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The aim of this paper is to introduce some interval valued double difference sequence spaces by means of Musielak-Orlicz function
M = (𝑀

𝑖𝑗
). We also determine some topological properties and inclusion relations between these double difference sequence

spaces.

1. Introduction

Interval arithmetic was first suggested by Dwyer [1] in 1951.
Development of interval arithmetic as a formal system and
evidence of its value as a computational device was provided
by Moore [2] in 1959 and also by Moore and Yang [3] in
1962. Further works on interval numbers can be found in
Dwyer [4] andMarkov [5]. Furthermore,Moore andYang [6]
have developed applications of interval number sequences to
differential equations. Chiao in [7] introduced sequences of
interval numbers anddefined usual convergence of sequences
of interval number. Şengönül and Eryilmaz in [8] introduced
and studied bounded and convergent sequence spaces of
interval numbers and showed that these spaces are complete
metric spaces. Recently, Esi in [9, 10] introduced and studied
strongly almost 𝜆-convergence and statistically almost 𝜆-
convergence of interval numbers and lacunary sequence
spaces of interval numbers, respectively (also see [11–17]).

A set consisting of a closed interval of real numbers 𝑥

such that 𝑎 ≤ 𝑥 ≤ 𝑏 is called an interval number. A
real interval can also be considered as a set. Thus we can
investigate some properties of interval numbers, for instance,
arithmetic properties or analysis properties. We denote the
set of all real valued closed intervals by R. Any elements
of R are called closed interval and denoted by 𝑥. That is,
𝑥 = {𝑥 ∈ R : 𝑎 ≤ 𝑥 ≤ 𝑏}. An interval number 𝑥 is a
closed subset of real numbers [7]. Let 𝑥

𝑙
and 𝑥

𝑟
be first and

last points of 𝑥 interval number, respectively. For 𝑥
1
, 𝑥
2

∈ R,
we have 𝑥

1
= 𝑥
2

⇔ 𝑥
1𝑙

= 𝑥
2𝑙
, 𝑥
1𝑟

= 𝑥
2𝑟
. Consider

𝑥
1

+ 𝑥
2

= {𝑥 ∈ R : 𝑥
1𝑙

+ 𝑥
2𝑙

≤ 𝑥 ≤ 𝑥
1𝑟

+ 𝑥
2𝑟

}, and if 𝛼 ≥ 0,
then 𝛼𝑥 = {𝑥 ∈ R : 𝛼𝑥

1𝑙
≤ 𝑥 ≤ 𝛼𝑥

1𝑟
} and if 𝛼 < 0, then

𝛼𝑥 = {𝑥 ∈ R : 𝛼𝑥
1𝑟

≤ 𝑥 ≤ 𝛼𝑥
1𝑙

},

𝑥
1

⋅ 𝑥
2

= {

𝑥 ∈ R : min {𝑥
1𝑙

⋅ 𝑥
2𝑙

, 𝑥
1𝑙

⋅ 𝑥
2𝑟

, 𝑥
1𝑟

⋅ 𝑥
2𝑙

, 𝑥
1𝑟

⋅ 𝑥
2𝑟

}

≤ 𝑥 ≤ min {𝑥
1𝑙

⋅ 𝑥
2𝑙

, 𝑥
1𝑙

⋅ 𝑥
2𝑟

, 𝑥
1𝑟

⋅ 𝑥
2𝑙

, 𝑥
1𝑟

⋅ 𝑥
2𝑟

}

} .

(1)

In [2],Moore proved that the set of all interval numbersR
is a complete metric space defined by 𝑑(𝑥

1
, 𝑥
2
) = max{|𝑥

1𝑙
−

𝑥
2𝑙

|, |𝑥
1𝑟

⋅ 𝑥
2𝑟

|}. In the special cases 𝑥
1

= [𝑎, 𝑎] and 𝑥
2

= [𝑏, 𝑏],
we obtain usual metric ofR. Let us define transformation 𝑓 :

N → R by 𝑘 → 𝑓(𝑘) = 𝑥, 𝑥 = (𝑥
𝑘
). Then 𝑥 = (𝑥

𝑘
) is called

sequence of interval numbers. The 𝑥
𝑘
is called 𝑘th term of

sequence 𝑥 = (𝑥
𝑘
). We denote the set of all interval numbers

with real terms as 𝑤

𝑖. The algebraic properties of 𝑤

𝑖 can be
found in [7]. Now we give the basic definitions used in this
paper.

Definition 1 (see [7]). A sequence 𝑥 = (𝑥
𝑘
) of interval

numbers is said to be convergent to the interval number 𝑥
0

if for each 𝜖 > 0 there exists a positive integer 𝑘
0
such that
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𝑑(𝑥
𝑘
, 𝑥
0
) < 𝜖 for all 𝑘 ≥ 𝑘

0
and we denote it by lim

𝑘
𝑥
𝑘

= 𝑥
0
.

Thus, lim
𝑘
𝑥
𝑘

= 𝑥
0

⇔ lim
𝑘
𝑥
𝑘𝑙

= 𝑥
0𝑙
and lim

𝑘
𝑥
𝑘𝑟

= 𝑥
0𝑟
.

Definition 2. A transformation 𝑓 from N × N to R is defined
by 𝑖, 𝑗 → 𝑓(𝑖, 𝑗) = 𝑥, 𝑥 = (𝑥

𝑖𝑗
). Then 𝑥 = (𝑥

𝑖𝑗
) is called

sequence of double interval numbers. Then 𝑥
𝑖𝑗
is called 𝑖𝑗

th

term of sequence 𝑥 = (𝑥
𝑖𝑗
).

Definition 3. An interval valued double sequence 𝑥 = (𝑥
𝑖𝑗
) is

said to be convergent in Pringsheim’s sense or 𝑃-convergent
to an interval number 𝑥

0
, if, for every 𝜖 > 0, there exists 𝑁 ∈

N such that

𝑑 (𝑥
𝑖𝑗
, 𝑥
0
) < 𝜖 ∀𝑖, 𝑗 > 𝑁, (2)

where N is the set of natural numbers, and we denote it also
by 𝑃 − lim𝑥

𝑖𝑗
= 𝑥
0
. The interval number 𝑥

0
is called the

Pringsheim limit of 𝑥 = (𝑥
𝑖𝑗
).

More exactly, we say that a double sequence 𝑥 = (𝑥
𝑖𝑗
)

converges to a finite interval number 𝑥
0
if 𝑥
𝑖𝑗
tend to 𝑥

0
as

both 𝑖 and 𝑗 tend to ∞ independently of one another. We
denote by 𝑐

2 the set of all double convergent interval numbers
of double interval numbers.

Definition 4. An interval valued double sequence 𝑥 = (𝑥
𝑖𝑗
)

is bounded if there exists a positive number 𝑀 such that
𝑑(𝑥
𝑖𝑗
, 𝑥
0
) ≤ 𝑀 for all 𝑖, 𝑗 ∈ N. We will denote all bounded

double interval number sequences by 𝑙

2

∞
. It should be noted

that, similar to the case of double sequences, 𝑐

2 is not the
subset of 𝑙

2

∞
.

Definition 5. Let 𝐴 = (𝑎
𝑚𝑛𝑖𝑗

) denote a four-dimensional
summability method that maps the complex double
sequences 𝑥 into the double sequence 𝐴𝑥 where the 𝑚𝑛th
term to 𝐴𝑥 is as follows:

(𝐴𝑥)𝑚𝑛
=

∞,∞

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

𝑥
𝑖𝑗
. (3)

Such a transformation is said to be nonnegative if 𝑎
𝑚𝑛𝑖𝑗

is
nonnegative for all 𝑚, 𝑛, 𝑖 and 𝑗.

The notion of difference sequence spaces was introduced
by Kizmaz [18] who studied the difference sequence spaces
𝑙
∞

(Δ), 𝑐(Δ), and 𝑐
0
(Δ). The notion was further generalized by

Et and Çolak [19] by introducing the spaces 𝑙
∞

(Δ

𝑛
), 𝑐(Δ

𝑛
), and

𝑐
0
(Δ

𝑛
). Let 𝑤 denote the set of all real and complex sequences

and let 𝑛 be a nonnegative integer; then for 𝑍 = 𝑐, 𝑐
0
, and 𝑙

∞
,

we have sequence spaces

𝑍 (Δ

𝑛
) = {𝑥 = (𝑥

𝑘
) ∈ 𝑤 : (Δ

𝑛
𝑥
𝑘
) ∈ 𝑍} , (4)

where Δ

𝑛
𝑥 = (Δ

𝑛
𝑥
𝑘
) = (Δ

𝑛−1
𝑥
𝑘

− Δ

𝑛−1
𝑥
𝑘+1

) and Δ

0
𝑥
𝑘

= 𝑥
𝑘

for all 𝑘 ∈ N, which is equivalent to the following binomial
representation:

Δ

𝑛
𝑥
𝑘

=

𝑛

∑

V=0
(−1)

V
(

𝑛

V) 𝑥
𝑘+V. (5)

Taking 𝑛 = 1, we get the spaces studied by Et and Çolak
[19]. For more details about sequence spaces see [20–32]
and references therein. Quite recently, Et et al. [33] defined
and studied the concept of statistical convergence of order 𝛼

involving the notions of Δ and ideal 𝐼.

Definition 6. An Orlicz function 𝑀 : [0, ∞) → [0, ∞) is a
continuous, nondecreasing, and convex such that 𝑀(0) = 0,
𝑀(𝑥) > 0 for 𝑥 > 0 and𝑀(𝑥) → ∞ as 𝑥 → ∞. If convexity
of Orlicz function is replaced by 𝑀(𝑥 + 𝑦) ≤ 𝑀(𝑥) + 𝑀(𝑦),
then this function is called modulus function. Lindenstrauss
and Tzafriri [34] used the idea of Orlicz function to define the
following sequence space:

ℓ
𝑀

= {𝑥 = (𝑥
𝑘
) ∈ 𝑤 :

∞

∑

𝑘=1

𝑀 (






𝑥
𝑘






𝜌

) < ∞, for some 𝜌 > 0}

(6)

which is known as an Orlicz sequence space. The space ℓ
𝑀
is

a Banach space with the norm

‖𝑥‖ = inf {𝜌 > 0 :

∞

∑

𝑘=1

𝑀 (






𝑥
𝑘






𝜌

) ≤ 1} . (7)

Also it was shown in [34] that every Orlicz sequence space
ℓ
𝑀

contains a subspace isomorphic to ℓ
𝑝

(𝑝 ≥ 1). An
Orlicz function𝑀 can always be represented in the following
integral form:

𝑀 (𝑥) = ∫

𝑥

0

𝜂 (𝑡) 𝑑𝑡, (8)

where 𝜂 is known as the kernel of 𝑀 and is a right
differentiable for 𝑡 ≥ 0, 𝜂(0) = 0, 𝜂(𝑡) > 0, and 𝜂 is nonde-
creasing and 𝜂(𝑡) → ∞ as 𝑡 → ∞.

Definition 7. A sequence M = (𝑀
𝑘
) of Orlicz functions is

said to beMusielak-Orlicz function (see [35, 36]). A sequence
N = (𝑁

𝑘
) is defined by

𝑁
𝑘 (
V) = sup {|V| 𝑢 − 𝑀

𝑘 (
𝑢) : 𝑢 ≥ 0} , 𝑘 = 1, 2, . . . , (9)

and is called the complementary function of a Musielak-
Orlicz functionM. For a given Musielak-Orlicz functionM,
the Musielak-Orlicz sequence space 𝑡M and its subspace ℎM

are defined as follows:

𝑡M = {𝑥 ∈ 𝑤 : 𝐼M (𝑐𝑥) < ∞ for some 𝑐 > 0} ,

ℎM = {𝑥 ∈ 𝑤 : 𝐼M (𝑐𝑥) < ∞ ∀𝑐 > 0} ,

(10)

where 𝐼M is a convex modular defined by

𝐼M (𝑥) =

∞

∑

𝑘=1

𝑀
𝑘

(𝑥
𝑘
) , 𝑥 = (𝑥

𝑘
) ∈ 𝑡M. (11)

We consider 𝑡M equipped with the Luxemburg norm

‖𝑥‖ = inf {𝑘 > 0 : 𝐼M (

𝑥

𝑘

) ≤ 1} (12)
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or equipped with the Orlicz norm

‖𝑥‖

0
= inf {

1

𝑘

(1 + 𝐼M (𝑘𝑥)) : 𝑘 > 0} . (13)

A Musielak-Orlicz function M = (𝑀
𝑘
) is said to satisfy Δ

2
-

condition if there exist constants 𝑎, 𝐾 > 0 and a sequence 𝑐 =

(𝑐
𝑘
)

∞

𝑘=1
∈ 𝑙

1

+
(the positive cone of 𝑙

1) such that the inequality

𝑀
𝑘 (

2𝑢) ≤ 𝐾𝑀
𝑘 (

𝑢) + 𝑐
𝑘 (14)

holds for all 𝑘 ∈ N and 𝑢 ∈ R+, whenever 𝑀
𝑘
(𝑢) ≤ 𝑎.

Definition 8. Let 𝑋 be a linear metric space. A function 𝑝:
𝑋 → R is called paranorm, if

(1) 𝑝(𝑥) ≥ 0 for all 𝑥 ∈ 𝑋;

(2) 𝑝(−𝑥) = 𝑝(𝑥) for all 𝑥 ∈ 𝑋;

(3) 𝑝(𝑥 + 𝑦) ≤ 𝑝(𝑥) + 𝑝(𝑦) for all 𝑥, 𝑦 ∈ 𝑋;

(4) (𝜆
𝑛
) is a sequence of scalars with 𝜆

𝑛
→ 𝜆 as 𝑛 → ∞

and (𝑥
𝑛
) is a sequence of vectors with 𝑝(𝑥

𝑛
− 𝑥) → 0

as 𝑛 → ∞, then 𝑝(𝜆
𝑛
𝑥
𝑛

− 𝜆𝑥) → 0 as 𝑛 → ∞.

A paranorm 𝑝 for which 𝑝(𝑥) = 0 implies 𝑥 = 0 is called total
paranorm and the pair (𝑋, 𝑝) is called a total paranormed
space. It is well known that the metric of any linear metric
space is given by some total paranorm.

Let M = (𝑀
𝑖𝑗
) be a Musielak-Orlicz function and let

𝐴 = (𝑎
𝑚𝑛𝑖𝑗

) be a nonnegative four-dimensional bounded
regular matrix (see [37, 38]). Let 𝑝 = (𝑝

𝑖𝑗
) be a bounded

double sequence of positive real numbers and 𝑢 = (𝑢
𝑖𝑗
) be

a double sequence of strictly positive real numbers. In the
present paper we define the following new double sequence
spaces for interval sequences:

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

=

{

{

{

𝑥 = (𝑥
𝑖𝑗
) : 𝑃 − lim

𝑚𝑛

1

𝑚𝑛

×

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

= 0,

for some 𝜌 > 0

}

}

}

,

2
𝑤
0

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

=

{

{

{

𝑥 = (𝑥
𝑖𝑗
) : 𝑃 − lim

𝑚𝑛

1

𝑚𝑛

×

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

= 0,

for some 𝜌 > 0

}

}

}

,

2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

=

{

{

{

𝑥 = (𝑥
𝑖𝑗
) : sup
𝑚𝑛

1

𝑚𝑛

×

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞,

for some 𝜌 > 0

}

}

}

.

(15)

Remark 9. Let us consider a few special cases of the above
sequence spaces.

(i) IfM = 𝑀
𝑖𝑗
(𝑥) = 𝑥 for all 𝑖, 𝑗 ∈ N, then we have

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤 (𝑝, 𝑢, Δ

𝑟
, 𝐴) ,

2
𝑤
0

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

0
(𝑝, 𝑢, Δ

𝑟
, 𝐴) ,

2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

∞
(𝑝, 𝑢, Δ

𝑟
, 𝐴) .

(16)

(ii) If 𝑝 = (𝑝
𝑖𝑗
) = 1, for all 𝑖, 𝑗, then we have

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤 (M, 𝑢, Δ

𝑟
, 𝐴) ,

2
𝑤
0

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤
0

(M, 𝑢, Δ

𝑟
, 𝐴) ,

2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤
∞

(M, 𝑢, Δ

𝑟
, 𝐴) .

(17)

(iii) If 𝑢 = (𝑢
𝑖𝑗
) = 1, for all 𝑖, 𝑗, then we have

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤 (M, 𝑝, Δ

𝑟
, 𝐴) ,

2
𝑤
0

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

0
(M, 𝑝, Δ

𝑟
, 𝐴) ,

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

∞
(M, 𝑝, Δ

𝑟
, 𝐴) .

(18)

(iv) If 𝐴 = (𝐶, 1, 1) = 1, that is, the double Cesàro
matrix, then the above classes of sequences reduce to
the following sequence spaces:

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
) ,

2
𝑤

0
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

0
(M, 𝑝, 𝑢, Δ

𝑟
) ,

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
) .

(19)
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(v) Let 𝐴 = (𝐶, 1, 1) = 1 and 𝑢
𝑖𝑗

= 1 for all 𝑖, 𝑗. If, in
addition, M(𝑥) = 𝑀(𝑥) and 𝑟 = 0, then the spaces
2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴),

2
𝑤

0
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴), and

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) are reduced to

2
𝑤(𝑀, 𝑝),

2
𝑤

0
(𝑀, 𝑝), and

2
𝑤

∞
(𝑀, 𝑝) which were introduced

and studied by Esi and Hazarika [39].

The following inequality will be used throughout the paper. If
0 ≤ 𝑝
𝑖𝑗

≤ sup𝑝
𝑖𝑗

= 𝐻, 𝐾 = max(1, 2

𝐻−1
) then







𝑎
𝑖𝑗

+ 𝑏
𝑖𝑗







𝑝𝑖𝑗
≤ 𝐾 (







𝑎
𝑖𝑗







𝑝𝑖𝑗
+







𝑏
𝑖𝑗







𝑝𝑖𝑗
) (20)

for all 𝑖, 𝑗 and 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗

∈ C. Also |𝑎|

𝑝𝑖𝑗
≤ max(1, |𝑎|

𝐻
) for all

𝑎 ∈ C.
The main purpose of this paper is to introduce interval

valued double difference sequence spaces
2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴),

2
𝑤
0
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴), and

2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) and to study

different properties of these spaces like linearity, paranorm,
solidity, monotone, and so forth. Some inclusion relations
between theses spaces are also established.

2. Main Results

Theorem 10. If 0 < 𝑝
𝑖𝑗

< 𝑞
𝑖𝑗
for each 𝑖 and 𝑗, then we have

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑞, 𝑢, Δ

𝑟
, 𝐴).

Proof. Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). Then there exists

𝜌 > 0 such that

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞. (21)

This implies that

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< 1,
(22)

for sufficiently large values of 𝑖 and 𝑗. Since𝑀
𝑖𝑗
is nondecreas-

ing, we get

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞.

(23)

Thus 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑞, 𝑢, Δ

𝑟
, 𝐴). This completes the

proof.

Theorem 11. Suppose that M = (𝑀
𝑖𝑗
) is a Musielak-Orlicz

function, 𝑝 = (𝑝
𝑖𝑗
) a bounded double sequence of positive real

numbers, and 𝑢 = (𝑢
𝑖𝑗
) a double sequence of strictly positive

real numbers. Then the following hold.

(i) If 0 < inf 𝑝
𝑖𝑗

< 𝑝
𝑖𝑗

≤ 1, then
2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑢, Δ

𝑟
, 𝐴).

(ii) If 1 ≤ 𝑝
𝑖𝑗

≤ sup𝑝
𝑖𝑗

< ∞, then
2
𝑤
∞

(M, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).

Proof. (i) Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). Since 0 <

inf 𝑝
𝑖𝑗

≤ 1, we obtain the following:

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞,

(24)

and hence 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑢, Δ

𝑟
, 𝐴).

(ii) Let 𝑝
𝑖𝑗

≥ 1 for each 𝑖 and 𝑗 and sup𝑝
𝑖𝑗

< ∞. Let
𝑥 = (𝑥

𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑢, Δ

𝑟
, 𝐴). Then for each 0 < 𝜖 < 1 there

exists a positive integer 𝑁 such that

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

≤ 𝜖 < 1 ∀𝑛, 𝑚 ≥ 𝑁.

(25)

This implies that

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)] < ∞.

(26)

Therefore, 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). This completes

the proof.

Theorem 12. Let 0 < 𝑝
𝑖𝑗

≤ 𝑞
𝑖𝑗
for all 𝑖, 𝑗 ∈ N and (𝑞

𝑖𝑗
/

𝑝
𝑖𝑗
) be bounded. Then we have

2
𝑤

∞
(M, 𝑞, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).

Proof. Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑞, 𝑢, Δ

𝑟
, 𝐴). Then

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

< ∞,

for some 𝜌 > 0.

(27)

Let 𝑠
𝑖𝑗

= sup
𝑚𝑛

(1/𝑚𝑛) ∑

𝑚,𝑛

𝑖,𝑗=1,1
𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗
(𝑢
𝑖𝑗
𝑑(Δ

𝑟
𝑥
𝑖𝑗
, 0)/𝜌)]

𝑞𝑖𝑗

and 𝜆
𝑖𝑗

= 𝑝
𝑖𝑗
/𝑞
𝑖𝑗
. Since 𝑝

𝑖𝑗
≤ 𝑞
𝑖𝑗
, we have 0 ≤ 𝜆

𝑖𝑗
≤ 1. Take

0 < 𝜆 < 𝜆
𝑖𝑗
.

Define

𝑢
𝑖𝑗

= {

𝑠
𝑖𝑗

if 𝑠
𝑖𝑗

≥ 1

0 if 𝑠
𝑖𝑗

< 1,

V
𝑖𝑗

= {

0 if 𝑠
𝑖𝑗

≥ 1

𝑠
𝑖𝑗

if 𝑠
𝑖𝑗

< 1,

(28)
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𝑠
𝑖𝑗

= 𝑢
𝑖𝑗

+ V
𝑖𝑗
, 𝑠

𝜆𝑖𝑗

𝑖𝑗
= 𝑢

𝜆𝑖𝑗

𝑖𝑗
+ V𝜆𝑖𝑗
𝑖𝑗
. It follows that 𝑢

𝜆𝑖𝑗

𝑖𝑗
≤ 𝑢
𝑖𝑗

≤ 𝑠
𝑖𝑗
,

V𝜆𝑖𝑗
𝑖𝑗

≤ V𝜆
𝑖𝑗
. since 𝑠

𝜆𝑖𝑗

𝑖𝑗
= 𝑢

𝜆𝑖𝑗

𝑖𝑗
+ V𝜆𝑖𝑗
𝑖𝑗
, then 𝑠

𝜆𝑖𝑗

𝑖𝑗
≤ 𝑠
𝑖𝑗

+ V𝜆
𝑖𝑗

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[

[

𝑀
𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)

𝑞𝑖𝑗

]

]

𝜆𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

⇒ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[

[

𝑀
𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)

𝑞𝑖𝑗

]

]

𝑝𝑖𝑗/𝑞𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

⇒ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

,

(29)

but

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑞𝑖𝑗

< ∞ for some 𝜌 > 0.

(30)

Therefore,

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞ for some 𝜌 > 0.

(31)

Hence 𝑥 = (𝑥
𝑖𝑗
) ∈

2
𝑊

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). Thus, we get

2
𝑊

∞
(M, 𝑞, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).

Theorem 13. Let M = (𝑀



𝑖𝑗
) and M = (𝑀



𝑖𝑗
) be two Mus-

ielak-Orlicz functions,

2
𝑤

∞
(M

, 𝑝, 𝑢, Δ

𝑟
, 𝐴) ∩

2
𝑤

∞
(M

, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

⊂
2
𝑤

∞
(M

+ M

, 𝑝, 𝑢, Δ

𝑟
, 𝐴) .

(32)

Proof. Let𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)∩

2
𝑤

∞
(M, 𝑝, 𝑢,

Δ

𝑟
, 𝐴). Then

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
1

)]

𝑝𝑖𝑗

< ∞,

for some 𝜌
1

> 0,

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
2

)]

𝑝𝑖𝑗

< ∞,

for some 𝜌
2

> 0.

(33)

Let 𝜌 = max{𝜌
1
, 𝜌
2
}. The result follows from the inequality

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[(𝑀



𝑖𝑗
+ 𝑀



𝑖𝑗
) (

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

= sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
1

)]

𝑝𝑖𝑗

+ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
2

)]

𝑝𝑖𝑗

≤ 𝐾sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
1

)]

𝑝𝑖𝑗

+ 𝐾sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀



𝑖𝑗
(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
2

)]

𝑝𝑖𝑗

< ∞.

(34)

Thus, sup
𝑚𝑛

(1/𝑚𝑛) ∑

𝑚,𝑛

𝑖,𝑗=1,1
𝑎
𝑚𝑛𝑖𝑗

[(𝑀



𝑖𝑗
+ 𝑀



𝑖𝑗
)(𝑢
𝑖𝑗
𝑑(Δ

𝑟
𝑦

𝑖𝑗
, 0)/

𝜌)]

𝑝𝑖𝑗
< ∞. Therefore, 𝑥 = (𝑥

𝑖𝑗
) ∈

2
𝑤

∞
(M + M, 𝑝,

𝑢, Δ

𝑟
, 𝐴).

Theorem 14. Let M = (𝑀
𝑖𝑗
) be a Musielak-Orlicz function

and let 𝐴 = (𝑎
𝑛𝑚𝑖𝑗

) be a nonnegative four-dimensional regular
summability method. Suppose that 𝛽 = lim

𝑡→∞
(𝑀
𝑖𝑗
(𝑡)/𝑡) <

∞. Then
2
𝑤(𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).

Proof. In order to prove that
2
𝑊(𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤(M, 𝑝,

𝑢, Δ

𝑟
, 𝐴), it is sufficient to show that

2
𝑊(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤(𝑝, 𝑢, Δ

𝑟
, 𝐴). Now, let 𝛽 > 0. By definition of 𝛽, we have

𝑀
𝑖𝑗
(𝑡) ≥ 𝛽𝑡 for all 𝑡 ≥ 0. Since 𝛽 > 0, we have 𝑡 ≤ (1/𝛽)𝑀

𝑖𝑗
(𝑡)

for all 𝑡 ≥ 0. Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).Thus, we have

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

≤

1

𝛽

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

< ∞

(35)
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which implies that 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤(𝑝, 𝑢, Δ

𝑟
, 𝐴). This com-

pletes the proof.

Theorem 15. Let 0 < ℎ = inf 𝑝
𝑖𝑗

≤ 𝑝
𝑖𝑗

≤ sup 𝑝
𝑖𝑗

= 𝐻 < ∞.
Then for a Musielak-Orlicz functionM = (𝑀

𝑖𝑗
) which satisfies

the Δ
2
-condition, we have

2
𝑤(𝑝, 𝑢, Δ

𝑟
, 𝐴) =

2
𝑤(M, 𝑝, 𝑢,

Δ

𝑟
, 𝐴).

Proof. Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤(𝑝, 𝑢, Δ

𝑟
, 𝐴); that is,

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

= 0,

for some 𝜌 > 0.

(36)

Let 𝜖 > 0 and choose 𝛿 with 0 < 𝛿 < 1 such that 𝑀
𝑖𝑗
(𝑡) < 𝜖

for 0 ≤ 𝑡 ≤ 𝛿. Then

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

=

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑑(Δ
𝑟
𝑥𝑖𝑗 ,𝑥0)≤𝛿

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

+

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑑(Δ
𝑟
𝑥𝑖𝑗 ,𝑥0)>𝛿

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

= ∑

1

+ ∑

2

,

(37)

where

∑

1

=

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑑(Δ
𝑟
𝑥𝑖𝑗 ,𝑥0)≤𝛿

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

𝑝𝑖𝑗

< max (𝜖, 𝜖

𝐻
)

(38)

by using continuity of (𝑀
𝑖𝑗
). For the second summation, we

will make the following procedure. Thus we have

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

< 1 +

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

.
(39)

SinceM = (𝑀
𝑖𝑗
) is nondecreasing and convex, so we have

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

< 𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

{1 +

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

}]

≤

1

2

𝑎
𝑚𝑛𝑖𝑗

[(𝑢
𝑖𝑗
) 𝑀
𝑖𝑗 (

2)]

+

1

2

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

{2

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

}] .

(40)

Again, sinceM = (𝑀
𝑖𝑗
) satisfies the Δ

2
-condition, it follows

that

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

)]

≤

1

2

𝐾 {

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

} 𝑎
𝑚𝑛𝑖𝑗

[(𝑢
𝑖𝑗
) 𝑀
𝑖𝑗 (

2)]

+

1

2

𝐾 {

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

} 𝑎
𝑚𝑛𝑖𝑗

[(𝑢
𝑖𝑗
) 𝑀
𝑖𝑗 (

2)]

= 𝐾 {

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) /𝜌

𝛿

} 𝑎
𝑚𝑛𝑖𝑗

[(𝑢
𝑖𝑗
) 𝑀
𝑖𝑗 (

2)] .

(41)

Thus, it follows that

∑

2

= max
{

{

{

1, [

𝐾𝑎
𝑚𝑛𝑖𝑗

[(𝑢
𝑖𝑗
) 𝑀
𝑖𝑗 (

2)]

𝛿

]

𝐻

}

}

}

×

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

[

𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌

]

𝑝𝑖𝑗

.

(42)

Taking the limit as 𝜖 → 0 and 𝑚, 𝑛 → ∞, it follows that
𝑥 = (𝑥

𝑖𝑗
) ∈
2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴).

Theorem 16. Suppose that M = (𝑀
𝑖𝑗
) is a Musielak-Orlicz

function, 𝑝 = (𝑝
𝑖𝑗
) a bounded double sequence of positive real

numbers, and 𝑢 = (𝑢
𝑖𝑗
) a double sequence of strictly positive

real numbers. If sup
𝑖,𝑗

(𝑀
𝑖𝑗
(𝑥))

𝑝𝑖𝑗
< ∞ for all fixed 𝑥 > 0,

then

2
𝑤 (M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) ⊂

2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴) . (43)

Proof. Let 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). Then there exists a

positive number 𝜌
1

> 0 such that

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌
1

)]

𝑝𝑖𝑗

= 0,

for some 𝜌
1

> 0.

(44)
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Define 𝜌 = 2𝜌
1
. SinceM = (𝑀

𝑖𝑗
) is nondecreasing and con-

vex, for each 𝑖, 𝑗, so by using (20), we have

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
) + 𝑑 (𝑥

0
, 0)

𝜌

)]

𝑝𝑖𝑗

≤ 𝐾

{

{

{

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 𝑥
0
)

𝜌
1

)]

𝑝𝑖𝑗

+sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌
1

)]

𝑝𝑖𝑗

}

}

}

< ∞.

(45)

Thus 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴). This completes the

proof of the theorem.

Theorem 17. The double sequence space
2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

is solid.

Proof. Suppose 𝑥 = (𝑥
𝑖𝑗
) ∈
2
𝑤

∞
(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞,

for some 𝜌 > 0.

(46)

Let (𝛼
𝑖𝑗
) be a double sequence of scalars such that |𝛼

𝑖𝑗
| ≤ 1 for

all 𝑖, 𝑗 ∈ N. Then we get

sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝛼
𝑖𝑗
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

≤ sup
𝑚𝑛

1

𝑚𝑛

𝑚,𝑛

∑

𝑖,𝑗=1,1

𝑎
𝑚𝑛𝑖𝑗

[𝑀
𝑖𝑗

(

𝑢
𝑖𝑗
𝑑 (Δ

𝑟
𝑥
𝑖𝑗
, 0)

𝜌

)]

𝑝𝑖𝑗

< ∞.

(47)

This completes the proof.

Theorem 18. The double sequence space
2
𝑤
∞

(M, 𝑝, 𝑢, Δ

𝑟
, 𝐴)

is monotone.

Proof. The proof is trivial so we omit it.
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