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The analytic space 𝐹(𝑝, 𝑞, 𝑠) can be embedded into a Bloch-type space. We establish a distance formula from Bloch-type functions
to 𝐹(𝑝, 𝑞, 𝑠), which generalizes the distance formula from Bloch functions to BMOA by Peter Jones, and to 𝐹(𝑝, 𝑝 − 2, 𝑠) by Zhao.

1. Introduction

Let D denote the unit disc {𝑧 ∈ C : |𝑧| < 1} of the complex
plane C and let T = {𝑧 ∈ C : |𝑧| = 1} be its boundary. As
usual,𝐻(D) denotes the space of all analytic functions on D.

Recall that, for 0 < 𝛼 < ∞, the Bloch-type space B
𝛼
is

the space of analytic functions on D satisfying
𝑓
B
𝛼

= sup
𝑧∈D

(1 − |𝑧|
2

)
𝛼 
𝑓


(𝑧)

< ∞. (1)

The little Bloch-type spaceB0

𝛼
is the subspace of all 𝑓 ∈ B

𝛼

with

lim
|𝑧|→1

(1 − |𝑧|
2

)
𝛼 
𝑓


(𝑧)

= 0. (2)

It is well known thatB
𝛼
is a Banach space under the norm

𝑓


∗

B
𝛼

=
𝑓 (0)

 +
𝑓
B
𝛼

. (3)

In particular, when 𝛼 = 1, B
𝛼
becomes the classic Bloch

space B, which is the maximal Möbius invariant Banach
space that has a decent linear functional; see [1, 2] for more
details on the Bloch spaces.

For 𝑎 ∈ D, the involution of the unit disk is denoted by
𝜎
𝑎
(𝑧) = (𝑎 − 𝑧)/(1 − 𝑎𝑧). It is well known and easy to check

that

1 −
𝜎𝑎 (𝑧)



2

=

(1 − |𝑎|
2

) (1 − |𝑧|
2

)

|1 − 𝑎𝑧|
2

= (1 − |𝑎|
2

)

𝜎


𝑎
(𝑧)

.

(4)

Let 0 < 𝑝 < ∞, −2 < 𝑞 < ∞, 0 ≤ 𝑠 < ∞, and −1 < 𝑞+𝑠 <
∞.The space𝐹(𝑝, 𝑞, 𝑠), introduced by Zhao in [3] and known
as the general family of function spaces, is defined as the set of
𝑓 ∈ 𝐻(D) for which
𝑓


𝑝

𝐹(𝑝,𝑞,𝑠)

= sup
𝑎∈D

∫
D


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞

(1 −
𝜎𝑎 (𝑧)



2

)
𝑠

d𝐴 (𝑧) < ∞,

(5)

where d𝐴(𝑧) is the normalized area measure onD. The space
𝐹
0
(𝑝, 𝑞, 𝑠) consists of all 𝑓 ∈ 𝐹(𝑝, 𝑞, 𝑠) such that

lim
|𝑎|→1

∫
D


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞

(1 −
𝜎𝑎 (𝑧)



2

)
𝑠

d𝐴 (𝑧) = 0. (6)

For appropriate parameter values 𝑝, 𝑞, and 𝑠, 𝐹(𝑝, 𝑞, 𝑠)
coincides with several classical function spaces. For instance,
𝐹(𝑝, 𝑞, 𝑠) = B

(𝑞+2)/𝑝
if 1 < 𝑠 < ∞. The space 𝐹(𝑝, 𝑝, 0) is

the classical Bergman space 𝐿𝑝
𝑎
(D), and 𝐹(𝑝, 𝑝 − 2, 0) is the

classical Besov space 𝐵
𝑝
. The spaces 𝐹(2, 0, 𝑠) are the 𝑄

𝑠

spaces, in particular, 𝐹(2, 0, 1) = BMOA, and the function
space of bounded mean oscillation. See [3–9] for these basic
facts.

For 0 < 𝑠 < ∞, we say that a nonnegative Borel measure
𝜇 defined on D is an 𝑠-Carleson measure if

𝜇
CM

𝑠

= sup
𝐼⊂T

𝜇 (𝑆 (𝐼))

|𝐼|
𝑠

< ∞, (7)
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where the supremumranges over all subarcs 𝐼 ofT , |𝐼|denotes
the arc length of 𝐼, and

𝑆 (𝐼) = {𝑧 = 𝑟𝑒
𝑖𝜃

∈ D : 1 − |𝐼| ≤ 𝑟 < 1, 𝑒
𝑖𝜃

∈ 𝐼} (8)

is the Carleson square based on a subarc 𝐼 ⊆ T . We write
CM

𝑠
for the class of all 𝑠-Carleson measures. Moreover, 𝜇 is

said to be a vanishing 𝑠-Carleson measure if

lim
|𝐼|→0

𝜇 (𝑆 (𝐼))

|𝐼|
𝑠

= 0. (9)

For 𝑓 an analytic function on D, we define

d𝜇
𝑓
(𝑧) =


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

d𝐴 (𝑧) . (10)

It was proved in [3] that 𝑓 ∈ 𝐹(𝑝, 𝑞, 𝑠) if and only if d𝜇
𝑓
is an

𝑠-Carleson measure and 𝑓 ∈ 𝐹
0
(𝑝, 𝑞, 𝑠) if and only if d𝜇

𝑓
is a

vanishing 𝑠-Carleson measure.
Let 𝑋 ⊂ B

𝛼
be an analytic function space. The distance

from a Bloch-type function 𝑓 to𝑋 is defined by

distB
𝛼

(𝑓,𝑋) = inf
𝑔∈𝑋

𝑓 − 𝑔
B
𝛼

. (11)

The following result is obtained by Zhao in [9].

Theorem 1. Suppose 1 ≤ 𝑝 < ∞, 0 < 𝑠 ≤ 1, and 𝑓 ∈ B. The
following two quantities are equivalent:

(1) distB(𝑓, 𝐹(𝑝, 𝑝 − 2, 𝑠));
(2) inf{𝜀 : 𝜒

Ω
𝜀
(𝑓)
(1 − |𝑧|

2

)
𝑠−2 d𝐴(𝑧) is a Carleson meas-

ure},
where Ω

𝜀
(𝑓) = {𝑧 ∈ D : |𝑓



(𝑧)|(1 − |𝑧|
2

) ≥ 𝜀} and 𝜒
denotes the characteristic function of a set.

When 𝑝 = 2 and 𝑠 = 1, the above characterization is Peter
Jone’s distance formula from a Bloch function to BMOA
(Peter Jone never published his result but a proof was
provided in [10]). Also, similar type results can be found in
[11–13]. Specifically, distance from Bloch function to𝑄

𝐾
-type

space is given in [11]; to the little Bloch space is obtained in
[12], and to the 𝑄

𝑝
space of the ball is characterized in [13].

All these spaces are Möbius invariant.
This paper is dedicated to characterize the distance from

𝑓 ∈ B
(𝑞+2)/𝑝

to 𝐹(𝑝, 𝑞, 𝑠), which extends Zhao’s result. The
main result is following.

Theorem 2. Suppose 1 ≤ 𝑝 < ∞, 0 < 𝑠 ≤ 1, −1 < 𝑞 + 𝑠 < ∞,
and 𝑓 ∈B

(2+𝑞)/𝑝
. Then

distB
(𝑞+2)/𝑝

(𝑓, 𝐹 (𝑝, 𝑞, 𝑠))

≈ inf {𝜀 > 0 : 𝜒̃
Ω
𝜀
(𝑓)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) ∈ CM
𝑠
} ,

(12)

where

Ω̃
𝜀
(𝑓) = {𝑧 ∈ D : (1 − |𝑧|

2

)
(𝑞+2)/𝑝 

𝑓


(𝑧)

≥ 𝜀} . (13)

The strategy in this paper follows fromTheorem 3.1.3 in
[14].The distance from aB

𝛼
function to Campanato-Morrey

space was given in [15] with similar idea.

Notation. Throughout this paper, we only write 𝑈 ≲ 𝑉 (or
𝑉 ≳ 𝑈) for 𝑈 ≤ 𝑐𝑉 for a positive constant 𝑐, and moreover
𝑈 ≈ 𝑉 for both 𝑈 ≲ 𝑉 and 𝑉 ≲ 𝑈.

2. Preliminaries

We begin with a lemma quoted from Lemma 3.1.1 in [14].

Lemma 3. Let 𝑠, 𝛼 ∈ (0,∞), and 𝜇 be nonnegative Radon
measures on D. Then, 𝜇 ∈ CM

𝑠
if and only if

𝜇
CM

𝑠
,𝛼
= sup
𝑤∈D

∫
D

(1 − |𝑤|
2

)
𝛼

|1 − 𝑤𝑧|
𝛼+𝑠

d𝜇 (𝑧) < ∞. (14)

According to Lemma 3 and the fact that 𝑓 ∈ 𝐹(𝑝, 𝑞, 𝑠) if
and only if d𝜇

𝑓
is an 𝑠-Carleson measure, we can easily get

the following corollary.

Corollary 4. Let𝑓 be an analytic function onD.𝑓 ∈ 𝐹(𝑝, 𝑞, 𝑠)
if and only if there exists an 𝛼 > 0 such that

𝑓


𝑝

𝐹(𝑝,𝑞,𝑠),𝛼

= sup
𝑤∈D

∫
D

(1 − |𝑤|
2

)
𝛼

|1 − 𝑤𝑧|
𝛼+𝑠


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

d𝐴 (𝑧) < ∞.

(15)

We will also need the following standard result from [16].

Lemma 5. Suppose 𝑡 > −1 and 𝑐 > 0. Then,

∫
D

(1 − |𝑤|
2

)
𝑡

|1 − 𝑤𝑧|
2+𝑡+𝑐

d𝐴 (𝑤) ≈ 1

(1 − |𝑧|
2

)
𝑐

(16)

for all 𝑧 ∈ D.

The following lemma, quoted from Lemma 1 in [9], is an
extension of Lemma 5. See also [17].

Lemma 6. Suppose 𝑠 > −1 and 𝑟, 𝑡 > 0. If 𝑡 < 𝑠 + 2 < 𝑟, then

∫
D

(1 − |𝑤|
2

)
𝑠

|1 − 𝑤𝑧|
𝑟1 − 𝑤𝜁



𝑡
d𝐴 (𝑤) ≲ 1

(1 − |𝑧|
2

)
𝑟−𝑠−2

1 − 𝜁𝑧


𝑡
.

(17)

Next, we see that 𝐹(𝑝, 𝑞, 𝑠) is contained in B
(2+𝑞)/𝑝

. We
thank Zhao for pointing out that the following result is firstly
proved in [3]. Here, we give another proof with a different
approach.

Lemma 7. For 1 ≤ 𝑝 < ∞, −2 < 𝑞 < ∞, and 0 ≤ 𝑠 < ∞,
𝐹(𝑝, 𝑞, 𝑠) ⊂ B

(2+𝑞)/𝑝
. In particular, if 𝑠 > 1, then 𝐹(𝑝, 𝑞, 𝑠) =

B
(2+𝑞)/𝑝

.
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Proof. We can use the reproducing formula for 𝑓 to get that

𝑓


(𝑧) = 𝐶∫
D

(1 − |𝑤|
2

)
𝑏−1

𝑓


(𝑤)

(1 − 𝑤𝑧)
𝑏+1

d𝐴 (𝑤) (18)

for some constant 𝐶, where 𝑏 is a real number greater than
1 + (𝑞 + 𝑠)/𝑝; see, for example, [14, page 55].

Let 0 < 𝛼 < 2 + 𝑞. If 𝑝 > 1, denote 𝑝 = 𝑝/(𝑝 − 1); it
follows from the Hölder’s inequality and (15) that

𝑓


(𝑧)


≲ ∫
D

(1 − |𝑤|
2

)
(𝑞+𝑠)/𝑝

(1 − |𝑧|
2

)
𝛼/𝑝 

𝑓


(𝑤)


|1 − 𝑤𝑧|
(𝑠+𝛼)/𝑝

×

(1 − |𝑤|
2

)
𝑏−1−(𝑞+𝑠)/𝑝

d𝐴 (𝑤)

(1 − |𝑧|
2

)
𝛼/𝑝

|1 − 𝑤𝑧|
𝑏+1−(𝑠+𝛼)/𝑝

≲ (∫
D

(1 − |𝑧|
2

)
𝛼

|1 − 𝑤𝑧|
𝑠+𝛼
|𝑓


(𝑤)|
𝑝

(1 − |𝑤|
2

)
𝑞+𝑠

d𝐴(𝑤))
1/𝑝

×(∫
D

(1 − |𝑤|
2

)
𝑝


(𝑏−1−(𝑞+𝑠)/𝑝)

d𝐴(𝑤)

(1 − |𝑧|
2

)
𝑝

(𝛼/𝑝)

|1 − 𝑤𝑧|
𝑝

(𝑏+1−(𝑠+𝛼)/𝑝)

)

1/𝑝


≲

𝑓
𝐹(𝑝,𝑞,𝑠),𝛼

(1 − |𝑧|
2

)
𝛼/𝑝

×(∫
D

(1 − |𝑤|
2

)
𝑝


(𝑏−1−(𝑞+𝑠)/𝑝)

d𝐴(𝑤)

|1 − 𝑤𝑧|
𝑝

(𝑏+1−(𝑠+𝛼)/𝑝)

)

1/𝑝


≲
𝑓
𝐹(𝑝,𝑞,𝑠),𝛼

1

(1 − |𝑧|
2

)
𝛼/𝑝

× (
1

(1 − |𝑧|
2

)
(2−𝛼+𝑞)/(𝑝−1)

)

1/𝑝


=
𝑓
𝐹(𝑝,𝑞,𝑠),𝛼

1

(1 − |𝑧|
2

)
(2+𝑞)/𝑝

.

(19)
Apparently, we have used Lemma 5 in the last inequality.This
gives that 𝐹(𝑝, 𝑞, 𝑠) ⊂B

(𝑞+2)/𝑝
when 1 < 𝑝 < ∞.

If 𝑝 = 1, then

(1 − |𝑧|
2

)
2+𝑞 

𝑓


(𝑧)


≲ ∫
D

(1 − |𝑤|
2

)
𝑞+𝑠

(1 − |𝑧|
2

)
𝛼 
𝑓


(𝑤)


|1 − 𝑤𝑧|
𝛼+𝑠

×

(1 − |𝑤|
2

)
𝑏−1−𝑞−𝑠

d𝐴 (𝑤)

(1 − |𝑧|
2

)
𝛼−2−𝑞

|1 − 𝑤𝑧|
𝑏+1−𝑠−𝛼

≲ ∫
D


𝑓


(𝑤)

(1 − |𝑤|

2

)
𝑞+𝑠
(1 − |𝑧|

2

)
𝛼

|1 − 𝑤𝑧|
𝛼+𝑠

d𝐴 (𝑤)

× sup
𝑤∈D

(1 − |𝑤|
2

)
𝑏−1−𝑞−𝑠

(1 − |𝑧|
2

)
2+𝑞−𝛼

|1 − 𝑤𝑧|
𝑏+1−𝛼−𝑠

≲
𝑓
𝐹(𝑝,𝑞,𝑠),𝛼

sup
𝑤∈D

(1 − |𝑤|
2

)
𝑏−1−𝑞−𝑠

(1 − |𝑧|
2

)
2+𝑞−𝛼

|1 − 𝑤𝑧|
𝑏+1−𝛼−𝑠

.

(20)

Recall that 𝑏 > 1 + 𝑞 + 𝑠 and 0 < 𝛼 < 2 + 𝑞. We can easily use
(4) to check that

sup
𝑧,𝑤∈D

(1 − |𝑤|
2

)
𝑏−1−𝑞−𝑠

(1 − |𝑧|
2

)
2+𝑞−𝛼

|1 − 𝑤𝑧|
𝑏+1−𝛼−𝑠

≲ 1. (21)

Thus, 𝐹(𝑝, 𝑞, 𝑠) ⊂B
(𝑞+2)/𝑝

when 𝑝 = 1.
Now, suppose 𝑠 > 1 and let 𝑓 ∈B

(𝑞+2)/𝑝
, then


𝑓


(𝑧)

(1 − |𝑧|

2

)
(𝑞+2)/𝑝

≤
𝑓
(𝑞+2)/𝑝

< ∞ (22)

for all 𝑧 ∈ D. It follows that
𝑓


𝑝

𝐹(𝑝,𝑞,𝑠)

= sup
𝑎∈D

∫
D


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

(
1 − |𝑎|

2

|1 − 𝑎𝑧|
2
)

𝑠

d𝐴 (𝑧)

= sup
𝑎∈D

∫
D


𝑓


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+2

× (1 − |𝑧|
2

)
𝑠−2

(
1 − |𝑎|

2

|1 − 𝑎𝑧|
2
)

𝑠

d𝐴 (𝑧)

≲
𝑓


𝑝

B
(𝑞+2)/𝑝

sup
𝑎∈D

(1 − |𝑎|
2

)
𝑠

∫
D

(1 − |𝑧|
2

)
𝑠−2

|1 − 𝑎𝑧|
2𝑠

d𝐴 (𝑧)

≈
𝑓


𝑝

B
(𝑞+2)/𝑝

.

(23)

Again, the above inequality follows from Lemma 5. This
completes the proof.

Our strategy relies on an integral operator preserving the
𝑠-Carleson measures. For 𝑎, 𝑏 > 0, we define the integral
operator 𝑇

𝑎,𝑏
as

𝑇
𝑎,𝑏
𝑓 (𝑧) = ∫

D

(1 − |𝑤|
2

)
𝑏−1

|1 − 𝑤𝑧|
𝑎+𝑏

𝑓 (𝑤) d𝐴 (𝑤) ∀𝑧 ∈ D. (24)

The following lemma is similar to Theorem 2.5 in [18].
Indeed, Qiu and Wu proved the case 1 < 𝑝 < ∞. Specially,
the 𝑝 = 2 case is just Lemma 3.1.2 in [14].

Lemma 8. Assume 0 < 𝑠 ≤ 1, 1 ≤ 𝑝 < ∞, and 𝛼 > −1. Let
𝑏 > (𝛼 + 1)/𝑝, let 𝑎 > 1 − (𝛼 + 1)/𝑝, and let 𝑓 be Lebesgue
measurable on D. If |𝑓(𝑧)|𝑝(1 − |𝑧|2)𝛼 d𝐴(𝑧) belongs toCM

𝑠
,

then |𝑇
𝑎,𝑏
𝑓(𝑧)|

𝑝

(1 − |𝑧|
2

)
𝑝(𝑎−1)+𝛼 d𝐴(𝑧) also belongs toCM

𝑠
.
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Proof. We firstly prove the case 𝑝 = 1 and then sketch the
outline argument of the case 1 < 𝑝 < ∞ modified from [18]
for the completeness.

When 𝑝 = 1, according to Lemma 3, it is sufficient to
show that

sup
𝑎∈D

∫
D

(1 − |𝑎|
2

)
𝑥

|1 − 𝑎𝑧|
𝑥+𝑠

𝑇𝑎,𝑏𝑓 (𝑧)
 (1 − |𝑧|

2

)
𝑎−1+𝛼

d𝐴 (𝑧) < ∞

(25)

for some 𝑥 > 0. That is to show

sup
𝑎∈D

∫
D

(1 − |𝑎|
2

)
𝑥

|1 − 𝑎𝑧|
𝑥+𝑠



∫
D

(1 − |𝑤|
2

)
𝑏−1

𝑓 (𝑤)

|1 − 𝑤𝑧|
𝑎+𝑏

d𝐴 (𝑤)


× (1 − |𝑧|
2

)
𝑎−1+𝛼

d𝐴 (𝑧)

(26)

is finite. By Fubini’s theorem, it is enough to verify that

sup
𝑎∈D

∫
D

(1 − |𝑎|
2

)
𝑥

∫
D

(1 − |𝑧|
2

)
𝑎−1+𝛼

d𝐴 (𝑧)

|1 − 𝑤𝑧|
𝑎+𝑏

|1 − 𝑎𝑧|
𝑥+𝑠

×
𝑓 (𝑤)

 (1 − |𝑤|
2

)
𝑏−1

d𝐴 (𝑤)

(27)

is finite.
Choosing𝑥 such that𝑥+𝑠 < 𝑎+1+𝛼, we can use Lemma 6

to control the last integral by

sup
𝑎∈D

∫
D

(1 − |𝑎|
2

)
𝑥

|1 − 𝑎𝑤|
𝑥+𝑠

𝑓 (𝑤)
 (1 − |𝑤|

2

)
𝛼

d𝐴 (𝑤) . (28)

Since |𝑓(𝑧)|(1− |𝑧|2)𝛼d𝐴(𝑧) is an 𝑠-Carlesonmeasure, we can
complete the proof by using Lemma 3 again.

When 1 < 𝑝 < ∞, we need to verify that

1

|𝐼|
𝑠
∫
𝑆(𝐼)

𝑇𝑎,𝑏𝑓 (𝑧)


𝑝

(1 − |𝑧|
2

)
𝑝(𝑎−1)+𝛼

d𝐴 (𝑧) ≲ 1 (29)

holds for any arc 𝐼 ⊂ T . In order to make this estimate, let
𝑁
𝐼
, be the biggest integer satisfying𝑁

𝐼
≤ −log

2
|𝐼|, and let 𝐼

𝑛
,

𝑛 = 0, 1, 2, . . . , 𝑁
𝐼
, denotes the arcs on T with the same center

as 𝐼 and length 2𝑛|𝐼|, and 𝐼
𝑁
𝐼
+1

is just T . We can control and
decompose the integral as

∫
𝑆(𝐼)

𝑇𝑎,𝑏𝑓 (𝑧)


𝑝

(1 − |𝑧|
2

)
𝑝(𝑎−1)+𝛼

d𝐴 (𝑧)

≲ ∫
𝑆(𝐼)

(∫
𝑆(𝐼
1
)

(1 − |𝑤|
2

)
𝑏−1

(1 − |𝑧|
2

)
(𝑎−1)+𝛼/𝑝

|1 − 𝑤𝑧|
𝑎+𝑏

×
𝑓 (𝑤)

 d𝐴 (𝑤))

𝑝

d𝐴 (𝑧)

+ ∫
𝑆(𝐼)

(∫
D\𝑆(𝐼

1
)

(1 − |𝑤|
2

)
𝑏−1

(1 − |𝑧|
2

)
(𝑎−1)+𝛼/𝑝

|1 − 𝑤𝑧|
𝑎+𝑏

×
𝑓 (𝑤)

 d𝐴 (𝑤))

𝑝

d𝐴 (𝑧)

= Int
1
+ Int

2
.

(30)

In order to estimate Int
1
, we define the linear operator 𝐵 :

𝐿
𝑝

(D) → 𝐿
𝑝

(D) as

𝐵 (𝑓) (𝑧) = ∫
D

𝐾 (𝑧, 𝑤) 𝑓 (𝑤) d𝐴 (𝑤) , (31)

where

𝐾 (𝑧, 𝑤) =

(1 − |𝑤|
2

)
𝑏−1

(1 − |𝑧|
2

)
(𝑎−1)+𝛼/𝑝

|1 − 𝑤𝑧|
𝑎+𝑏

. (32)

If we choose a test function𝑔(𝑧) = (1−|𝑧|2)−1/𝑝𝑝


, then Schur’s
lemma combines with Lemma 5 implying that

∫
D

𝐾 (𝑤, 𝑧) 𝑔
𝑝

(𝑤) d𝐴 (𝑤) ≲ 𝑔𝑝 (𝑧) ,

∫
D

𝐾 (𝑤, 𝑧) 𝑔
𝑝


(𝑧) d𝐴 (𝑧) ≲ 𝑔𝑝


(𝑤) .

(33)

Hence, 𝐵 is a bounded operator. Letting ℎ(𝑤) = |𝑓(𝑤)|(1 −
|𝑤|
2

)
𝛼/𝑝

𝜒
𝑆(𝐼
1
)
(𝑤), then ℎ ∈ 𝐿𝑝(D) with

‖ℎ‖
𝑝

𝐿
𝑝 = ∫

𝑆(𝐼
1
)

𝑓 (𝑤)


𝑝

(1 − |𝑤|
2

)
𝛼

d𝐴 (𝑤) ≲ |𝐼|𝑠. (34)

Thus,

Int
1
≲ ∫

D
|𝐵 (ℎ) (𝑧)|

𝑝d𝐴 (𝑧) = ‖𝐵 (ℎ)‖𝑝
𝐿
𝑝 ≲ ‖ℎ‖

𝑝

𝐿
𝑝 ≲ |𝐼|

𝑠

.

(35)

To handle Int
2
, first note that, for 𝑛 = 0, 1, . . . , 𝑁

𝐼
, if 𝑧 ∈

𝑆(𝐼) and 𝑤 ∈ 𝑆(𝐼
𝑛+1
) \ 𝑆(𝐼

𝑛
), then |1 − 𝑤𝑧| ≳ 2𝑛|𝐼|. Further, it

is easy to check that, for any fixed 𝛽 > −1,

∫
𝑆(𝐼
𝑛
)

(1 − |𝑤|
2

)
𝛽

d𝐴 (𝑤) ≲ (2𝑛 |𝐼|)𝛽+2, 𝑛 = 0, 1, . . . , 𝑁
𝐼
.

(36)

Now, splitting D \ 𝑆(𝐼
1
) as

𝑁
𝐼

⋃

𝑛=1

𝑆 (𝐼
𝑛+1
) \ 𝑆 (𝐼

𝑛
) =

𝑁
𝐼

⋃

𝑛=1

𝑆
𝑛+1
, (37)
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we have

Int
2
≲ ∫

𝑆(𝐼)



𝑁
𝐼

∑

𝑛=1

∫
̃
𝑆
𝑛+1

(1 − |𝑤|
2

)
𝑏−1 𝑓 (𝑤)



|1 − 𝑤𝑧|
𝑎+𝑏

d𝐴(𝑤)


𝑝

× (1 − |𝑧|
2

)
𝑝(𝑎−1)+𝛼

d𝐴 (𝑧)

≲ |𝐼|
𝑝(𝑎−1)+𝛼+2

× (

𝑁
𝐼

∑

𝑛=1

1

(2
𝑛
|𝐼|)

𝑎+𝑏

× ∫
𝑆(𝐼
𝑛+1
)

(1 − |𝑤|
2

)
𝑏−1 𝑓 (𝑤)

 d𝐴(𝑤))
𝑝

.

(38)

Recall that |𝑓(𝑧)|𝑝(1 − |𝑧|2)𝛼d𝐴(𝑧) ∈ CM
𝑠
. It follows from

Hölder’s inequality that

∫
𝑆(𝐼
𝑛+1
)

(1 − |𝑤|
2

)
𝑏−1 𝑓 (𝑤)

 d𝐴 (𝑤)

≲
𝐼𝑛+1



𝑠/𝑝

⋅ (2
𝑛+1

|𝐼|)
𝑏−1−𝛼/𝑝+2/𝑝



.

(39)

Now, an easy computation gives that

Int
2
≲ (

𝑁
𝐼

∑

𝑛=1

2
−𝑛(𝑎−1+(𝛼+2−𝑠)/𝑝)

)

𝑝

|𝐼|
𝑠

≲ |𝐼|
𝑠

, (40)

since 𝑎 > 1 − (𝛼 + 1)/𝑝 and 0 < 𝑠 ≤ 1. This completes the
proof.

3. Proof of the Main Result

Proof of Theorem 2. For 𝑓 ∈ B
(𝑞+2)/𝑝

, it is easy to establish
the following formula (see, e.g., [19, (1.1)] or [14, page 55].
Notice that it is a special case of the 𝛼-order derivative of 𝑓,
as 𝛼 = 0 in [14], which holds for all holomorphic 𝑓 on D).
Consider

𝑓 (𝑧) = 𝑓 (0) + ∫
D

(1 − |𝑤|
2

)
(𝑞+2)/𝑝

𝑓


(𝑤)

𝑤(1 − 𝑤𝑧)
1+(𝑞+2)/𝑝

d𝐴 (𝑤) ∀𝑧 ∈ D.

(41)

Define, for each 𝜀 > 0,

𝑓
1
(𝑧) = 𝑓 (0) + ∫

̃
Ω
𝜀
(𝑓)

(1 − |𝑤|
2

)
(𝑞+2)/𝑝

𝑓


(𝑤)

𝑤(1 − 𝑤𝑧)
1+(𝑞+2)/𝑝

d𝐴 (𝑤) ,

𝑓
2
(𝑧) = ∫

D\̃Ω
𝜀
(𝑓)

(1 − |𝑤|
2

)
(𝑞+2)/𝑝

𝑓


(𝑤)

𝑤(1 − 𝑤𝑧)
1+(𝑞+2)/𝑝

d𝐴 (𝑤) .

(42)

Then,

𝑓


1
(𝑧)


≲
𝑓
B
(𝑞+2)/𝑝

∫
D

𝜒̃
Ω
𝜀
(𝑓)
(𝑤)

|1 − 𝑤𝑧|
2+(𝑞+2)/𝑝

d𝐴 (𝑤)

=
𝑓
B
(𝑞+2)/𝑝

∫
D

(1 − |𝑤|
2

)
2/𝑝

|1 − 𝑤𝑧|
2+(𝑞+2)/𝑝

×

𝜒̃
Ω
𝜀
(𝑓)
(𝑤)

(1 − |𝑤|
2

)
2/𝑝

d𝐴 (𝑤) .

(43)

Write

𝑔 (𝑤) =

𝜒̃
Ω
𝜀
(𝑓)
(𝑤)

(1 − |𝑤|
2

)
2/𝑝

. (44)

Then,

𝑔 (𝑤)


𝑝

(1 − |𝑤|
2

)
𝑠

d𝐴 (𝑤) = 𝜒̃
Ω
𝜀
(𝑓)
(𝑤) (1 − |𝑤|

2

)
𝑠−2

d𝐴 (𝑤) .
(45)

So, if

𝜒̃
Ω
𝜀
(𝑓)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) (46)

is inCM
𝑠
, Lemma 8 implies that

𝑓


1
(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

d𝐴 (𝑧) ∈ CM
𝑠
. (47)

By Corollary 4,𝑓
1
∈ 𝐹(𝑝, 𝑞, 𝑠). Meanwhile, recall that, for𝑤 ∈

D\Ω̃
𝜀
(𝑓) and (1−|𝑤|2)(𝑞+2)/𝑝|𝑓(𝑤)| < 𝜀, we can use Lemma 5

to obtain


𝑓


2
(𝑧)

≤ ∫

D\̃Ω
𝜀
(𝑓)

(1 − |𝑤|
2

)
(𝑞+2)/𝑝 

𝑓


(𝑤)


|1 − 𝑤𝑧|
2+(𝑞+2)/𝑝

d𝐴 (𝑤)

< 𝜀∫
D

1

|1 − 𝑤𝑧|
2+(𝑞+2)/𝑝

d𝐴 (𝑤)

≈
𝜀

(1 − |𝑧|
2

)
(2+𝑞)/𝑝

.

(48)

This means that

(1 − |𝑧|
2

)
(2+𝑞)/𝑝 

𝑓


2
(𝑧)

≲ 𝜀. (49)

To summarize the above argument, we have 𝑓 = 𝑓
1
+ 𝑓

2
,

𝑓
1
∈ 𝐹(𝑝, 𝑞, 𝑠) (by (47)), and 𝑓

2
∈ B

(2+𝑞)/𝑝
(by (49)), and

𝜒̃
Ω
𝜀
(𝑓)
(𝑧)(1 − |𝑧|

2

)
𝑠−2d𝐴(𝑧) is an 𝑠-Carleson measure for each

𝜀 > 0. Thus,

distB
(2+𝑞)/𝑝

(𝑓, 𝐹 (𝑝, 𝑞, 𝑠))

≲ inf {𝜀 > 0 : 𝜒̃
Ω
𝜀
(𝑓)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) ∈ CM
𝑠
} .

(50)
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In order to prove the other direction of the inequality,
we assume that 𝜀

0
equals the right-hand quantity of the last

inequality and

distB
(2+𝑞)/𝑝

(𝑓, 𝐹 (𝑝, 𝑞, 𝑠)) < 𝜀
0
. (51)

We only consider the case 𝜀
0
> 0.Then, there exists an 𝜀

1
such

that

0 < 𝜀
1
< 𝜀

0
, distB

(2+𝑞)/𝑝

(𝑓, 𝐹 (𝑝, 𝑞, 𝑠)) < 𝜀
1
. (52)

Hence, by definition, we can find a function ℎ ∈ 𝐹(𝑝, 𝑞, 𝑠)
such that

𝑓 − ℎ
B
(2+𝑞)/𝑝

< 𝜀
1
. (53)

Now, for any 𝜀 ∈ (𝜀
1
, 𝜀
0
), we have that

𝜒̃
Ω
𝜀
(𝑓)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) (54)

is not inCM
𝑠
. But, according to (53), we get

(1 − |𝑧|
2

)
(2+𝑞)/𝑝 

ℎ


(𝑧)

> (1 − |𝑧|

2

)
(2+𝑞)/𝑝 

𝑓


(𝑧)

− 𝜀
1

∀𝑧 ∈ D,

(55)

and so

𝜒̃
Ω
𝜀
(𝑓)
(𝑧) ≤ 𝜒̃

Ω
𝜀−𝜀
1

(ℎ)
(𝑧) ∀𝑧 ∈ D. (56)

This implies that

𝜒̃
Ω
𝜀−𝜀
1

(ℎ)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) (57)

does not belong to CM
𝑠
. But, it follows from (13) that

Ω̃
𝜀−𝜀
1

(ℎ) = {𝑧 ∈ D : (1−|𝑧|2)
(𝑞+2)/𝑝

|ℎ


(𝑧)| ≥ 𝜀−𝜀
1
}.Therefore,

𝜒̃
Ω
𝜀−𝜀
1

(ℎ)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧)

= 𝜒̃
Ω
𝜀−𝜀
1

(ℎ)
(𝑧)

(1 − |𝑧|
2

)
𝑞+𝑠

(1 − |𝑧|
2

)
𝑞+2

d𝐴 (𝑧)

≤


ℎ


(𝑧)


𝑝

(𝜀 − 𝜀
1
)
𝑝
(1 − |𝑧|

2

)
𝑞+𝑠

𝜒̃
Ω
𝜀−𝜀
1

(ℎ)
(𝑧) d𝐴 (𝑧)

≤
1

(𝜀 − 𝜀
1
)
𝑝


ℎ


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

d𝐴 (𝑧) .

(58)

Since ℎ ∈ 𝐹(𝑝, 𝑞, 𝑠), Corollary 4 implies that

ℎ


(𝑧)


𝑝

(1 − |𝑧|
2

)
𝑞+𝑠

d𝐴 (𝑧) (59)

is inCM
𝑠
. This means that

(𝜀 − 𝜀
1
)
𝑝

𝜒̃
Ω
𝜀−𝜀
1

(ℎ)
(𝑧) (1 − |𝑧|

2

)
𝑠−2

d𝐴 (𝑧) (60)

is in CM
𝑠
, and so is 𝜒̃

Ω
𝜀−𝜀
1

(ℎ)
(𝑧)(1 − |𝑧|

2

)
𝑠−2d𝐴(𝑧). This

contradicts (57). Thus, we must have

distB
(2+𝑞)/𝑝

(𝑓, 𝐹 (𝑝, 𝑞, 𝑠)) ≥ 𝜀
0 (61)

as required.

Remark 9. Theorem 2 characterizes the closure of 𝐹(𝑝, 𝑞, 𝑠)
in the B

(𝑞+2)/𝑝
norm. That is, for 𝑓 ∈ B

(𝑞+2)/𝑝
, 𝑓 is in the

closure of 𝐹(𝑝, 𝑞, 𝑠) in the B
(𝑞+2)/𝑝

norm if and only if, for
every 𝜀 > 0,

∫
̃
Ω
𝜀
(𝑓)∩𝑆(𝐼)

(1 − |𝑧|
2

)
𝑠−2

d𝐴 (𝑧) ≲ |𝐼|𝑠 (62)

for any Carleson square 𝑆(𝐼).
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