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We introduce the generalized convex function on fractal sets 𝑅𝛼 (0 < 𝛼 ≤ 1) of real line numbers and study the properties of the
generalized convex function. Based on these properties, we establish the generalized Jensen’s inequality and generalized Hermite-
Hadamard’s inequality. Furthermore, some applications are given.

1. Introduction

Let 𝑓 : 𝐼 ⊆ 𝑅 → 𝑅. For any 𝑥
1
, 𝑥
2
∈ 𝐼 and 𝜆 ∈ [0, 1], if the

following inequality

𝑓 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ≤ 𝜆𝑓 (𝑥

1
) + (1 − 𝜆) 𝑓 (𝑥

2
) (1)

holds, then 𝑓 is called a convex function on 𝐼.
The convexity of functions plays a significant role inmany

fields, for example, in biological system, economy, optimiza-
tion, and so on [1, 2]. And many important inequalities are
established for the class of convex functions. For example,
Jensen’s inequality and Hermite-Hadamard’s inequality are
the best known results in the literature, which can be stated
as follows.

Jensen’s Inequality [3]. Assume that 𝑓 is a convex function on
[𝑎, 𝑏]. Then, for any 𝑥

𝑖
∈ [𝑎, 𝑏] and 𝜆

𝑖
∈ [0, 1] (𝑖 = 1, 2, . . . , 𝑛)

with ∑
𝑛

𝑖=1
𝜆
𝑖
= 1, we have

𝑓(

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝜆
𝑖
𝑓 (𝑥
𝑖
) . (2)

Hermite-Hadamard’s Inequality [4]. Let 𝑓 be a convex func-
tion on [𝑎, 𝑏] with 𝑎 < 𝑏. If 𝑓 is integral on [𝑎, 𝑏], then

𝑓(
𝑎 + 𝑏

2
) ≤

1

𝑏 − 𝑎
∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 ≤
𝑓 (𝑎) + 𝑓 (𝑏)

2
. (3)

In recent years, the fractal theory has received signifi-
cantly remarkable attention from scientists and engineers. In
the sense of Mandelbrot, a fractal set is the one whose Haus-
dorff dimension strictly exceeds the topological dimension
[5–9]. Many researchers studied the properties of functions
on fractal space and constructedmany kinds of fractional cal-
culus by using different approaches (see [10–14]). Particularly,
in [13], Yang stated the analysis of local fractional functions
on fractal space systematically, which includes local fractional
calculus and the monotonicity of function.

Inspired by these investigations, we will introduce the
generalized convex function on fractal sets and establish
the generalized Jensen’s inequality and generalized Hermite-
Hadamard’s inequality related to generalized convex func-
tion. We will focus our attention on the convexity since a
function 𝑓 is concave if and only if −𝑓 is convex. So, every
result for the convex function can be easily restated in terms
of concave functions.

The paper is organized as follows. In Section 2, we
state the operations with real line number on fractal sets
and give the definitions of the local fractional derivatives
and local fractional integral. In Section 3, we introduce the
definition of the generalized convex function on fractal sets
and study the properties of the generalized convex functions.
In Section 4, we establish the generalized Jensen’s inequality
and generalized Hermite-Hadamard’s inequality on fractal
sets. In Section 5, some applications are given on fractal sets
by means of the generalized Jensen’s inequality.
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2. Preliminaries

Recall the set 𝑅𝛼 of real line numbers and use Gao-Yang-
Kang’s idea to describe the definitions of the local fractional
derivative and local fractional integral.

Recently, the theory of Yang’s fractional sets [13] was
introduced as follows.

For 0 < 𝛼 ≤ 1, we have the following𝛼-type set of element
sets.

𝑍
𝛼: the 𝛼-type set of the integer is defined as the set

{0
𝛼

, ±1
𝛼

, ±2
𝛼

, . . . , ±𝑛
𝛼

, . . .}.

𝑄
𝛼: the 𝛼-type set of the rational numbers is defined

as the set {𝑚𝛼 = (𝑝/𝑞)
𝛼

: 𝑝 ∈ 𝑍, 𝑞 ̸= 0}.

𝐽
𝛼: the 𝛼-type set of the irrational numbers is defined
as the set {𝑚𝛼 ̸= (𝑝/𝑞)

𝛼

: 𝑝 ∈ 𝑍, 𝑞 ̸= 0}.

𝑅
𝛼: the 𝛼-type set of the real line numbers is defined

as the set 𝑅𝛼 = 𝑄
𝛼

∪ 𝐽
𝛼.

If 𝑎𝛼, 𝑏𝛼, and 𝑐
𝛼 belong to the set 𝑅𝛼 of real line numbers,

then one has the following:

(1) 𝑎𝛼 + 𝑏
𝛼 and 𝑎

𝛼

𝑏
𝛼 belong to the set 𝑅𝛼;

(2) 𝑎𝛼 + 𝑏
𝛼

= 𝑏
𝛼

+ 𝑎
𝛼

= (𝑎 + 𝑏)
𝛼

= (𝑏 + 𝑎)
𝛼;

(3) 𝑎𝛼 + (𝑏
𝛼

+ 𝑐
𝛼

) = (𝑎 + 𝑏)
𝛼

+ 𝑐
𝛼;

(4) 𝑎𝛼𝑏𝛼 = 𝑏
𝛼

𝑎
𝛼

= (𝑎𝑏)
𝛼

= (𝑏𝑎)
𝛼;

(5) 𝑎𝛼(𝑏𝛼𝑐𝛼) = (𝑎
𝛼

𝑏
𝛼

)𝑐
𝛼;

(6) 𝑎𝛼(𝑏𝛼 + 𝑐
𝛼

) = 𝑎
𝛼

𝑏
𝛼

+ 𝑎
𝛼

𝑐
𝛼;

(7) 𝑎𝛼 + 0
𝛼

= 0
𝛼

+ 𝑎
𝛼

= 𝑎
𝛼 and 𝑎

𝛼

1
𝛼

= 1
𝛼

𝑎
𝛼

= 𝑎
𝛼.

Let us now state some definitions about the local frac-
tional calculus on 𝑅

𝛼.

Definition 1 (see [13]). A nondifferentiable function 𝑓 : 𝑅 →

𝑅
𝛼, 𝑥 → 𝑓(𝑥) is called local fractional continuous at 𝑥

0
, if,

for any 𝜀 > 0, there exists 𝛿 > 0, such that

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑥
0
)
󵄨󵄨󵄨󵄨 < 𝜀
𝛼 (4)

holds for |𝑥 − 𝑥
0
| < 𝛿, where 𝜀, 𝛿 ∈ 𝑅. If 𝑓(𝑥) is local

fractional continuous on the interval (𝑎, 𝑏), one denotes
𝑓(𝑥) ∈ 𝐶

𝛼
(𝑎, 𝑏).

Definition 2 (see [13]). The local fractional derivative of 𝑓(𝑥)
of order 𝛼 at 𝑥 = 𝑥

0
is defined by

𝑓
(𝛼)

(𝑥
0
) =

𝑑
𝛼

𝑓(𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼

(𝑓 (𝑥) − 𝑓 (𝑥
0
))

(𝑥 − 𝑥
0
)
𝛼

, (5)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥
0
)) = Γ(1 + 𝛼)(𝑓(𝑥) − 𝑓(𝑥

0
)).

If there exists 𝑓((𝑘+1)𝛼)(𝑥) =

𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐷
𝛼

𝑥
⋅ ⋅ ⋅ 𝐷
𝛼

𝑥
𝑓(𝑥) for any 𝑥 ∈

𝐼 ⊆ 𝑅, then one denotes 𝑓 ∈ 𝐷
(𝑘+1)𝛼

(𝐼), where 𝑘 = 0, 1, 2, . . ..

Definition 3 (see [13]). The local fractional integral of the
function 𝑓(𝑥) of order 𝛼 is defined by

𝑎
𝐼
(𝛼)

𝑏
𝑓 (𝑥) =

1

Γ (1 + 𝑎)
∫

𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝑎)
lim
Δ𝑡→0

𝑁−1

∑

𝑗=0

𝑓 (𝑡
𝑗
) (Δ𝑡
𝑗
)
𝛼

,

(6)

with Δ𝑡
𝑗
= 𝑡
𝑗+1

− 𝑡
𝑗
and Δ𝑡 = max{Δ𝑡

𝑗
| 𝑗 = 1, 2, . . . , 𝑁 − 1},

where [𝑡
𝑗
, 𝑡
𝑗+1

], 𝑗 = 0, . . . , 𝑁 − 1, and 𝑡
0
= 𝑎 < 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
<

⋅ ⋅ ⋅ < 𝑡
𝑁−1

< 𝑡
𝑁

= 𝑏 is a partition of the interval [𝑎, 𝑏].

Here, it follows that
𝑎
𝐼
(𝛼)

𝑎
𝑓(𝑥) = 0 if 𝑎 = 𝑏 and

𝑎
𝐼
(𝛼)

𝑏
𝑓(𝑥) = −

𝑏
𝐼
(𝛼)

𝑎
𝑓(𝑥) if 𝑎 < 𝑏. If, for any 𝑥 ∈ [𝑎, 𝑏], there

exists
𝑎
𝐼
(𝛼)

𝑥
𝑓(𝑥), then it is denoted by 𝑓(𝑥) ∈ 𝐼

(𝛼)

𝑥
[𝑎, 𝑏].

Lemma 4 (see [13] generalized local fractional Taylor theo-
rem). Suppose that 𝑓(𝑘+1)𝛼(𝑥) ∈ 𝐶

𝛼
(𝐼), for interval 𝐼 ⊆ 𝑅,

𝑘 = 0, 1, . . . , 𝑛, 0 < 𝛼 ≤ 1. And let 𝑥
0
∈ [𝑎, 𝑏]. Then, for any

𝑥 ∈ 𝐼, there exists at least one point 𝜉, which lies between the
points 𝑥 and 𝑥

0
, such that

𝑓 (𝑥) =

𝑛

∑

𝑘=0

𝑓
(𝑘𝛼)

(𝑥
0
)

Γ (1 + 𝑘𝑎)
(𝑥 − 𝑥

0
)
𝑘𝛼

+
𝑓
((𝑛+1)𝛼)

(𝜉)

Γ (1 + (𝑛 + 1) 𝑎)
(𝑥 − 𝑥

0
)
(𝑛+1)𝛼

.

(7)

Remark 5. When 𝐼 ⊆ 𝑅 is an open interval (𝑎, 𝑏), Yang
[13] has given the proof for the generalized local fractional
Taylor theorem. In fact, using the generalized local fractional
Lagrange’s theorem and following the proof of the class Taylor
theorem,we can show that, for any interval 𝐼 ⊆ 𝑅, the formula
is also true.

3. Generalized Convex Functions

From an analytical point of view, we have the following
definition.

Definition 6. Let 𝑓 : 𝐼 ⊆ 𝑅 → 𝑅
𝛼. For any 𝑥

1
, 𝑥
2
∈ 𝐼 and

𝜆 ∈ [0, 1], if the following inequality

𝑓 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) ≤ 𝜆
𝛼

𝑓 (𝑥
1
) + (1 − 𝜆)

𝛼

𝑓 (𝑥
2
) (8)

holds, then 𝑓 is called a generalized convex function on 𝐼.

Definition 7. Let 𝑓 : 𝐼 → 𝑅
𝛼. For any 𝑥

1
̸= 𝑥
2
∈ 𝐼 and 𝜆 ∈

[0, 1], if the following inequality

𝑓 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

2
) < 𝜆
𝛼

𝑓 (𝑥
1
) + (1 − 𝜆)

𝛼

𝑓 (𝑥
2
) (9)

holds, then 𝑓 is called a generalized strictly convex function
on 𝐼 ⊆ 𝑅.

It follows immediately, from the given definitions, that
a generalized strictly convex function is also generalized
convex. But, the converse is not true. And if these two
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inequalities are reversed, then 𝑓 is called a generalized
concave function or generalized strictly concave function,
respectively.

Here are two basic examples of generalized strictly convex
functions:

(1) 𝑓(𝑥) = 𝑥
𝛼𝑝, 𝑥 ≥ 0, 𝑝 > 1;

(2) 𝑓(𝑥) = 𝐸
𝛼
(𝑥
𝛼

), 𝑥 ∈ 𝑅, where 𝐸
𝛼
(𝑥
𝛼

) =

∑
∞

𝑘=0
(𝑥
𝛼𝑘

/Γ(1 + 𝑘𝛼)) is the Mittag-Leffler function.

Note that the linear function 𝑓(𝑥) = 𝑎
𝛼

𝑥
𝛼

+ 𝑏
𝛼, 𝑥 ∈ 𝑅 is

generalized convex and also generalized concave.
We will focus our attention on the convexity since a

function 𝑓 is concave if and only if −𝑓 is convex. So, every
result for the convex function can be easily restated in terms
of concave functions.

In the following, we will study the properties of the
generalized convex functions.

Theorem 8. Let 𝑓 : 𝐼 → 𝑅
𝛼. Then 𝑓 is a generalized convex

function if and only if the inequality

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)

(𝑥
1
− 𝑥
2
)
𝛼

≤
𝑓 (𝑥
3
) − 𝑓 (𝑥

2
)

(𝑥
3
− 𝑥
2
)
𝛼

(10)

holds, for any 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐼 with 𝑥

1
< 𝑥
2
< 𝑥
3
.

Proof. In fact, taking 𝜆 = (𝑥
3
−𝑥
2
)/(𝑥
3
−𝑥
1
), then 𝑥

2
= 𝜆𝑥
1
+

(1 − 𝜆)𝑥
3
. And by the generalized convexity of 𝑓, we get

𝑓 (𝑥
2
) = 𝑓 (𝜆𝑥

1
+ (1 − 𝜆) 𝑥

3
) ≤ 𝜆
𝛼

𝑓 (𝑥
1
) + (1 − 𝜆)

𝛼

𝑓 (𝑥
3
)

= (
𝑥
3
− 𝑥
2

𝑥
3
− 𝑥
1

)

𝛼

𝑓 (𝑥
1
) + (

𝑥
2
− 𝑥
1

𝑥
3
− 𝑥
1

)

𝛼

𝑓 (𝑥
3
) .

(11)

From the above formula, it is easy to see that

𝑓 (𝑥
1
) − 𝑓 (𝑥

2
)

(𝑥
1
− 𝑥
2
)
𝛼

≤
𝑓 (𝑥
3
) − 𝑓 (𝑥

2
)

(𝑥
3
− 𝑥
2
)
𝛼

. (12)

Reversely, for any two points 𝑥
1
, 𝑥
3
(𝑥
1
< 𝑥
3
) on 𝐼 ⊆ 𝑅,

we take 𝑥
2
= 𝜆𝑥
1
+(1−𝜆)𝑥

3
for 𝜆 ∈ (0, 1). Then 𝑥

1
< 𝑥
2
< 𝑥
3

and 𝜆 = (𝑥
3
− 𝑥
2
)/(𝑥
3
− 𝑥
1
). Using the above inverse process,

we have

𝑓 (𝜆𝑥
1
+ (1 − 𝜆) 𝑥

3
) ≤ 𝜆
𝛼

𝑓 (𝑥
1
) + (1 − 𝜆)

𝛼

𝑓 (𝑥
3
) . (13)

So, 𝑓 is a convex function on 𝐼 ⊆ 𝑅.
In the same way, it can be shown that 𝑓 is a generalized

convex function on 𝐼 ⊆ 𝑅 if and only if

𝑓 (𝑥
2
) − 𝑓 (𝑥

1
)

(𝑥
2
− 𝑥
1
)
𝛼

≤
𝑓 (𝑥
3
) − 𝑓 (𝑥

1
)

(𝑥
3
− 𝑥
1
)
𝛼

≤
𝑓 (𝑥
3
) − 𝑓 (𝑥

2
)

(𝑥
3
− 𝑥
2
)
𝛼

,

(14)

for any 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝐼 with 𝑥

1
< 𝑥
2
< 𝑥
3
.

Theorem 9. Letting 𝑓 ∈ 𝐷
𝛼
(𝐼), then the following conditions

are equivalent:
(1) 𝑓 is a generalized convex function on 𝐼,
(2) 𝑓(𝛼) is an increasing function on 𝐼,
(3) for any 𝑥

1
, 𝑥
2
∈ 𝐼,

𝑓 (𝑥
2
) ≥ 𝑓 (𝑥

1
) +

𝑓
(𝛼)

(𝑥
1
)

Γ (1 + 𝛼)
(𝑥
2
− 𝑥
1
)
𝛼

. (15)

Proof. (1 → 2) Let 𝑥
1
, 𝑥
2
∈ 𝐼 with 𝑥

1
< 𝑥
2
. And take ℎ > 0

which is small enough such that 𝑥
1
− ℎ, 𝑥

2
+ ℎ ∈ 𝐼. Since

𝑥
1
− ℎ < 𝑥

1
< 𝑥
2
< 𝑥
2
+ ℎ, then usingTheorem 8 we have

Γ (1 + 𝑎)
𝑓 (𝑥
1
) − 𝑓 (𝑥

1
− ℎ)

ℎ𝛼

≤ Γ (1 + 𝑎)
𝑓 (𝑥
2
) − 𝑓 (𝑥

1
)

(𝑥
2
− 𝑥
1
)
𝛼

≤ Γ (1 + 𝑎)
𝑓 (𝑥
2
+ ℎ) − 𝑓 (𝑥

2
)

ℎ𝛼
.

(16)

Since 𝑓 ∈ 𝐷
𝛼
(𝐼), then letting ℎ → 0

+, it follows that

𝑓
(𝛼)

(𝑥
1
) ≤ Γ (1 + 𝑎)

𝑓 (𝑥
2
) − 𝑓 (𝑥

1
)

(𝑥
2
− 𝑥
1
)
𝛼

≤ 𝑓
(𝛼)

(𝑥
2
) . (17)

So, 𝑓(𝛼) is increasing in 𝐼.
(2 → 3) Take 𝑥

1
, 𝑥
2

∈ 𝐼. Without loss of generality,
we can assume that 𝑥

1
< 𝑥
2
. Since 𝑓

(𝛼) is increasing in
the interval 𝐼, then applying the generalized local fractional
Taylor theorem, we have

𝑓 (𝑥
2
) − 𝑓 (𝑥

1
) =

𝑓
(𝛼)

(𝜉)

Γ (1 + 𝑎)
(𝑥
2
− 𝑥
1
)
𝛼

≥
𝑓
(𝛼)

(𝑥
1
)

Γ (1 + 𝑎)
(𝑥
2
− 𝑥
1
)
𝛼

,

(18)

where 𝜉 ∈ (𝑥
1
, 𝑥
2
). That is to say,

𝑓 (𝑥
2
) ≥ 𝑓 (𝑥

1
) +

𝑓
(𝛼)

(𝑥
1
)

Γ (1 + 𝑎)
(𝑥
2
− 𝑥
1
)
𝛼

. (19)

(3 → 1) For any 𝑥
1
, 𝑥
2
∈ 𝐼, we let 𝑥

3
= 𝜆𝑥
1
+ (1 − 𝜆)𝑥

2
,

where 0 < 𝜆 < 1. It is easy to see that 𝑥
1
−𝑥
3
= (1−𝜆)(𝑥

1
−𝑥
2
)

and 𝑥
2
− 𝑥
3
= 𝜆(𝑥

2
− 𝑥
1
). Then from the third condition, we

have

𝑓 (𝑥
1
) ≥ 𝑓 (𝑥

3
) +

𝑓
(𝛼)

(𝑥
3
)

Γ (1 + 𝑎)
(𝑥
1
− 𝑥
3
)
𝛼

= 𝑓 (𝑥
3
) + (1 − 𝜆)

𝛼
𝑓
(𝛼)

(𝑥
3
)

Γ (1 + 𝑎)
(𝑥
1
− 𝑥
2
)
𝛼

,

𝑓 (𝑥
2
) ≥ 𝑓 (𝑥

3
) +

𝑓
(𝛼)

(𝑥
3
)

Γ (1 + 𝑎)
(𝑥
2
− 𝑥
3
)
𝛼

= 𝑓 (𝑥
3
) + 𝜆
𝛼
𝑓
(𝛼)

(𝑥
3
)

Γ (1 + 𝑎)
(𝑥
2
− 𝑥
1
)
𝛼

.

(20)
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At the above two formulas, multiply 𝜆
𝛼 and (1 − 𝜆)

𝛼,
respectively; then we obtain

𝜆
𝛼

𝑓 (𝑥
1
) + (1 − 𝜆)

𝛼

𝑓 (𝑥
2
)

≥ 𝑓 (𝑥
3
) = 𝑓 (𝜆𝑥

1
+ (1 − 𝜆) 𝑥

2
) .

(21)

So 𝑓 is a generalized convex function on 𝐼.

Corollary 10. Let 𝑓 ∈ 𝐷
2𝛼
(𝑎, 𝑏). Then 𝑓 is a generalized

convex function (or a generalized concave function) if and only
if

𝑓
(2𝛼)

(𝑥) ≥ 0 (𝑜𝑟 𝑓
(2𝛼)

(𝑥) ≤ 0) , (22)

for any 𝑥 ∈ (𝑎, 𝑏).

4. Some Inequalities

Theorem 11 (generalized Jensen’s inequality). Assume that 𝑓
is a generalized convex function on [𝑎, 𝑏]. Then for any 𝑥

𝑖
∈

[𝑎, 𝑏] and 𝜆
𝑖
∈ [0, 1] (𝑖 = 1, 2, . . . , 𝑛) with ∑

𝑛

𝑖=1
𝜆
𝑖
= 1, we

have

𝑓(

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝜆
𝛼

𝑖
𝑓 (𝑥
𝑖
) . (23)

Proof. When 𝑛 = 2, the inequality is obviously true. Assume
that for 𝑛 = 𝑘 the inequality is also true. Then, for any
𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
∈ [𝑎, 𝑏] and 𝛾

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑘, with

∑
𝑘

𝑖=1
𝛾
𝑖
= 1, we have

𝑓(

𝑘

∑

𝑖=1

𝛾
𝑖
𝑥
𝑖
) ≤

𝑘

∑

𝑖=1

𝛾
𝛼

𝑖
𝑓 (𝑥
𝑖
) . (24)

If 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
, 𝑥
(𝑘+1)

∈ [𝑎, 𝑏] and 𝜆
𝑖

> 0 for 𝑖 =

1, 2, . . . , 𝑘 + 1 with ∑
𝑘+1

𝑖=1
𝜆
𝑖
= 1, then one sets up 𝛾

𝑖
= 𝜆
𝑖
/(1 −

𝜆
𝑘+1

), 𝑖 = 1, 2, . . . , 𝑘. It is easy to see ∑𝑘
𝑖=1

𝛾
𝑖
= 1.

Thus,

𝑓 (𝜆
1
𝑥
1
+ 𝜆
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝜆

𝑘
𝑥
𝑘
+ 𝜆
𝑘+1

𝑥
𝑘+1

)

= 𝑓((1 − 𝜆
𝑘+1

)
𝜆
1
𝑥
1
+ 𝜆
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝜆

𝑘
𝑥
𝑘

1 − 𝜆
𝑘+1

+ 𝜆
𝑘+1

𝑥
𝑘+1

)

≤ (1 − 𝜆
𝑘+1

)
𝛼

𝑓 (𝛾
1
𝑥
1
+ 𝛾
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝛾

𝑘
𝑥
𝑘
) + 𝜆
𝛼

𝑘+1
𝑓 (𝑥
𝑘+1

)

≤ (1 − 𝜆
𝑘+1

)
𝛼

[𝛾
𝛼

1
𝑓 (𝑥
1
) + 𝛾
𝛼

2
𝑓 (𝑥
2
) + ⋅ ⋅ ⋅ + 𝛾

𝛼

𝑘
𝑓 (𝑥
𝑘
)]

+ 𝜆
𝛼

𝑘+1
𝑓 (𝑥
𝑘+1

)

= (1 − 𝜆
𝑘+1

)
𝛼

[(
𝜆
1

1 − 𝜆
𝑘+1

)

𝛼

𝑓 (𝑥
1
) + (

𝜆
2

1 − 𝜆
𝑘+1

)

𝛼

𝑓 (𝑥
2
)

+ ⋅ ⋅ ⋅ + (
𝜆
𝑘

1 − 𝜆
𝑘+1

)

𝛼

𝑓 (𝑥
𝑘
)] + 𝜆

𝛼

𝑘+1
𝑓 (𝑥
𝑘+1

)

=

𝑘

∑

𝑖=1

𝜆
𝛼

𝑖
𝑓 (𝑥
𝑖
) .

(25)

So, the mathematical induction gives the proof of
Theorem 11.

Corollary 12. Let 𝑓 ∈ 𝐷
2𝛼
[𝑎, 𝑏] and 𝑓

(2𝛼)

(𝑥) ≥ 0 for any 𝑥 ∈

[𝑎, 𝑏]. Then for any 𝑥
𝑖
∈ [𝑎, 𝑏] and 𝜆

𝑖
∈ [0, 1] (𝑖 = 1, 2, . . . , 𝑛)

with ∑
𝑛

𝑖=1
𝜆
𝑖
= 1 we have

𝑓(

𝑛

∑

𝑖=1

𝜆
𝑖
𝑥
𝑖
) ≤

𝑛

∑

𝑖=1

𝜆
𝛼

𝑖
𝑓 (𝑥
𝑖
) . (26)

Using the generalized Jensen’s inequality and the convexity
of functions, we can also get some integral inequalities.

In [13], Yang established the generalized Cauchy-
Schwarz’s inequality by the estimate 𝑎𝛼/𝑝𝑏𝛼/𝑞 ≤ (𝑎

𝛼

/𝑝)(𝑏
𝛼

/𝑞),
where 𝑎𝛼, 𝑏𝛼 > 0, 𝑝, 𝑞 ≥ 1, and (1/𝑝) + (1/𝑞) = 1.

Now, via the generalized Jensen’s inequality, we will
give another proof for the generalized Cauchy-Schwarz’s
inequality.

Corollary 13 (generalized Cauchy-Schwarz’s inequality). Let
|𝑎
𝑘
| > 0, |𝑏

𝑘
| > 0, 𝑘 = 1, 2, . . . , 𝑛. Then we have

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

𝛼

≤ (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

2𝛼

)

1/2

(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2𝛼

)

1/2

. (27)

Proof. Take 𝑓(𝑥) = 𝑥
2𝛼. It is easy to see that 𝑓(2𝛼)(𝑥) ≥ 0 for

any 𝑥 ∈ (𝑎, 𝑏).
Take

𝜆
𝑘
=

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2
, 𝑥

𝑘
=

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

. (28)

Then 0 ≤ 𝜆
𝑘
≤ 1 (𝑘 = 1, 2, . . . , 𝑛) with ∑

𝑛

𝑘=1
𝜆
𝑘
= 1.

Thus, by Jensen’s inequality 𝑓(∑
𝑛

𝑘=1
𝜆
𝑘
𝑥
𝑘
) ≤

∑
𝑛

𝑘=1
𝜆
(𝛼)

𝑘
𝑓(𝑥
𝑘
), we have

[

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

]

2𝛼

≤

𝑛

∑

𝑘=1

[

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2

∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2
]

𝛼

[

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

]

2𝛼

. (29)

The above formula can be reduced to

[

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2
]

2𝛼

≤

𝑛

∑

𝑘=1

[

[

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

2𝛼

(∑
𝑛

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2

)
𝛼

]

]

, (30)

which implies that

[

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨]

2𝛼

≤

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

2𝛼

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2𝛼

. (31)

Thus we have

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

𝛼󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

𝛼

≤ (

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨

2𝛼

)

1/2

(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

2𝛼

)

1/2

. (32)
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Theorem 14 (generalized Hermite-Hadamard’s inequality).
Let 𝑓(𝑥) ∈ 𝐼

(𝛼)

𝑥
[𝑎, 𝑏] be a generalized convex function on [𝑎, 𝑏]

with 𝑎 < 𝑏. Then

𝑓(
𝑎 + 𝑏

2
) ≤

Γ (1 + 𝛼)

(𝑏 − 𝑎)
𝛼 𝑎

𝐼
(𝛼)

𝑏
𝑓 (𝑥) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2𝛼
. (33)

Proof. Let 𝑥 = 𝑎 + 𝑏 − 𝑦. Then

∫

(𝑎+𝑏)/2

𝑎

𝑓 (𝑥) (𝑑𝑥)
𝛼

= ∫

𝑏

(𝑎+𝑏)/2

𝑓 (𝑎 + 𝑏 − 𝑦) (𝑑𝑦)
𝛼

. (34)

Furthermore, when 𝑥 ∈ [(𝑎 + 𝑏)/2, 𝑏], 𝑎 + 𝑏 − 𝑥 ∈ [𝑎, (𝑎 +

𝑏)/2]. And by the convexity of 𝑓, we have

𝑓 (𝑎 + 𝑏 − 𝑥) + 𝑓 (𝑥) ≥ 2
𝛼

𝑓(
𝑎 + 𝑏

2
) . (35)

Thus

∫

𝑏

𝑎

𝑓 (𝑥) (𝑑𝑥)
𝛼

= ∫

(𝑎+𝑏)/2

𝑎

𝑓 (𝑥) (𝑑𝑥)
𝛼

+ ∫

𝑏

(𝑎+𝑏)/2

𝑓 (𝑥) (𝑑𝑥)
𝛼

= ∫

𝑏

(𝑎+𝑏)/2

[𝑓 (𝑎 + 𝑏 − 𝑥) + 𝑓 (𝑥)] (𝑑𝑥)
𝛼

≥ ∫

𝑏

(𝑎+𝑏)/2

2
𝛼

𝑓(
𝑎 + 𝑏

2
) (𝑑𝑥)

𝛼

= (𝑏 − 𝑎)
𝛼

𝑓(
𝑎 + 𝑏

2
) .

(36)

For another part, we first note that if 𝑓 is a generalized
convex function, then, for 𝑡 ∈ [0, 1], it yields

𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏) ≤ 𝑡
𝛼

𝑓 (𝑎) + (1 − 𝑡)
𝛼

𝑓 (𝑏) ,

𝑓 ((1 − 𝑡) 𝑎 + 𝑡𝑏) ≤ (1 − 𝑡)
𝛼

𝑓 (𝑎) + 𝑡
𝛼

𝑓 (𝑏) .

(37)

By adding these inequalities we have

𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏) + 𝑓 ((1 − 𝑡) 𝑎 + 𝑡𝑏)

≤ 𝑡
𝛼

𝑓 (𝑎) + (1 − 𝑡)
𝛼

𝑓 (𝑏) + (1 − 𝑡)
𝛼

𝑓 (𝑎) + 𝑡
𝛼

𝑓 (𝑏)

= 𝑓 (𝑎) + 𝑓 (𝑏) .

(38)

Then, integrating the resulting inequality with respect to 𝑡

over [0, 1], we obtain

1

Γ (1 + 𝛼)
∫

1

0

[𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏) + 𝑓 ((1 − 𝑡) 𝑎 + 𝑡𝑏)] (𝑑𝑡)
𝛼

≤
1

Γ (1 + 𝛼)
∫

1

0

(𝑓 (𝑎) + 𝑓 (𝑏)) (𝑑𝑡)
𝛼

.

(39)

It is easy to see that

1

Γ (1 + 𝛼)
∫

1

0

[𝑓 (𝑡𝑎 + (1 − 𝑡) 𝑏) + 𝑓 ((1 − 𝑡) 𝑎 + 𝑡𝑏)] (𝑑𝑡)
𝛼

=
2
𝛼

(𝑏 − 𝑎)
𝛼 𝑎

𝐼
(𝛼)

𝑏
𝑓 (𝑥) ,

1

Γ (1 + 𝛼)
∫

1

0

(𝑓 (𝑎) + 𝑓 (𝑏)) (𝑑𝑡)
𝛼

=
𝑓 (𝑎) + 𝑓 (𝑏)

Γ (1 + 𝛼)
.

(40)

So,

Γ (1 + 𝛼)

(𝑏 − 𝑎)
𝛼 𝑎

𝐼
(𝛼)

𝑏
𝑓 (𝑥) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2𝛼
. (41)

Combining the inequalities (36) and (41), we have

𝑓(
𝑎 + 𝑏

2
) ≤

Γ (1 + 𝛼)

(𝑏 − 𝑎)
𝛼 𝑎

𝐼
(𝛼)

𝑏
𝑓 (𝑥) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2𝛼
. (42)

Note that it will be reduced to the class Hermite-
Hadamard inequality if 𝛼 = 1.

5. Applications of Generalized
Jensen’s Inequality

Using the generalized Jensen’s inequality, we can get some
inequalities.

Example 15. Let 𝑎 > 0, 𝑏 > 0 and 𝑎
3𝛼

+𝑏
3𝛼

≤ 2
𝛼. Then 𝑎+ 𝑏 ≤

2.

Proof. Let 𝑓(𝑥) = 𝑥
3𝛼, 𝑥 ∈ (0, +∞). It is easy to see that 𝑓 is

a generalized convex function.
So,

𝑓(
𝑎 + 𝑏

2
) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2𝛼
. (43)

That is,

(𝑎 + 𝑏)
3𝛼

8𝛼
≤

𝑎
3𝛼

+ 𝑏
3𝛼

2𝛼
≤ 1
𝛼

. (44)

Thus, we conclude that 𝑎 + 𝑏 ≤ 2.

Example 16. Let 𝑥, 𝑦 ∈ 𝑅. Then

𝐸
𝛼
((

𝑥 + 𝑦

2
)

𝛼

) ≤
1

2𝛼
(𝐸
𝛼
(𝑥
𝛼

) + 𝐸
𝛼
(𝑦
𝛼

)) , (45)

where 𝐸
𝛼
(𝑥
𝛼

) = ∑
∞

𝑘=0
(𝑥
𝛼𝑘

/Γ(1 + 𝑘𝛼)) is the Mittag-Leffler
function.

Proof. Take 𝑓(𝑥) = 𝐸
𝛼
(𝑥
𝛼

). It is easy to see (𝐸
𝛼
(𝑥
𝛼

))
(2𝛼)

=

𝐸
𝛼
(𝑥
𝛼

) > 0. So, the generalized Jensen’s inequality gives

𝐸
𝛼
((

𝑥 + 𝑦

2
)

𝛼

) ≤
1

2𝛼
(𝐸
𝛼
(𝑥
𝛼

) + 𝐸
𝛼
(𝑦
𝛼

)) . (46)
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Example 17 (power mean inequality). Let 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
> 0

and 0 < 𝑠 < 𝑡 or 𝑠 < 𝑡 < 0. Denote
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Then 𝑆
𝑠
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𝑡
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Proof. Consider the following.

Case I (0 < 𝑠 < 𝑡). Take 𝑓(𝑥) = 𝑥
(𝑡/𝑠)𝛼, 𝑥 > 0. Then
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By the generalized Jensen’s inequality, we have
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That is,
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From the above formula, it is easy to see
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So, we have 𝑆
𝑠
≤ 𝑆
𝑡
.

Case II (𝑠 < 𝑡 < 0). Letting 𝑏
𝑖
= 1/𝑎
𝑖
and applying the case for

0 < −𝑡 < −𝑠, we can get the conclusion.

Example 18. If 𝑎, 𝑏, 𝑐 > 0 and 𝑎 + 𝑏 + 𝑐 = 1, then find the
minimum of
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Solution. Note that 0 < 𝑎, 𝑏, 𝑐 < 1. Let 𝑓(𝑥) = (𝑥 + 1/𝑥)
10𝛼,

𝑥 ∈ (0, 1). Then, via the formula
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By the generalized Jensen’s inequality,
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(55)

So, the minimum is 1010𝛼/39𝛼, when 𝑎 = 𝑏 = 𝑐 = 1/3.

Example 19. If 𝑎, 𝑏, 𝑐, 𝑑 > 0 and 𝑐
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Canceling 𝑎
𝛼

𝑐
𝛼

+ 𝑏
𝛼

𝑑
𝛼 on both sides, we get the desired

result.

6. Conclusion

In the paper, we introduce the definition of generalized
convex function on fractal sets. Based on the definition, we
study the properties of the generalized convex functions and
establish two important inequalities: the generalized Jensen’s
inequality and generalized Hermite-Hadamard’s inequality.
At last, we also give some applications for these inequalities
on fractal sets.
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Aequationes Mathematicae, vol. 28, no. 3, pp. 229–232, 1985.

[5] K. M. Kolwankar and A. D. Gangal, “Local fractional calculus:
a calculus for fractal space-time,” in Fractals: Theory and
Applications in Engineering, pp. 171–181, Springer, London, UK,
1999.

[6] A. K. Golmankhaneh and D. Baleanu, “On a new measure on
fractals,” Journal of Inequalitiesand Applications, vol. 522, no. 1,
pp. 1–9, 2013.

[7] B. B. Mandelbrot, The Fractal Geometry of Nature, Macmillan,
New York, NY, USA, 1983.

[8] K. Falconer, Fractal Geometry: Mathematical Foundations and
Applications, John Wiley & Sons, Hoboken, NJ, USA, 2nd
edition, 2003.

[9] G. A. Edgar, Integral, Probability, and Fractal Measures,
Springer, New York, NY, USA, 1998.

[10] A. Carpinteri, B. Chiaia, and P. Cornetti, “Static-kinematic
duality and the principle of virtual work in the mechanics of
fractal media,” Computer Methods in Applied Mechanics and
Engineering, vol. 191, no. 1-2, pp. 3–19, 2001.

[11] W. Zhong, F. Gao, and X. Shen, “Applications of Yang-Fourier
transform to local fractional equations with local fractional
derivative and local fractional integral,” Advanced Materials
Research, vol. 461, pp. 306–310, 2012.

[12] A. Babakhani and V. Daftardar-Gejji, “On calculus of local
fractional derivatives,” Journal of Mathematical Analysis and
Applications, vol. 270, no. 1, pp. 66–79, 2002.

[13] X. J. Yang, Advanced Local Fractional Calculus and Its Applica-
tions, World Science, New York, NY, USA, 2012.

[14] Y. Zhao, D.-F. Cheng, and X.-J. Yang, “Approximation solu-
tions for local fractional Schrödinger equation in the one-
dimensional Cantorian system,” Advances in Mathematical
Physics, vol. 2013, Article ID 291386, 5 pages, 2013.


