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This paper studies the existence of solutions for a boundary value problem of nonlinear fractional hybrid differential inclusions by
using a fixed point theorem due to Dhage (2006). The main result is illustrated with the aid of an example.

1. Introduction

The intensive development of fractional calculus in recent
years clearly indicates the popularity of the subject. It has been
mainly due to applications of the subject in various fields such
as physics, mechanics, chemistry, and engineering [1–3]. In
particular, the tools of fractional calculus have considerably
improved the modelling techniques and several important
models describing biological, ecological, and engineering
phenomena are now based on fractional derivatives and
integrals. Another factor attracting the attention of many
scientists is the nonlocal nature of fractional-order operators
which accounts for the hereditary properties of many mate-
rials and processes.

Much of the work on fractional differential equations
involves either Riemann-Liouville derivative or Caputo
derivative; for instance, see [4–33] and the references therein.
However, there is another concept of fractional derivative
in the literature which was introduced by Hadamard in
1892 [34]. This derivative is known as Hadamard fractional
derivative and differs from aforementioned derivatives in the
sense that the kernel of the integral in its definition contains
logarithmic function of arbitrary exponent. Further details of
Hadamard fractional derivatives and integrals can be found
in [2].

In this paper, we study a Dirichlet boundary value
problem of nonlinear fractional hybrid differential inclusions
given by

𝐷
𝛼

(
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 1 < 𝑡 < 𝑒, 1 < 𝛼 ≤ 2,

𝑥 (1) = 𝑥 (𝑒) = 0,

(1)

where 𝐷
𝛼 is the Hadamard fractional derivative, 𝑓 ∈

𝐶([1, 𝑒] ×R,R \ {0}), 𝐹 : [1, 𝑒] ×R → P(R) is a multivalued
map, andP(R) is the family of all nonempty subsets of R.

The main objective of the present study is to establish
an existence result for the problem (1) under Lipschitz and
Carathéodory conditions by applying a fixed point theorem
in Banach algebras due to Dhage [35]. Some recent details on
hybrid fractional differential equations can be found in [36–
40] and the references cited therein. We emphasize that our
work is new in the present configuration and contributes to
the present literature on Hadamard type fractional differen-
tial equations and inclusions [41–44].

The paper is organized as follows: in Section 2 we recall
some preliminary facts that we need in the sequel and Section
3 contains our main result.
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2. Preliminaries

2.1. Fractional Calculus

Definition 1 (see [2]). The Hadamard derivative of fractional
order 𝑞 for a function 𝑔 : [1,∞) → R is defined as

𝐷
𝑞

𝑔 (𝑡) =
1

Γ (𝑛 − 𝑞)
(𝑡

𝑑

𝑑𝑡
)

𝑛

∫

𝑡

1

(log 𝑡

𝑠
)

𝑛−𝑞−1𝑔 (𝑠)

𝑠
𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(2)

where [𝑞] denotes the integer part of the real number 𝑞 and
log(⋅) = log

𝑒
(⋅).

Definition 2 (see [2]). The Hadamard fractional integral of
order 𝑞 for a function 𝑔 is defined as

𝐼
𝑞

𝑔 (𝑡) =
1

Γ (𝑞)
∫

𝑡

1

(log 𝑡

𝑠
)

𝑞−1𝑔 (𝑠)

𝑠
𝑑𝑠, 𝑞 > 0, (3)

provided the integral exists.

Lemma 3. Let 𝑦 ∈ 𝐶([1, 𝑒],R). Then the integral solution of
the problem

𝐷
𝛼

(
𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) = 𝑦 (𝑡) , 1 < 𝑡 < 𝑒, 1 < 𝛼 ≤ 2,

𝑥 (1) = 𝑥 (𝑒) = 0,

(4)

is given by

𝑥 (𝑡)

= 𝑓 (𝑡, 𝑥 (𝑡)) (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1𝑦 (𝑠)

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1𝑦 (𝑠)

𝑠
𝑑𝑠) ,

𝑡 ∈ [1, 𝑒] .

(5)

Proof . As argued in [2], the solution of Hadamard differen-
tial equation in (4) can be written as

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1𝑦 (𝑠)

𝑠
𝑑𝑠

+ 𝑐
1
(log 𝑡)

𝛼−1

+ 𝑐
2
(log 𝑡)

𝛼−2

) ,

(6)

where 𝑐
1
, 𝑐
2

∈ R are arbitrary constants. Using the given
boundary conditions in (6), we find that

𝑐
2
= 0, 𝑐

1
= −

1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1𝑦 (𝑠)

𝑠
𝑑𝑠. (7)

Substituting the values of 𝑐
1
, 𝑐
2
in (6), we obtain (5).

Remark 4. It is interesting to note that solution (5) for 𝛼 =

2 corresponds to the one for a Dirichlet boundary value
problem of Cauchy-Euler type hybrid differential equation:

𝑡
2
𝑑
2

𝑑𝑡2
(

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) + 𝑡

𝑑

𝑑𝑡
(

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
) = 𝑦 (𝑡) . (8)

2.2.Multivalued Analysis. Let us recall some basic definitions
on multivalued maps [45, 46].

For a normed space (𝑋, ‖ ⋅ ‖), let Pcl(𝑋) = {𝑌 ∈ P(𝑋) :

𝑌 is closed}, P
𝑏
(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌 is bounded},

Pcp(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌 is compact}, and Pcp,cv(𝑋) =

{𝑌 ∈ P(𝑋) : 𝑌 is compact and convex}. A multivalued
map 𝐺 : 𝑋 → P(𝑋) is convex (closed) valued if 𝐺(𝑥)

is convex (closed) for all 𝑥 ∈ 𝑋. The map 𝐺 is bounded
on bounded sets if 𝐺(B) = ∪

𝑥∈B𝐺(𝑥) is bounded in 𝑋 for
all B ∈ P

𝑏
(𝑋) (i.e., sup

𝑥∈B{sup{|𝑦| : 𝑦 ∈ 𝐺(𝑥)}} < ∞).
𝐺 is called upper semicontinuous (u.s.c.) on 𝑋 if for each
𝑥
0
∈ 𝑋, the set 𝐺(𝑥

0
) is a nonempty closed subset of 𝑋, and

if for each open set 𝑁 of 𝑋 containing 𝐺(𝑥
0
), there exists

an open neighborhood N
0
of 𝑥
0
such that 𝐺(N

0
) ⊆ 𝑁.

𝐺 is said to be completely continuous if 𝐺(B) is relatively
compact for every B ∈ P

𝑏
(𝑋). If the multivalued map 𝐺 is

completely continuous with nonempty compact values, then
𝐺 is u.s.c. if and only if𝐺 has a closed graph; that is, 𝑥

𝑛
→ 𝑥
∗
,

𝑦
𝑛

→ 𝑦
∗
, and 𝑦

𝑛
∈ 𝐺(𝑥

𝑛
) imply 𝑦

∗
∈ 𝐺(𝑥

∗
). 𝐺 has a

fixed point if there is 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥). The fixed
point set of the multivalued operator 𝐺 will be denoted by
Fix𝐺. A multivalued map 𝐺 : [0; 1] → Pcl(R) is said to be
measurable if for every 𝑦 ∈ R, the function

𝑡 󳨃󳨀→ 𝑑 (𝑦, 𝐺 (𝑡)) = inf {󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 : 𝑧 ∈ 𝐺 (𝑡)} (9)

is measurable.
Let 𝐶([1, 𝑒],R) denote a Banach space of continu-

ous functions from [1, 𝑒] into R with the norm ‖𝑥‖ =

sup
𝑡∈[1,𝑒]

|𝑥(𝑡)|. Let 𝐿1([1, 𝑒],R) be the Banach space of mea-
surable functions 𝑥 : [1, 𝑒] → R which are Lebesgue
integrable and normed by ‖𝑥‖

𝐿
1 = ∫
𝑒

1

|𝑥(𝑡)|𝑑𝑡.

Definition 5. A multivalued map 𝐹 : [1, 𝑒] × R → P(R) is
said to be Carathéodory if

(i) 𝑡 󳨃→ 𝐹(𝑡, 𝑥) is measurable for each 𝑥 ∈ R;
(ii) 𝑥 󳨃→ 𝐹(𝑡, 𝑥) is upper semicontinuous for almost all

𝑡 ∈ [1, 𝑒].
Further, a Carathéodory function 𝐹 is called 𝐿

1-
Carathéodory if

(iii) there exists a function 𝑔 ∈ 𝐿
1

([1, 𝑒],R+) such that

‖𝐹 (𝑡, 𝑥)‖ = sup {|V| : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑔 (𝑡) , (10)

for all 𝑥 ∈ R and for a.e. 𝑡 ∈ [1, 𝑒].

For each 𝑦 ∈ 𝐶([1, 𝑒],R), define the set of selections of 𝐹
by

𝑆
𝐹,𝑦

:= {V ∈ 𝐿
1

([1, 𝑒] ,R) : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡))

for a.e. 𝑡 ∈ [1, 𝑒] } .

(11)
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The following lemma is used in the sequel.

Lemma 6 (see [47]). Let𝑋 be a Banach space. Let 𝐹 : [1, 𝑒] ×

R → Pcp,cv(𝑋) be an 𝐿
1-Carathéodory multivalued map,

and let Θ be a linear continuous mapping from 𝐿
1

([1, 𝑒], 𝑋)

to 𝐶([1, 𝑒], 𝑋). Then the operator

Θ ∘ 𝑆
𝐹
: 𝐶 ([1, 𝑒] , 𝑋) 󳨀→ P

𝑐𝑝,𝑐V (𝐶 ([1, 𝑒] , 𝑋)) ,

𝑥 󳨃󳨀→ (Θ ∘ 𝑆
𝐹
) (𝑥) = Θ (𝑆

𝐹,𝑥
)

(12)

is a closed graph operator in 𝐶([1, 𝑒], 𝑋) × 𝐶([1, 𝑒], 𝑋).

The following fixed point theorem due to Dhage [35] is
fundamental in the proof of our main result.

Lemma 7. Let 𝑋 be a Banach algebra, let 𝐴 : 𝑋 → 𝑋 be a
single-valued, and let 𝐵 : 𝑋 → P

𝑐𝑝,𝑐V(𝑋) be a multivalued
operator satisfying the following:

(a) 𝐴 is single-valued Lipschitz with a Lipschitz constant 𝑘,
(b) 𝐵 is compact and upper semicontinuous,
(c) 2𝑀𝑘 < 1, where 𝑀 = ‖𝐵(𝑋)‖.

Then either

(i) the operator inclusion 𝑥 ∈ 𝐴𝑥𝐵𝑥 has a solution, or
(ii) the setE = {𝑢 ∈ 𝑋 | 𝜇𝑢 ∈ 𝐴𝑢𝐵𝑢, 𝜇 > 1} is unbounded.

3. Main result

Definition 8. A function 𝑥 ∈ 𝐴𝐶
1

([1, 𝑒],R) is called a
solution of the problem (1) if there exists a function V ∈

𝐿
1

([1, 𝑒],R) with V(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)), a.e. on [1, 𝑒] such that
𝐷
𝛼

(𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡))) = V(𝑡), a.e. on [1, 𝑒] and 𝑥(1) = 𝑥(𝑒) = 0.

Theorem 9. Assume that

(H1) the function𝑓 : [1, 𝑒]×R → R\{0} is continuous and
there exists a bounded function𝜙, with bound ‖𝜙‖, such
that 𝜙(𝑡) > 0, a.e 𝑡 ∈ [1, 𝑒] and

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ,

𝑎.𝑒. 𝑡 ∈ [1, 𝑒] , ∀𝑥, 𝑦 ∈ R;

(13)

(H2) 𝐹 : [1, 𝑒] × R → P(R) is 𝐿1-Carathéodory and has
nonempty compact and convex values;

(H3) there exists a positive real number 𝑅 such that

𝑅 >
(2𝐹
0
/Γ (𝛼))

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

1 − (2
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩 /Γ (𝛼))
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝐿1

, (14)

where (2‖𝜙‖/Γ(𝛼))‖𝑔‖
𝐿
1 < 1/2, 𝐹

0
= sup

𝑡∈[1,𝑒]
|𝐹(𝑡, 0)|.

Then, the boundary value problem (1) has at least one
solution on [1, 𝑒].

Proof . Set𝑋 = 𝐶([1, 𝑒],R). Transform the problem (1) into a
fixed point problem. Consider the operatorN : 𝑋 → P(𝑋)

defined by

N𝑥 (𝑡)

= {ℎ ∈ 𝐶 ([1, 𝑒] ,R) : ℎ (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡))

× (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)

× ∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠) ,

V ∈ 𝑆
𝐹,𝑥

} .

(15)

Now we define two operatorsA : 𝑋 → 𝑋 by

A𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [1, 𝑒] , (16)

andB : 𝑋 → P(𝑋) by

B𝑥 (𝑡) = {ℎ ∈ 𝐶 ([1, 𝑒] ,R) : ℎ (𝑡)

=
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)

× ∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠,

V ∈ 𝑆
𝐹,𝑥

} .

(17)

Observe thatN(𝑥) = A𝑥B𝑥.Wewill show that the operators
A andB satisfy all the conditions of Lemma 7. For the sake
of convenience, we split the proof into several steps.

Step 1.A is a Lipschitz on𝑋; that is, (a) of Lemma 7 holds.
Let 𝑥, 𝑦 ∈ 𝑋. Then by (H

1
), we have

󵄨󵄨󵄨󵄨A𝑥 (𝑡) −A𝑦 (𝑡)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

≤ 𝜙 (𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

(18)

for all 𝑡 ∈ [1, 𝑒]. Taking the supremum over the interval [1, 𝑒],
we obtain

󵄩󵄩󵄩󵄩A𝑥 −A𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 (19)

for all 𝑥, 𝑦 ∈ 𝑋. So A is a Lipschitz on 𝑋 with Lipschitz
constant ‖𝜙‖.

Step 2. The multivalued operator B is compact and upper
semicontinuous on𝑋; that is, (b) of Lemma 7 holds.
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First, we show thatB has convex values. Let 𝑢
1
, 𝑢
2
∈ B𝑥.

Then there are V
1
, V
2
∈ 𝑆
𝐹,𝑥

such that

𝑢
𝑖
(𝑡) =

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V
𝑖
(𝑠)

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V
𝑖
(𝑠)

𝑠
𝑑𝑠,

(20)

𝑖 = 1, 2, 𝑡 ∈ [1, 𝑒]. For any 𝜃 ∈ [0, 1], we have

𝜃𝑢
1
(𝑡) + (1 − 𝜃) 𝑢

2
(𝑡)

=
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 [𝜃𝑢
1
(𝑠) + (1 − 𝜃) 𝑢

2
(𝑠)]

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)

× ∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 [𝜃𝑢
1
(𝑠) + (1 − 𝜃) 𝑢

2
(𝑠)]

𝑠
𝑑𝑠

=
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠,

(21)

where V(𝑡) = 𝜃V
1
(𝑡) + (1 − 𝜃)V

2
(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)) for all 𝑡 ∈ [1, 𝑒].

Hence 𝜃𝑢
1
(𝑡) + (1 − 𝜃)𝑢

2
(𝑡) ∈ B𝑥 and consequently B𝑥 is

convex for each 𝑥 ∈ 𝑋. As a result B defines a multivalued
operatorB : 𝑋 → Pcv(𝑋).

Next we show that B maps bounded sets into bounded
sets in𝑋. To see this, let𝑄 be a bounded set in𝑋. Then there
exists a real number 𝑟 > 0 such that ‖𝑥‖ ≤ 𝑟, for all 𝑥 ∈ 𝑄.

Now for each ℎ ∈ B𝑥, there exists a V ∈ 𝑆
𝐹,𝑥

such that

ℎ (𝑡) =
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠.

(22)

Then, for each 𝑡 ∈ [1, 𝑒], using (H
2
) we have

|B𝑥 (𝑡)| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

−(log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1𝑔 (𝑠)

𝑠
𝑑𝑠

+ (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1𝑔 (𝑠)

𝑠
𝑑𝑠

≤
2

Γ (𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

.

(23)

This further implies that

‖ℎ‖ ≤
2

Γ (𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

, (24)

and soB(𝑋) is uniformly bounded.
Next we show that B maps bounded sets into equicon-

tinuous sets. Let 𝑄 be, as above, a bounded set and ℎ ∈ B𝑥

for some 𝑥 ∈ 𝑄. Then there exists a V ∈ 𝑆
𝐹,𝑥

such that

ℎ (𝑡) =
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠, 𝑡 ∈ [1, 𝑒] .

(25)

Then, for any 𝜏
1
, 𝜏
2
∈ [1, 𝑒], we have

󵄨󵄨󵄨󵄨ℎ (𝜏
2
) − ℎ (𝜏

1
)
󵄨󵄨󵄨󵄨

≤

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
1

1

(log 𝜏
1

𝑠
)

𝛼−1
1

𝑠
𝑑𝑠 − ∫

𝜏
2

1

(log 𝜏
2

𝑠
)

𝛼−1
1

𝑠
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

󵄨󵄨󵄨󵄨󵄨
(log 𝜏
2
)
𝛼−1

− (log 𝜏
1
)
𝛼−1󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1
1

𝑠
𝑑𝑠

≤

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
1

1

[(log 𝜏
1

𝑠
)

𝛼−1

− (log 𝜏
2

𝑠
)

𝛼−1

]
1

𝑠
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜏
2

𝜏
1

(log 𝜏
2

𝑠
)

𝛼−1
1

𝑠
𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

󵄨󵄨󵄨󵄨󵄨
(log 𝜏
2
)
𝛼−1

− (log 𝜏
1
)
𝛼−1󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1
1

𝑠
𝑑𝑠.

(26)

Obviously the right hand side of the above inequality
tends to zero independently of 𝑥 ∈ 𝑄 as 𝑡

2
− 𝑡
1

→ 0.
Therefore, it follows by the Arzelá-Ascoli theorem that B :

𝑋 → P(𝑋) is completely continuous.
In our next step, we show that B has a closed graph. Let

𝑥
𝑛

→ 𝑥
∗
, ℎ
𝑛

∈ B(𝑥
𝑛
) and ℎ

𝑛
→ ℎ
∗
. Then we need to

show that ℎ
∗

∈ B. Associated with ℎ
𝑛
∈ B(𝑥

𝑛
), there exists

V
𝑛
∈ 𝑆
𝐹,𝑥
𝑛

such that, for each 𝑡 ∈ [1, 𝑒],

ℎ
𝑛
(𝑡) =

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V
𝑛
(𝑠)

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V
𝑛
(𝑠)

𝑠
𝑑𝑠.

(27)

Thus it suffices to show that there exists V
∗

∈ 𝑆
𝐹,𝑥
∗

such
that, for each 𝑡 ∈ [1, 𝑒],

ℎ
∗
(𝑡) =

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V
∗
(𝑠)

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V
∗
(𝑠)

𝑠
𝑑𝑠.

(28)
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Let us consider the linear operator Θ : 𝐿
1

([1, 𝑒],R) →

𝐶([1, 𝑒],R) given by

𝑓 󳨃󳨀→ Θ (V) (𝑡) =
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠.

(29)

Observe that

󵄩󵄩󵄩󵄩ℎ𝑛 (𝑡) − ℎ
∗
(𝑡)

󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 (V
𝑛
(𝑠) − V

∗
(𝑠))

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)

× ∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 (V
𝑛
(𝑠) − V

∗
(𝑠))

𝑠
𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0,

as 𝑛 󳨀→ ∞.

(30)

Thus, it follows by Lemma 6 that Θ ∘ 𝑆
𝐹
is a closed graph

operator. Further, we have ℎ
𝑛
(𝑡) ∈ Θ(𝑆

𝐹,𝑥
𝑛

). Since 𝑥
𝑛

→ 𝑥
∗
,

therefore, we have

ℎ
∗
(𝑡) =

1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V
∗
(𝑠)

𝑠
𝑑𝑠

− (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V
∗
(𝑠)

𝑠
𝑑𝑠

(31)

for some V
∗
∈ 𝑆
𝐹,𝑥
∗

.
As a result we have that the operator B is compact and

upper semicontinuous operator on𝑋.

Step 3. Now we show that 2𝑀𝑘 < 1; that is, (c) of Lemma 7
holds.

This is obvious by (H
3
) since we have 𝑀 = ‖𝐵(𝑋)‖ =

sup{|B𝑥| : 𝑥 ∈ 𝑋} ≤ (2/Γ(𝛼))‖𝑔‖
𝐿
1 and 𝑘 = ‖𝜙‖.

Thus all the conditions of Lemma 7 are satisfied and a
direct application of it yields that either conclusion (i) or
conclusion (ii) holds. We show that conclusion (ii) is not
possible.

Let 𝑢 ∈ E be arbitrary. Then we have, for 𝜆 > 1, 𝜆𝑢 ∈

A𝑢(𝑡)B𝑢(𝑡). Then there exists V ∈ 𝑆
𝐹,𝑥

such that, for any 𝜆 >

1, one has

𝑢 (𝑡) = 𝜆
−1

[𝑓 (𝑡, 𝑢 (𝑡))]

× (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠

−(log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1 V (𝑠)
𝑠

𝑑𝑠) ,

(32)

for all 𝑡 ∈ [1, 𝑒]. Then we have

|𝑢 (𝑡)| ≤ 𝜆
−1 󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡))

󵄨󵄨󵄨󵄨

× (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1
|V (𝑠)|

𝑠
𝑑𝑠

+ (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1
|V (𝑠)|

𝑠
𝑑𝑠)

≤ [
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡)) − 𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨]

× (
1

Γ (𝛼)
∫

𝑡

1

(log 𝑡

𝑠
)

𝛼−1
|V (𝑠)|

𝑠
𝑑𝑠

+ (log 𝑡)
𝛼−1 1

Γ (𝛼)
∫

𝑒

1

(log 𝑒

𝑠
)

𝛼−1
|V (𝑠)|

𝑠
𝑑𝑠)

≤ [
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩 ‖𝑢‖ + 𝐹
0
]

2

Γ (𝛼)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

,

(33)

where we have put 𝐹
0
= sup

𝑡∈[1,𝑒]
|𝑓(𝑡, 0)|. Then with ‖𝑢‖ = 𝑅,

we have

𝑅 ≤
(2𝐹
0
/Γ (𝛼))

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

1 − (2
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩 /Γ (𝛼))
󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩𝐿1

. (34)

Thus condition (ii) of Lemma 7 does not hold by (14).
Therefore the operator equation A𝑥B𝑥 and consequently
problem (1) have a solution on [1, 𝑒]. This completes the
proof.

Theorem 10. Assume that (H1) holds. In addition, one sup-
poses that

(H2) there exists a continuous nondecreasing function 𝜓 :

[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐶([1, 𝑒],R+)

such that

‖𝐹(𝑡, 𝑥)‖P := sup {
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)}

≤ 𝑝 (𝑡) 𝜓 (|𝑥|) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [1, 𝑒] ×R;

(35)

(H3) there exists a constant 𝑟 > 0 such that

𝑟 >
(2𝐹
0
/Γ (𝛼))

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑟)

1 − (2
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩 /Γ (𝛼))
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩 𝜓 (𝑟)
, (36)

where

2
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

Γ (𝛼)

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑟) <

1

2
, (37)

and 𝐹
0
= sup

𝑡∈[1,𝑒]
|𝐹(𝑡, 0)|.

Then the boundary value problem (1) has at least one
solution on [1, 𝑒].

Proof. The proof is similar to that of Theorem 9 and is
omitted.
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Example 11. Consider the boundary value problem

𝐷
3/2

[
𝑥 (𝑡)

(1/12) 𝑒
1−𝑡tan−1𝑥 + 2

] ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 1 < 𝑡 < 𝑒,

𝑥 (1) = 𝑥 (𝑒) = 0,

(38)

where 𝐹 : [1, 𝑒] ×R → P(R) is a multivalued map given by

𝑡 󳨀→ 𝐹 (𝑡, 𝑥) = [
|𝑥|
3

10 (|𝑥|
3

+ 3)

,
|sin𝑥|

9 (|sin𝑥| + 1)
+

8

9
] . (39)

By condition (H
1
), 𝜙(𝑡) = 𝑒

1−𝑡

/12 with ‖𝜙‖ = 1/12. For
𝑓 ∈ 𝐹, we have

󵄨󵄨󵄨󵄨󵄨
𝑓
󵄨󵄨󵄨󵄨󵄨
≤ max(

|𝑥|
3

10 (|𝑥|
3

+ 3)

,
|sin𝑥|

9 (|sin𝑥| + 1)
+

8

9
) ≤ 1,

𝑥 ∈ R,

‖𝐹 (𝑡, 𝑥)‖ = sup {
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 1 = 𝑔 (𝑡) , 𝑥 ∈ R.

(40)

Clearly,

2
󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1

Γ (𝛼)
=

(𝑒 − 1)

3√𝜋
≃ 0.323146 <

1

2
(41)

and 𝑅 > 24(𝑒 − 1)/(1 + 3√𝜋 − 𝑒). Hence all the conditions
of Theorem 9 are satisfied and, accordingly, the problem (38)
has a solution on [1, 𝑒].
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