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Diverse movement patterns may be identified when we study a set of moving entities. One of these patterns is known as a V-
formation for it is shaped like the letter V. Informally, a set of entities shows a V-formation if the entities are located on one of
their two characteristic lines. These lines meet in a position where there is just one entity considered the leader of the formation.
Another movement pattern is known as a circular formation for it is shaped like a circle. Informally, circular formations present
a set of entities grouped around a center in which the distance from these entities to the center is less than a given threshold. In
this paper we present a model to identify V-formations and circular formations with outliers. An outlier is an entity which is part
of a formation but is away from it. We also present a model to identify doughnut formations, which are an extension of circular
formations.We present formal rules for ourmodels and an algorithm for detecting outliers.Themodel was validated with NetLogo,
a programming and modeling environment for the simulation of natural and social phenomena.

1. Introduction

Diverse movement patterns may be identified when we study
a set of moving entities, for example, a flock of birds [1] and
a school of fish [2]. One of these patterns is known as a
V-formation for it is shaped like the letter V; see Figure 1.
Another movement pattern is known as a circular formation
for it is shaped like a circle; see Figure 2.

Informally, a set of entities shows a V-formation if the
entities are located on one of their two characteristic lines.
The lines meet in a position where there is just one entity
considered the leader of the formation [3]. Several authors
have analyzed V-formations. In [4, 5], there is an attempt to
explain from a physical point of view the reasons why certain
species of birds, such as Canadian geese (Branta canadensis),
red knots (Calidris canutus), and plovers (Calidris alpina),
tend to fly this way.

Other authors try to simulate V-formations at a computa-
tional level. For instance, Nathan and Barbosa [6] propose a
model based on rules that allows us to generate V-formations
depending on specific parameters.The authors validated their

model using NetLogo [7], a programming and modeling
environment to simulate natural and social phenomena.

On the other hand, a circular formation is a set of entities
grouped around a common center and where the entities’
distance to the center is less than a given threshold. Regarding
related works with circular formations, we identified the
following.

In [8] the authors experimented with a set of data
referring to the movement of different animal species.
It was found that despite being in different ecosystems,
species follow similar behavioral patterns. The authors
also tried to model general grouping behaviors of fish,
birds, insects, and even people. One of these behav-
iors is circular formation in which they identified phys-
ical forces: attraction, repulsion, alignment, and frontal
interaction.

On the other hand, researchers in the field of robotics and
in control theory, inspired by social grouping phenomena and
by the patterns of birds and fish, have developed applications
to coordinate the movement of multivehicle systems. Among
these patterns are circular [9] and V-formations; see Figure 3.
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Figure 1: V-formation in birds. Source: [9].

Figure 2: Circular formation in a fish bank. Source: [21].

On the other hand, regardless of the type of formation,
Reynolds [2, 10] proposes a computer model of coordinated
animal motion for bird flocks and fish schools. His model
considers three simple rules that act upon individuals: (i)
separation: steer to avoid crowding local flockmates, (ii)
alignment: steer towards the average heading of local flock-
mates, and (iii) cohesion: steer to move toward the average
position of local flockmates.

Although the previous works allow the simulation of a
set of moving entities, they are not aimed at the explicit
identification of V-formations and circular formations. The
identification of these types of formations may be useful in
fields as zoology, to analyze themovement of birds [3] andfish
[11], and in the military and videogames where squadrons of
combat planes, ships, and robots usually assume these types
of formations [3, 12]. V-formations also usually appear in
stock markets (stock prices) [13]. In this direction the model
of Andersson et al. [14], although it is not aimed at the explicit
identification of formations, identifies an entity leader in a
set of moving entities. We use their model as the basis for
identifying V-formations and circular formations, as we will
show in our paper.

This paper is organized as follows. In Section 2, we present
our models for V-formations and circular and doughnut
formations, which are an extension of circular formations.
In Section 3, we present support for outliers in our models.
In Section 4, we present experiments. In Section 5, we
conclude the paper and propose future works.

2. V-Formations and Circular and
Doughnut Formations

2.1. Andersson’s Model. Next, we present the essential ele-
ments of Andersson’s model [14].

Consider a set 𝐸 of 𝑛 entities {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} that move in

a space, usually in a region during a time interval [𝑡
1
, 𝑡
𝑓
].

This space is represented by the Euclidian plane. Time is
represented continuously. 𝑇𝑝 denotes an infinite set of time-
points: {𝑡 | 𝑡 ∈ [𝑡

1
, 𝑡
𝑓
]}. On the other hand, 𝑇𝑠 denotes a

finite set of discrete time-points {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑓
}. Every 𝑡

𝑖
∈ 𝑇𝑠

represents a time-step and corresponds to a time-point in
which the position of a moving entity (and perhaps other
data) was recorded. A unit-time-interval is an open interval
between two consecutive time-steps, that is, (𝑡

𝑖−1
, 𝑡
𝑖
), for all

𝑡
𝑖
∈ 𝑇𝑠, 𝑖 ̸= 1.
The coordinates of an entity at a time-point are given by

a pair of functions xpos and ypos, both having the signature
𝐸 × 𝑇𝑝 → Real. Andersson assumes that between two con-
secutive time-steps an entity moves along a straight line with
constant direction and constant velocity.This assumption has
been adopted in other works (see [15–17] for a discussion).
Therefore, in such a model in order to be practical enough,
the recording frequency of the positions of moving objects
should be adapted to the nature of each domain. For example,
when detecting bird formations the elapsed time between two
consecutive time-steps should not be longer than 30 seconds.

Consider an entity 𝑒
𝑖
at a time-point 𝑡, where 𝑡

𝑥−1
< 𝑡 <

𝑡
𝑥
, 𝑡
𝑥
∈ 𝑇𝑠, 𝑥 ̸= 1; then the direction of 𝑒

𝑖
at 𝑡, denoted by

𝑑(𝑒
𝑖
, 𝑡), is the angle specified by the straight line segment

that goes from (xpos(𝑒
𝑖
, 𝑡
𝑥−1

), ypos(𝑒
𝑖
, 𝑡
𝑥−1

)) to (xpos(𝑒
𝑖
, 𝑡
𝑥
),

ypos(𝑒
𝑖
, 𝑡
𝑥
)); see Figure 4.The angle 𝑑(𝑒

𝑖
, 𝑡) is between [0, 2𝜋).

Andersson declares the direction of an entity at a time-step 𝑡
𝑥

to be undefined, because at a time-step an entitymight change
its direction (for more details see [14]).

The front region of an entity 𝑒
𝑖
is a region associated with

𝑒
𝑖
at a time-point 𝑡, where 𝑡

𝑥−1
< 𝑡 < 𝑡

𝑥
, 𝑡
𝑥
∈ 𝑇𝑠, 𝑥 ̸= 1, which

represents the perception region of an entity, for example, a
visual or an auditive range.The front region of 𝑒

𝑖
is defined as

follows: consider three straight line segments 𝑠
0
, 𝑠
1
, and, 𝑠

2
,

each of length 𝑟. Each segment has an endpoint at (xpos(𝑒
𝑖
,

𝑡), ypos(𝑒
𝑖
, 𝑡)). The direction of the segment 𝑠

0
is 𝑑(𝑒

𝑖
, 𝑡).

Segments 𝑠
1
and 𝑠
2
form angles of 𝛼/2 and−𝛼/2 (0 ≤ 𝛼 < 2𝜋)

with regard to segment 𝑠
0
, respectively. The circular sector (a

wedge-shaped region) with a radius 𝑟 (𝑟 ≥ 0), delimited by 𝑠
1

and 𝑠
2
, makes up the front region of 𝑒

𝑖
at 𝑡 and it is denoted

by front(𝑒
𝑖
, 𝑡); see Figure 5.

An entity 𝑒
𝑗
is in front of an entity 𝑒

𝑖
, at a time-point 𝑡

(𝑡 ∈ 𝑇𝑝, 𝑡 ∉ 𝑇𝑠), where 𝑡
𝑥−1

< 𝑡 < 𝑡
𝑥
, 𝑡
𝑥
∈ 𝑇𝑠, 𝑥 ̸= 1, if 𝑒

𝑗

is in the front region of 𝑒
𝑖
, that is, if (xpos(𝑒

𝑗
, 𝑡), ypos(𝑒

𝑗
, 𝑡))

is inside front(𝑒
𝑖
, 𝑡); this is denoted 𝑒

𝑗
∈ front(𝑒

𝑖
, 𝑡) and we

say that 𝑒
𝑖
follows 𝑒

𝑗
(𝑒
𝑖
is a follower of 𝑒

𝑗
) at 𝑡. We consider

an additional restriction to establish that one entity follows
another: let 𝛽 ∈ [0, 𝜋]; then entity 𝑒

𝑖
follows entity 𝑒

𝑗
at 𝑡 if

(i) 𝑒
𝑗
∈ front(𝑒

𝑖
, 𝑡) and (ii) ‖𝑑(𝑒

𝑖
, 𝑡)−𝑑(𝑒

𝑗
, 𝑡)‖ ≤ 𝛽; see Figure 6.

An entity 𝑒
𝑖
is said to follow an entity 𝑒

𝑗
during a time interval

[𝑡
𝑎
, 𝑡
𝑏
], where 𝑡

𝑎
and 𝑡
𝑏
are time-points in 𝑇𝑝, if and only if 𝑒

𝑖

follows 𝑒
𝑗
at 𝑡, for all 𝑡 ∈ [𝑡

𝑎
, 𝑡
𝑏
], 𝑡 ∉ 𝑇𝑠.
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(a) (b)

Figure 3: Robots in circular formation and planes in V-formation. Sources: [11, 12].

y

x

d(ei, t)

(xpos(ei, tx),
(ypos(ei, tx))

(xpos(ei, tx−1),
(ypos(ei, tx−1))

Figure 4: 𝑑(𝑒
𝑖
, 𝑡): angle of entity 𝑒

𝑖
at a time-point 𝑡.
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Figure 5: Front region of an entity 𝑒
𝑖
at a time-point 𝑡.
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Figure 6: Entity 𝑒
𝑖
follows entity 𝑒

𝑗
at a time-point 𝑡.
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Figure 7: An example of a V-formation at a time-point 𝑡.

An entity 𝑒
𝑖
is said to be a leader of a formation during a

time interval 𝐼 = [𝑡
𝑎
, 𝑡
𝑏
], where 𝑡

𝑎
and 𝑡
𝑏
are time-points in

𝑇𝑝, if (i) 𝑒
𝑖
does not follow any entity during 𝐼 and (ii) 𝑒

𝑖
is at

least followed by 𝑚 entities at each time-point 𝑡 ∈ 𝐼, 𝑡 ∉ 𝑇𝑠.
It is said that there is a leadership pattern if 𝑒

𝑖
is a leader of at

least𝑚 entities for at least 𝑘 unit-time-intervals.

2.2. V-Formations. Consider the formation in Figure 7 where
entities displayed aV-formation at a time-point 𝑡, and 𝑒

4
is the

leader entity. Note that if we applied Andersson’s model [14]
to this formation, we would observe that no entity contains
𝑒
4
in its front region. Therefore, this example shows that

Andersson’s model [14] is inadequate to identify leadership
patterns in these types of formations, unless we consider a
wide front region for each entity, as shown in Figure 8. Thus,
the entities on the extremes, 𝑒

1
and 𝑒

7
, will require a wide

front region to be able to contain the leader entity 𝑒
4
; this is

not a realistic assumption in V-formations since an entity’s
visual field is not usually that wide [4].

In the following section, we extend Andersson’s model to
identify leadership patterns in V-formations.
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Figure 8: A V-formation: entities 𝑒
1
and 𝑒

7
would require a wide

front region in order to contain the entity leader 𝑒
4
.

2.3. V-Formation Model. Let 𝐹 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} be a set of

moving entities at a time-point 𝑡, card(𝐹) ≥ 3. 𝐹 is a V-
formation at 𝑡 if the following hold.

(i) There exist nonempty subsets 𝐴 and 𝐵 of 𝐹 such that
card(𝐴) ≥ 2, card(𝐵) ≥ 2, 𝐴 ∪ 𝐵 = 𝐹, and 𝐴 ∩ 𝐵 =

{𝑒
𝑘
}, where 𝑒

𝑘
is said to be the leader entity of the

formation.
(ii) Entities in 𝐴 tend to form a straight line 𝑙

1
at 𝑡.

(iii) Entities in 𝐵 tend to form a straight line 𝑙
2
at 𝑡.

(iv) Straight lines 𝑙
1
and 𝑙
2
meet at position (xpos(𝑒

𝑘
, 𝑡),

ypos(𝑒
𝑘
, 𝑡)).

(v) ∠𝑎𝑝
𝑡
> 0 (the smallest angle defined by straight lines

𝑙
1
and 𝑙
2
at 𝑡).

Regarding conditions (ii) and (iii), to establish if a set
of entities tend to form a straight line, we use Pearson’s
correlation coefficient 𝑟 [18]. Thus, given a set of points
{(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}, 𝑟 indicates how much they

adjust to a straight line (linearity degree). 𝑟 ∈ (−1, 1); if
|𝑟| ≈ 1, then points tend to form a straight line. 𝑟 is calculated
as shown in (1). A threshold 𝜇

𝑝
may be specified by the user

to indicate the linearity degree required for the lines of the
formation; that is, |𝑟| ≥ 𝜇

𝑝
:

𝑟 =
𝑛 ∗ (∑

𝑛

𝑖=1
𝑥
𝑖
∗ 𝑦
𝑖
) − ∑
𝑛

𝑖=1
𝑥
𝑖
∗ ∑
𝑛

𝑖=1
𝑦
𝑖

√[𝑛 ∗ ∑
𝑛

𝑖=1
𝑥
2

𝑖
− (∑
𝑛

𝑖=1
𝑥
𝑖
)
2

]∗[𝑛 ∗ ∑
𝑛

𝑖=1
𝑦
2

𝑖
− (∑
𝑛

𝑖=1
𝑦
𝑖
)
2

]

.

(1)

To obtain the equation for each straight line (𝑦 = 𝑚𝑥 + 𝑏)
characteristic of the formation (𝑙

1
and 𝑙
2
) we may apply the

equations that correspond to the straight line which most
suits a set of points {(𝑥

1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}; see (2).

Table 1 presents the results for the formation in Figure 9:

𝑚 =
𝑛 ∗ (∑

𝑛

𝑖=1
𝑥
𝑖
∗ 𝑦
𝑖
) − ∑
𝑛

𝑖=1
𝑥
𝑖
∗ ∑
𝑛

𝑖=1
𝑦
𝑖

𝑛 ∗ ∑
𝑛

𝑖=1
𝑥
2

𝑖
− (∑
𝑛

𝑖=1
𝑥
𝑖
)
2

,

𝑏 =
∑
𝑛

𝑖=1
𝑦
𝑖
− 𝑚 ∗ ∑

𝑛

𝑖=1
𝑥
𝑖

𝑛
.

(2)

e1 (−4, −1)

e2 (−2, 0)

e3 (0, 2)

e4 (2, 4)

e5 (3, 2)

e6 (4, 1)

e7 (5, −3)

Figure 9: A formation of entities at a time-point 𝑡.

Regarding condition (v), ∠𝑎𝑝
𝑡
is calculated as follows: we

get straight lines 𝑙
1
and 𝑙
2
from the formation and find the

smallest angle between them as follows.

𝑎 is the positive angle in [0, 2𝜋) that is specified by the
line segment that goes from 𝑝

𝑘
to 𝑝
𝑖
, where 𝑝

𝑘
is the

position of 𝑒
𝑘
(leader entity) according to equation for

𝑙
1
and 𝑝

𝑖
is the position of 𝑒

𝑖
∈ 𝐴, 𝑒

𝑖
̸= 𝑒
𝑘
according to

equation for 𝑙
1
.

𝑏 is the positive angle in [0, 2𝜋) that is specified by the
line segment that goes from 𝑝

𝑘
to 𝑝
𝑗
, where 𝑝

𝑘
is the

position of 𝑒
𝑘
(leader entity) according to equation for

𝑙
2
and 𝑝

𝑗
is the position of 𝑒

𝑗
∈ 𝐵, 𝑒

𝑗
̸= 𝑒
𝑘
, according

to equation for 𝑙
2
.

Let 𝑤 = |𝑎 − 𝑏|; then ∠𝑎𝑝
𝑡
= 𝑤 if 𝑤 ≤ 𝜋, and ∠𝑎𝑝

𝑡
= 2𝜋 −

𝑤, otherwise. For example, in the formation in Figure 9, 𝑎 =
0.7 rad (40.36∘), 𝑏 = 5.14 rad (294.44∘), and 𝑤 = 4.43 rad
(254.08∘); thus, ∠𝑎𝑝

𝑡
= 1.84 rad (105.91∘).

In an analogous way to leadership patterns, we say that
there is a V-formation pattern if the set 𝐹 of moving entities
shows a V-formation for at least 𝑘 unit-time-intervals.

2.4. Circular and Doughnut Formations. In this section, we
present a formal model to identify circular formations. We
also present doughnut formations, which are an extension of
circular formations.

2.4.1. Circular Formation Model. Let 𝐹 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} be a

set of moving entities at a time-point 𝑡. Let𝐶 be theminimum
circle that encloses the entities in𝐹 and let𝐶

𝑟
be its radius and

let (𝐶
𝑥
, 𝐶
𝑦
) be its center (Welzl [19] and Megiddo [20] have

showed that this circle can be found in linear time). 𝐹 is a
circular formation at 𝑡 if

(i) 𝐶
𝑟
≤ 𝑅 (a user-given radius with center at (𝐶

𝑥
, 𝐶
𝑦
)),

(ii) the minimum number of members in the formation
is𝑁min.

In Figure 10, we show a circular formation with 9 members.

2.4.2. Doughnut Formation Model. Let 𝐹 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}

be a set of moving entities at a time-point 𝑡. Let 𝐶 be the
minimum circle that encloses the entities in 𝐹 and let 𝐶

𝑟
be

its radius and (𝐶
𝑥
, 𝐶
𝑦
) its center. 𝐹 is a doughnut formation

at 𝑡 if
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Table 1: Applying our model to the formation in Figure 9.

Characteristic line Entities that make up the
characteristic line

Characteristic line
equation Pearson’s coefficient

Entity coordinates: original and
calculated using the

characteristic line equation

𝑙
1 𝐴 = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} 𝑦 = 2.1 + 0.85𝑥 0.99

𝑒
1
: (−4, −1) and (−4, −1.3)

𝑒
2
: (−2, −0) and (−2, 0.4)
𝑒
3
: (0, 2) and (0, 2.1)

𝑒
4
: (2, 4) and (2, 3.8)

𝑙
2 𝐵 = {𝑒

4
, 𝑒
5
, 𝑒
6
, 𝑒
7
} 𝑦 = 8.7 − 2.2𝑥 0.97

𝑒
4
: (2, 4) and (2, 4.3)

𝑒
5
: (3, 2) and (3, 2.1)

𝑒
6
: (4, 1) and (4, 0.1)

𝑒
7
: (5, −3) and (5, −2.3)

(Cx, Cy) Cr

R

Figure 10: A circular formation.

(i) 𝐶
𝑟
≤ 𝑅ext (external radius, a user-given radius with

center at (𝐶
𝑥
, 𝐶
𝑦
)),

(ii) for each entity of the formation its distance 𝑑 regard-
ing (𝐶

𝑥
, 𝐶
𝑦
) is greater than 𝑅int (internal radius, a

user-given radius with center at (𝐶
𝑥
, 𝐶
𝑦
), 𝑅int ≤ 𝐶𝑟),

(iii) the minimum number of members in the formation
is𝑁min.

Note that a circular formation is a particular case of a
doughnut formation, where 𝑅int = 0. In Figure 11, we show
a doughnut formation with 8 members.

Circular and doughnut patterns are also defined in an
analogous way to a V-formation pattern.

3. Outliers

Informally, for V-formations an outlier is an entity which is
away from its characteristic lines, and for circular formations
it is an entity found beyond the radius of the formation (𝑅).

3.1. Outliers in V-Formations. There are sets of entities which
tend to display a V-formation; they may have at a time-point
𝑡 entities which are away from their characteristic lines and
which, therefore, affect Pearson’s coefficient.These entities are
called outliers [22, 23].

There are numerous methods to detect outliers in dif-
ferent domains [24]. Listing 1 presents an algorithm that
receives an array of 𝑚 entities (lineMembers) which form

(Cx, Cy) Cr

Rint

Rext

Figure 11: A doughnut formation.

a characteristic line of a formation at a time-point 𝑡. The
algorithm determines if, after removing a maximum number
of entities on the given array, the Pearson’s coefficient sur-
passes a given threshold 𝜇

𝑝
. For example, if it is permitted

to remove a maximum of two entities from a characteristic
line of the formation, it is considered that the entities in
Figure 12 display a V-formation having two outliers on each
characteristic line.Then, the algorithm receives theminimum
value of Pearson’s coefficient 𝜇

𝑝
which should be met and a

maximum percentage of entities (percentageOutliers) which
are permitted to be removed from the array of entities. This
percentage is calculated with regard to the total number of
entities𝑚.

Example 1. Consider the set of entities in Figure 13 which
would form a straight line if entities 𝑒

2
and 𝑒

4
were not

considered; that is, 𝑒
2
and 𝑒
3
are outliers.

Input algorithm parameters:
𝑙𝑖𝑛𝑒𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = [𝑒

1
, 𝑒
2
, . . . , 𝑒

8
], 𝜇
𝑝
= 0.99 and percentage-

Outliers = 20%.

Step 1. Equation of 𝑙: 𝑦 = −0.754𝑥 + 2.01.

Step 2. nbrOutliers = ⌈8 ∗ 0.2⌉ = 2.

Step 3. 𝑒
2
and 𝑒
4
.

Step 4. lineMembers = [𝑒
1
, 𝑒
3
, 𝑒
5
, 𝑒
6
, 𝑒
7
, 𝑒
8
].
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ALGORITHM: Outlier detection on a characteristic line
INPUT: lineMembers = [𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑚
] //Array of𝑚 entities

𝜇
𝑝
//Threshold for Pearson’s coefficient

percentageOutliers //Maximum percentage of outliers permitted on lineMembers
OUTPUT: outliers = [] // Array of outliers
BEGIN

(1) Obtain the equation of the line 𝑙 which most suits the positions (𝑥, 𝑦) of the entities in lineMembers, see (2).
(2) Get the maximum number of outliers permitted on lineMembers: nbrOutliers = ⌈𝑚 ∗ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑂𝑢𝑡𝑙𝑖𝑒𝑟𝑠/100⌉.
(3) Find the nbrOutliers entities in lineMembers which have the maximum distance to 𝑙.
(4) Remove from lineMembers the entities found in Step 3.
(5) Calculate Pearson’s coefficient using positions (𝑥, 𝑦) of each entity in lineMembers:

Pearson = PearsonCoefficient(lineMembers).
(6) If Pearson ≥ 𝜇

𝑝
then return in outliers the entities found in Step 3.

END

Listing 1: Outlier detection algorithm.

Outliers

Outliers

Leader 

Figure 12: A V-formation with two outliers.

Outliers

e1 (0, 2)

e3 (1, 1)

e5 (2, 0)

e6 (3, −1)

e7 (4, 2)

e8 (5, −3)

e2 (3.2, 1.7)

e4 (4.2, 0.5)

Figure 13: Characteristic line of a V-formation with two outliers.

Step 5. Pearson = PearsonCoefficient (lineMembers) = 1.

Step 6. 1 ≥ 0.99; then return outliers = [𝑒
2
, 𝑒
4
].

The algorithm determines that entities 𝑒
2
and 𝑒

4
are

outliers.Then, we conclude that entities 𝑒
1
, 𝑒
3
, 𝑒
5
, 𝑒
6
, 𝑒
7
, and 𝑒

8

tend to form a straight line with Pearson’s coefficient greater
than 0.99.

3.2. Outliers in Circular Formations. Let 𝐹 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}

be a set of moving entities at a time-point 𝑡. Consider an
entity 𝑒

𝑖
∈ 𝐹 such that 𝐹-{𝑒

𝑖
} is a circular formation and

Outliers

Cr

R

(Cx, Cy)

RmaxOutlier

Figure 14: A circular formation with two outliers.

the distance from 𝑒
𝑖
to (𝐶

𝑥
, 𝐶
𝑦
) (center of the minimum

circle that encloses the entities in 𝐹-{𝑒
𝑖
}) is greater than 𝑅

at 𝑡. This entity may be considered as a member of the
formation which is temporally away from it; that is, 𝑒

𝑖
is

an outlier. To identify this type of entities, we introduce
a parameter 𝑅

𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟
, where 𝑅

𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟
> 𝑅. An entity

is considered an outlier at a time-point 𝑡 if its distance 𝑑
to (𝐶
𝑥
, 𝐶
𝑦
) is greater than 𝑅 and less than 𝑅

𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟
; see

Figure 14.
Since the distancing of the outlier entity from the forma-

tion is temporal, an analyst may introduce a second param-
eter 𝑇

𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛
to control the maximum continuous

time of permitted distancing. That is, if an entity separates
from a circular formation at a time-point 𝑡, then, to be
considered an outlier, it will have to reincorporate (𝑑 ≤ 𝑅) to
the formation before 𝑡 + 𝑇

𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛
. This same aspect

can also be considered for outliers in V-formations.
An analyst can also specify a maximum permitted num-

ber of outliers maxNumberOutliers in the formation. This
value can be calculated from a percentage (percentageOut-
liers) with regard to the total number of entities in the
formation.

3.3. Outliers in Doughnut Formations. Let 𝐹 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}

be a set ofmoving entities at a time-point 𝑡. Consider an entity
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External 
outlier

Internal 
outlier

Cr

Rext

Rint

(Cx, Cy)

RmaxOutlier

Figure 15: Outliers in doughnut formations.

Table 2: Parameters to generate V-formations in NetLogo using
Nathan’s model.

Number of entities 15
Vision parameters

Vision distance 9 patches
Vision cone 1.79 rad (103∘)
Obstruction cone 0.75 rad (43∘)

Movement parameters
Base speed 0.2
Speed change factor 0.15
Updraft distance 9 patches
Too close 3.1
Max. turn 0.14 rad (8∘)

𝑒
𝑖
∈ 𝐹 such that𝐹-{𝑒

𝑖
} is a doughnut formation. For doughnut

formations we consider two types of outliers: external and
internal. An entity 𝑒

𝑖
is considered an external outlier at 𝑡 if

its distance 𝑑 to (𝐶
𝑥
, 𝐶
𝑦
) (center of the minimum circle that

encloses the entities in𝐹-{𝑒
𝑖
}) is greater than𝑅ext and less than

𝑅
𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟

, where 𝑅
𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟

> 𝑅ext. On the other hand, 𝑒
𝑖
is

considered an internal outlier at 𝑡 if 𝑑 is less than 𝑅int; see
Figure 15.

Analogously to circular formations, 𝑇
𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

and
maxNumberOutliers values may be specified, not only for
external outliers but also for internal outliers.

4. Experiments and Discussion

4.1. Experiment for V-Formations. For our experiment, we
used Nathan’s model [6] implemented in NetLogo in order
to generate V-formations. NetLogo is a programmable mod-
eling environment for simulating natural and social phenom-
ena that have been used in previous works cite9, 26.

We worked with a population of 15 entities. The dimen-
sions of the Euclidian plane where the entities move were
𝑥 ∈ [−35, 35] and𝑦 ∈ [−35, 35], where the unit ofmeasure for
distance in NetLogo is a patch. To generate V-formations, we
used the parameters in Table 2. These parameters allow us to
define aspects related to vision and movement of the entities
in Nathan’s model.

For outlier detection, we considered for our model the
following parameters: 𝜇

𝑝
= 0.90 and percentageOutliers =

20%. Our experiment began from tick 40199 and ended
at tick 40400, because in Nathan’s model the generation
of V-formations requires a stabilization time (tick 40199
in our experiment, a tick is the unit of measure for time
in NetLogo). Time-steps were taken in intervals of 20
ticks, for if we consider a smaller step, a change in the
position and direction of an entity would be practically
imperceptible. Thus, the total number of steps was 10.
Figure 16 shows the position of entities at ticks 40200,
40220, 40380, and 40400 and Table 3 summarizes our
results.

4.1.1. Analysis of V-Formation Results. According to the
results shown in Table 3, our model classified several sets of
entities as V-formations. These results agree with what was
expected since Nathan’s model had already stabilized and V-
formations were being generated effectively for those times.
Moreover, it was necessary to apply the outlier detection
algorithm just in two ticks (at ticks 40380 and 40400, see
entities in brackets in Table 3, second column). On the other
hand, we found that formations showed a high linearity
degree since Pearson’s coefficients in all cases were greater
than 0.92.

We also applied Andersson’smodel.We considered𝑚 = 2

and for the front region of each entity the parameters in
Table 2; that is, 𝑠

0
= 9 patches (vision distance) and 𝛼 = 1.79

rad (103∘) (vision cone). Andersson’s model only identified
formations of two and three entities. This is reasonable as
explained in Section 2.2 (see Figure 8). In addition, his model
does not give information about the shape of the formation
that it identifies; even if we considered a wider front region,
his model would not indicate that a formation is, for example,
𝑉-shaped.

4.2. Experiments for Circular and Doughnut Formations. For
experiments with circular and doughnut formations, we
also worked in NetLogo and used Wilensky’s model [26]
(a model inspired in Reynolds’ work [10]), which generates
randomized formations of entities in NetLogo.

We worked with a population of 102 entities. The dimen-
sions of the Euclidian plane where the entities move were
𝑥 ∈ [−35, 35] and 𝑦 ∈ [−35, 35]. To generate formations, we
used the parameters in Table 4.

The model was executed on 1200 consecutive ticks (one
run) and we conducted an analysis of circular formations
and doughnut formations every 400 ticks. We considered
that a set of entities showed a circular/doughnut pattern if
the set showed a circular/doughnut formation during all the
run (1200 ticks). A total of 100 runs were conducted. The
parameters used to detect circular and doughnut formations
are shown in Tables 5 and 6. Table 7 summarizes our results
for the 100 runs. Figure 17 shows the results for one of the
runs.

4.2.1. Analysis of Experiments for Circular and Doughnut
Formations. According to the results shown in Table 7,
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Figure 16: V-formations. Position of entities at ticks (a) 40200, (b) 40220, (c) 40380, and (d) 40400.

the model classified several sets of entities as circular for-
mations and around three remained throughout the 1200
ticks of a run. Regarding doughnut formations, the model
detected around two formations that remained during the
1200 ticks of a run. These results agree with what was
expected since Wilensky’s model had already stabilized
in NetLogo.

With respect to Andersson’s model, we considered 𝑚 =

3 and the parameters in Table 2. His model identified 752
formations during the 100 runs, a value that is greater
than the total number of circular and doughnut formations
identified during the 100 runs. This is reasonable because
with 𝑚 = 3 (note that the average number of entities in
his formations was four) it is expected that any set of at
least three entities that are close to each other (considering
𝑠
0
= 9 patches) will be identified as a formation. How-

ever, as our previous experiments with V-formations, his
model is unable to indicate the shape of a formation that it
identifies.

5. Conclusions and Future Work

In this paper, we propose two models:

(I) a model to identify V-formations with outliers. The
model considers the location of entities to determine
if they form this type of formation during a time
interval;

(II) a model to identify circular formations with outliers.
The model considers the location of entities to deter-
mine if they form this type of formation during a
time interval. In addition, we proposed an extension
to identify doughnut formations with outliers.

The rules for model (I) are flexible since they allow V-
formations which are not necessarily perfectly aligned, in
accordance with the real world. Furthermore, we consider
outliers in V-, circular, and doughnut formations, that is,
members of the formation that could be temporarily away
from it. Our experimental results in NetLogo showed that
our models identified these types of formations in such
simulation environment where they were generated. We also
showed that when we applied Andersson’s model, his model
did not give information about the shape of the formation that
it identified; that is, his model suffers from lack of semantic
information about shape formations.

Regarding future work, we plan to conduct a series of
experiments in the stock market where V-formations usually
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Table 3: V-formations: results of the experiment in NetLogo.

Tick

Formations identified
by our model (leader
bolded, outliers in

brackets)

Pearson’s
coefficient

straight line 1

Pearson’s coefficient
straight line 2 Opening angle V-formation

Formations identified
by Andersson’s model

(leader bolded)

40200

{1, 2, 3, 5, 13, 14} {1, 2, 3} → 0.99 {3, 5, 13, 14} → 0.99 1.5 rad (86.49∘) Yes {2, 3, 5}
{13, 14}

{7, 9, 12} {7, 9} → 1 {9, 12} → 1 1.33 rad (75.92∘) Yes {7, 9, 12}

{0, 4, 6, 8} {0, 4, 6} → 0.98 {6, 8} → 1 0.52 rad (29.97∘) Yes {0, 4}
{6, 8}

{10, 11} NA {10, 11} → 1 NA No {10, 11}

40220

{1, 2, 3, 5, 13, 14} {1, 2, 3} → 0.99 {3, 5, 13, 14} → 0.99 1.51 rad (86.49∘) Yes {2, 3, 5}
{13, 14}

{7, 9, 12} {7, 9} → 1 {9, 12} → 1 1.33 rad (75.92∘) Yes {7, 9, 12}

{0, 4, 6, 8} {0, 4, 6} → 0.98 {6, 8} → 1 0.52 rad (29.97∘) Yes {0, 4}
{6, 8}

{10, 11} NA {10, 11} → 1 NA No {10, 11}
...

40380

{2, [3], 13, 1, 5, 14} {2, 13, 1} → 1 {1, 5, 14} → 0.95 0.79 rad (45.13∘) Yes {1, 5}
{7, 9, 12} {7, 9} → 1 {9, 12} → 1 1.33 rad (75.92∘) Yes {7, 9, 12}
{0, 4, 8} {0, 4} → 1 {4, 8} → 1 2.68 rad (153.74∘) Yes No
{10, 11} NA {10, 11} → 1 NA No {10, 11}
{6} NA NA NA NA NA

40400

{[1], 5, 3, 2, 13, [15]} {5, 3} → 0.93 {3, 2, 13} → 0.98 0.86 rad (49.5∘) Yes {2, 3}
{1, 5}

{7, 9, 12} {7, 9} → 1 {9, 12} → 1 1.33 rad (75.92∘) Yes {7, 9, 12}
{0, 4} NA {0, 4} → 1 NA No No
{10, 11} NA {10, 11} → 1 NA No {10, 11}
{6, 8} NA {6, 8} → 1 NA No No

Table 4: Parameters to generate formations in NetLogo using
Wilensky’s model.

Number of entities 102
Vision parameters
Vision distance 3 patches
Minimum Separation 1 patch

Movement parameters
Maximum angle of rotation 0.08 rad (4.75∘)
Maximum following angle 0.04 rad (2.50∘)
Maximum angle of separation 0.06 rad (3.5∘)

Table 5: Parameters for circular formation detection in NetLogo.

Minimum number of entities (𝑁min) 5
Maximum distance (𝑅) from the center of the
minimum enclosing circle to the entities 15 patches

Maximum percentage of outliers permitted
(percentageOutliers) 30%

𝑅
𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟

30 patches
𝑇
𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

400 ticks

Table 6: Parameters for doughnut formation detection in NetLogo.

Minimum number of entities (𝑁min) 5
Maximum distance (𝑅ext) from the center of the
minimum enclosing circle to the entities 30 patches

Maximum distance (𝑅int) from the center of the
minimum enclosing circle to the entities 10 patches

Maximum percentage of outliers permitted 30%
𝑅
𝑚𝑎𝑥𝑂𝑢𝑡𝑙𝑖𝑒𝑟

50 patches
𝑇
𝑚𝑎𝑥𝑇𝑖𝑚𝑒𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛

400 ticks

appear [13]. Moreover, we plan to extend our models to
identify isolated entities, that is, entities that even if they are
considered members of a formation, they follow their own
path and do not influence the path of other entities [27].
We also plan to propose models to identify patterns such as
convergence, that is, a set of entities that converge or approach
a place; divergence, that is, a set of entities that disperse or
move away from a place [28], and self-organization, that is, a
set of entities that move as a formation without there being a
leader or an entity guiding the rest [29] or that this leader is
unknown to the members [30–32].
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(a) (b)

(c) (d)

Figure 17: Circular and doughnut formations. Position of entities at ticks (a) 0, (b) 400, (c) 800, and (d) 1200.

Table 7: Circular and doughnut formations: results of the experi-
ments in NetLogo.

Circular Doughnut Andersson’s
model

Total number of
patterns identified
during the 100 runs

332 198 752

Average number of
patterns identified in
each run (1200 ticks)

3 2 8

Average number of
entities in each pattern 13 22 4

Average number of
outliers 2 Internal: 3

External: 2 NA
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