

0 ≤
𝜏 − 𝜌

 ≤ 𝑡. (25)

Evidently, from (23), we get

1

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤


𝑓
𝑟


𝑔
𝑠
𝑡

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1

×
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌
𝑑𝜏 𝑑𝜌

=

𝑓
𝑟


𝑔
𝑠
𝑡(
𝐻
𝐽
𝛼
{𝑝(𝑡)})

2
,

(26)

which completes the proof of Theorem 1.

Now, we establish the following integral inequality, which
may be regarded as a generalization of Theorem 1.

Theorem 2. Let 𝑝 be a positive function and let 𝑓 and 𝑔 be
two differentiable functions on [1,∞). If 𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈
𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟−1 + 𝑠−1 = 1, then

𝐻
𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+
𝐻
𝐽
𝛽
{𝑝 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑓 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)}



≤


𝑓
𝑟


𝑔
𝑠

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠
𝑡
𝐻
𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡)} ,

(27)

for all 𝑡 > 1, 𝛼 > 0, and 𝛽 > 0.

Proof. To prove the above theorem, we use inequality (11).
Multiplying both sides of (11) by

(log (𝑡/𝜌))𝛽−1𝑝 (𝜌)
𝜌Γ (𝛽)

, 𝜌 ∈ (1, 𝑡) , 𝑡 > 1, (28)

which remains positive and integratingwith respect to 𝜌 from
1 to 𝑡, we get

1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×H (𝜏, 𝜌) 𝑑𝜏 𝑑𝜌

=
𝐻
𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

+
𝐻
𝐽
𝛽
{𝑝 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑓 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛽
{𝑝 (𝑡) 𝑓 (𝑡)}

𝐻
𝐽
𝛼
{𝑝 (𝑡) 𝑔 (𝑡)} .

(29)

Now making use of (17), (29) gives

1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤
1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌





∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑟
−1

×



∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑠
−1

𝑑𝜏 𝑑𝜌.

(30)

Applying Hölder’s inequality on the right-hand side of (30),
we get

1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤ [
1

Γ𝑟 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

𝜏 − 𝜌


×



∫

𝜌

𝜏


𝑓

(𝑦)



𝑟

𝑑𝑦



𝑑𝜏 𝑑𝜌]

𝑟
−1

× [
1

Γ𝑠 (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

𝜏 − 𝜌


×



∫

𝜌

𝜏


𝑔

(𝑧)



𝑠

𝑑𝑧



𝑑𝜏 𝑑𝜌]

𝑠
−1

(31)
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or

1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤


𝑓
𝑟


𝑔
𝑠

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌.

(32)

In view of (29) and (32) and the properties of modulus, one
can easily arrive at the left-sided inequality of Theorem 2.
Moreover, we have 1 ≤ 𝜏 ≤ 𝑡, 1 ≤ 𝜌 ≤ 𝑡; hence,

0 ≤
𝜏 − 𝜌

 ≤ 𝑡. (33)

Therefore, from (32), we get

1

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
H (𝜏, 𝜌)

 𝑑𝜏 𝑑𝜌

≤


𝑓
𝑟


𝑔
𝑠

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

× (log 𝑡

𝜌
)

𝛽−1
𝑝 (𝜏) 𝑝 (𝜌)

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠
𝑡
𝐻
𝐽
𝛼
{𝑝 (𝑡)}

𝐻
𝐽
𝛽
{𝑝 (𝑡)} ,

(34)

which completes the proof of Theorem 2.

Remark 3. For 𝛽 = 𝛼, Theorem 2 immediately reduces to
Theorem 1.

3. Special Cases

As implications of our main results, we consider some
consequent results of Theorems 1 and 2 by suitably choosing
the function 𝑝(𝑡). Other classes of no weighted inequalities
are also obtained. To this end, let us set 𝑝(𝑡) = (log 𝑡)𝜆 (𝜆 ∈

[0,∞), 𝑡 ∈ (1,∞)); thenTheorems 1 and 2 yield the following
results.

Corollary 4. Let 𝑓 and 𝑔 be two differentiable functions on
[1,∞). If 𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈ 𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟−1 + 𝑠−1 =
1, then, for all 𝑡 > 1, 𝜆 ∈ [0,∞) and 𝛼 > 0,

2



Γ (1 + 𝜆)

Γ (1 + 𝜆 + 𝛼)
(log 𝑡)𝜆+𝛼

𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑓 (𝑡)}

𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑔 (𝑡)}



≤


𝑓
𝑟


𝑔
𝑠

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1
(log 𝜏)𝜆(log 𝜌)𝜆

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠
𝑡

Γ
2
(1 + 𝜆)

Γ2 (1 + 𝜆 + 𝛼)
(log 𝑡)2𝜆+2𝛼.

(35)
Corollary 5. Let 𝑓 and 𝑔 be two differentiable functions on
[1,∞). If 𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈ 𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟−1 + 𝑠−1 =
1, then


Γ (1 + 𝜆)

Γ (1 + 𝜆 + 𝛼)
(log 𝑡)𝜆+𝛼

𝐻
𝐽
𝛽
{(log 𝑡)𝜆𝑓 (𝑡) 𝑔 (𝑡)}

+
Γ (1 + 𝜆)

Γ (1 + 𝜆 + 𝛽)
(log 𝑡)𝜆+𝛽

𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑓 (𝑡)}

𝐻
𝐽
𝛽
{(log 𝑡)𝜆𝑔 (𝑡)}

−
𝐻
𝐽
𝛽
{(log 𝑡)𝜆𝑓 (𝑡)}

𝐻
𝐽
𝛼
{(log 𝑡)𝜆𝑔 (𝑡)}



≤


𝑓
𝑟


𝑔
𝑠

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1
(log 𝜏)𝜆(log 𝜌)𝜆

𝜏𝜌

×
𝜏 − 𝜌

 𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠
𝑡

Γ
2
(1 + 𝜆)

Γ (1 + 𝜆 + 𝛼) Γ (1 + 𝜆 + 𝛽)
(log 𝑡)2𝜆+𝛼+𝛽,

(36)
for all 𝑡 > 1, 𝛼 > 0, 𝛽 > 0, and 𝜆 ∈ [0,∞).

Further, if we put 𝜆 = 0 in Corollaries 4 and 5 (or set
𝑝(𝑡) = 1 inTheorems 1 and 2), we obtain the following results.

Corollary 6. Let 𝑓 and 𝑔 be two differentiable functions on
[1,∞). If 𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈ 𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟−1 + 𝑠−1 =
1, then, for all 𝑡 > 1 and 𝛼 > 0,

2



(log 𝑡)𝛼

Γ (1 + 𝛼)
𝐻
𝐽
𝛼
{𝑓 (𝑡) 𝑔 (𝑡)} −

𝐻
𝐽
𝛼
{𝑓 (𝑡)}

𝐻
𝐽
𝛼
{𝑔 (𝑡)}



≤


𝑓
𝑟


𝑔
𝑠

Γ2 (𝛼)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛼−1 𝜏 − 𝜌


𝜏𝜌
𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠

𝑡(log 𝑡)2𝛼

Γ2 (1 + 𝛼)
.

(37)
Corollary 7. Let 𝑓 and 𝑔 be two differentiable functions on
[1,∞). If 𝑓 ∈ 𝐿𝑟([1,∞)), 𝑔 ∈ 𝐿 𝑠([1,∞)), 𝑟 > 1, 𝑟−1 +𝑠−1 =
1, then



(log 𝑡)𝛼

Γ (1 + 𝛼)
𝐻
𝐽
𝛽
{𝑓 (𝑡) 𝑔 (𝑡)} +

(log 𝑡)𝛽

Γ (1 + 𝛽)
𝐻
𝐽
𝛼
{𝑓 (𝑡) 𝑔 (𝑡)}

−
𝐻
𝐽
𝛼
{𝑓 (𝑡)}

𝐻
𝐽
𝛽
{𝑔 (𝑡)} −

𝐻
𝐽
𝛽
{𝑓 (𝑡)}

𝐻
𝐽
𝛼
{𝑔 (𝑡)}





6 Abstract and Applied Analysis

≤


𝑓
𝑟


𝑔
𝑠

Γ (𝛼) Γ (𝛽)
∬

𝑡

1

(log 𝑡
𝜏
)

𝛼−1

(log 𝑡

𝜌
)

𝛽−1 𝜏 − 𝜌


𝜏𝜌
𝑑𝜏 𝑑𝜌

≤

𝑓
𝑟


𝑔
𝑠

𝑡(log 𝑡)𝛼+𝛽

Γ (1 + 𝛼) Γ (1 + 𝛽)
,

(38)

for all 𝑡 > 1, 𝛼 > 0, and 𝛽 > 0.

We conclude our paper by remarking that we have intro-
duced new general Chebyshev type inequalities involving
Hadamard fractional integral operators. By suitably specializ-
ing the arbitrary function 𝑝(𝑡), one can further easily obtain
additional fractional integral inequalities from our main
results (Theorems 1 and 2).
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Revista Técnica de la Facultad de Ingenierı́a Universidad del
Zulia. In press.

[20] D. Baleanu and S. D. Purohit, “Chebyshev type integral
inequalities involving the fractional hypergeometric operators,”
Abstract and Applied Analysis, vol. 2014, Article ID 609160, 10
pages, 2014.

[21] D. Baleanu, S. D. Purohit, and P. Agarwal, “On fractional inte-
gral inequalities involving hypergeometric operators,” Chinese
Journal of Mathematics , vol. 2014, Article ID 609476, 5 pages,
2014.

[22] J. Tariboon, S. K. Ntouyas, and W. Sudsutad, “Some new
Riemann-Liouville fractional integral inequalities,” Interna-
tional Journal of Mathematics and Mathematical Sciences, vol.
2014, Article ID 869434, 6 pages, 2014.

[23] J. Hadamard, “Essai sur l’etude des fonctions donnees par leur
developpment de Taylor,” Journal de Mathématiques Pures et
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