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Let 𝐶[0, 𝑇] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, 𝑇], and define a
stochastic process𝑍 : 𝐶[0, 𝑇]×[0, 𝑇] → R by𝑍(𝑥, 𝑡) = ∫𝑡

0
ℎ(𝑢)𝑑𝑥(𝑢)+𝑥(0)+𝑎(𝑡), for 𝑥 ∈ 𝐶[0, 𝑇] and 𝑡 ∈ [0, 𝑇], where ℎ ∈ 𝐿

2
[0, 𝑇]

with ℎ ̸= 0 a.e. and 𝑎 is a continuous function on [0, 𝑇]. Let 𝑍
𝑛
: 𝐶[0, 𝑇] → R𝑛+1 and 𝑍

𝑛+1
: 𝐶[0, 𝑇] → R𝑛+2 be given by 𝑍

𝑛
(𝑥) =

(𝑍(𝑥, 𝑡
0
), 𝑍(𝑥, 𝑡

1
), . . . , 𝑍(𝑥, 𝑡

𝑛
)) and 𝑍

𝑛+1
(𝑥) = (𝑍(𝑥, 𝑡

0
), 𝑍(𝑥, 𝑡

1
), . . . , 𝑍(𝑥, 𝑡

𝑛
), 𝑍(𝑥, 𝑡

𝑛+1
)), where 0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡

𝑛+1
= 𝑇 is

a partition of [0, 𝑇]. In this paper we derive two simple formulas for generalized conditionalWiener integrals of functions on𝐶[0, 𝑇]
with the conditioning functions 𝑍

𝑛
and 𝑍

𝑛+1
which contain drift and initial distribution. As applications of these simple formulas

we evaluate generalized conditional Wiener integrals of the function exp{∫𝑇

0
𝑍(𝑥, 𝑡)𝑑𝑚

𝐿
(𝑡)} including the time integral on 𝐶[0, 𝑇].

1. Introduction

A time integral is simply the Riemann integral of a function of
the continuous random variable 𝑋(𝑥, 𝑡) = 𝑥(𝑡) with respect
to the parameter 𝑡 for 𝑥 ∈ 𝐶

0
[0, 𝑇]which is theWiener space,

the space of continuous real-valued functions𝑥 on [0, 𝑇]with
𝑥(0) = 0 [1]. This means that the time integral of 𝑋(𝑥, 𝑡) is a
random variable 𝑌 on 𝐶

0
[0, 𝑇] satisfying

𝑌 (𝑥) = ∫

𝑇

0

𝐹 (𝑡, 𝑋 (𝑥, 𝑡)) 𝑑𝑚
𝐿
(𝑡) , (1)

where 𝐹(𝑡, 𝑋(𝑥, 𝑡)) is Riemann integrable on [0, 𝑇] and𝑚
𝐿
is

the Lebesgue measure onR. A study of the Feynman integral
provides ready examples of the utility of the time integral.
The Feynman-Kac formula represents an important step in
the process of providing a rigorous definition of the Feynman
integral. A detailed explanation of this formula can be found
in [2]. The Feynman-Kac functional is given by

exp{−∫
𝑇

0

𝑉 (𝑡, 𝑋 (𝑥, 𝑡)) 𝑑𝑚
𝐿
(𝑡)} (2)

including the time integral, where 𝑋(𝑥, 𝑡) is a standard
Brownian motion process on 𝐶

0
[0, 𝑇] × [0, 𝑇] and 𝑉 is

a complex-valued potential. Calculations involving the con-
ditional expectations of the functional are important in the
study of the Feynman integral. More examples of functionals
involving time integrals are found in [2–4]. In [5] Park and
Skoug introduced a generalized Brownian motion process
𝑋 : 𝐶

0
[0, 𝑇] × [0, 𝑇] → R defined by

𝑋 (𝑥, 𝑡) = ∫

𝑡

0

ℎ (𝑢) 𝑑𝑥 (𝑢) for 𝑥 ∈ 𝐶
0
[0, 𝑇] , 𝑡 ∈ [0, 𝑇] ,

(3)

where ℎ is of bounded variation with ℎ ̸= 0 a.e. on [0, 𝑇] and
the integral denotes the Paley-Wiener-Zygmund stochastic
integral of ℎ according to 𝑥 [6], and then they generalized
various theories related to the conditional Wiener integrals
on 𝐶

0
[0, 𝑇].

On the other hand let 𝐶[0, 𝑇] denote the space of
continuous real-valued functions on the interval [0, 𝑇]. Im
et al. [6–8] introduced a probability measure 𝑤

𝜑
on 𝐶[0, 𝑇],

where 𝜑 is a probability measure on the Borel class of R.
We note that 𝑤

𝜑
is exactly the Wiener measure on 𝐶

0
[0, 𝑇]

if 𝜑 = 𝛿
0
, the Dirac measure concentrated at 0. Let 𝑎 be
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a continuous function on [0, 𝑇]. Define stochastic processes
𝑋,𝑌, 𝑍 : 𝐶[0, 𝑇] × [0, 𝑇] → R by

𝑋 (𝑥, 𝑡) = ∫

𝑡

0

ℎ (𝑢) 𝑑𝑥 (𝑢) , 𝑌 (𝑥, 𝑡) = 𝑋 (𝑥, 𝑡) + 𝑎 (𝑡) ,

𝑍 (𝑥, 𝑡) = 𝑌 (𝑥, 𝑡) + 𝑥 (0)

(4)

for 𝑥 ∈ 𝐶[0, 𝑇] and for 𝑡 ∈ [0, 𝑇]. Let 𝑍
𝑛
: 𝐶[0, 𝑇] → R𝑛+1

and 𝑍
𝑛+1

: 𝐶[0, 𝑇] → R𝑛+2 be given by

𝑍
𝑛
(𝑥) = (𝑍 (𝑥, 𝑡

0
) , 𝑍 (𝑥, 𝑡

1
) , . . . , 𝑍 (𝑥, 𝑡

𝑛
)) ,

𝑍
𝑛+1

(𝑥) = (𝑍 (𝑥, 𝑡
0
) , 𝑍 (𝑥, 𝑡

1
) , . . . , 𝑍 (𝑥, 𝑡

𝑛
) , 𝑍 (𝑥, 𝑡

𝑛+1
)) ,

(5)

where 0 = 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡

𝑛+1
= 𝑇 is a partition of

[0, 𝑇]. The author [9–11] derived various properties of 𝑋 and
then extended his works on𝑋 to 𝑌. In fact he [9] established
that 𝑋 is a generalized Brownian process and derived a
simple formula for a conditional expectation which evaluates
conditional expectations in terms of ordinary expectations.
Moreover he [10] extended the results on 𝑋 to those on 𝑌

with drift using only a translation theorem [6, Theorem 3.1].
In [11] he investigated the distribution of 𝑍 and proved that
𝑍 is a generalized Brownian motion process if the initial
distribution is degenerated. He also established a generalized
Wiener integration theoremwhich extends Lemma 2.1 of [6].
Furthermore he derived a generalized Paley-Wiener theorem
which generalizes Theorem 3.5 of [6]. As applications of
the theorems he evaluated generalized Wiener integrals of
various functions including

𝑍 (𝑥, 𝑠
1
) 𝑍 (𝑥, 𝑠

2
) ⋅ ⋅ ⋅ 𝑍 (𝑥, 𝑠

𝑚
) ,

exp{∫
𝑇

0

𝑍 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)}

(6)

for 𝑥 ∈ 𝐶[0, 𝑇], where 0 < 𝑠
1
< 𝑠

2
< ⋅ ⋅ ⋅ < 𝑠

𝑚
≤ 𝑇 and 𝑚 is a

positive integer.
In this paper, using the results in [11], we derive two

simple formulas for generalized conditional Wiener integrals
of functions on 𝐶[0, 𝑇] with the conditioning functions 𝑍

𝑛

and 𝑍
𝑛+1

which contain drift and initial distribution. As
applications of these simple formulas we evaluate several
generalized conditional Wiener integrals of the functions
given by (6). We note that if ℎ ≡ 1 and 𝑎 ≡ 0 on [0, 𝑇],
then 𝑋 as above is exactly the stochastic process given by
𝑋(𝑥, 𝑡) = 𝑥(𝑡) so that these works generalize the results of
[5, 9, 10, 12–15] in which the works are the first results among
them.

2. Simple Formulas for Generalized
Conditional Wiener Integrals

In this section we derive two simple formulas for generalized
conditionalWiener integrals on the space (𝐶[0, 𝑇], 𝑤

𝜑
)which

is introduced in the previous section.

Let 𝑚
𝐿
denote the Lebesgue measure on the Borel class

B(R) of R and let ⟨⋅, ⋅⟩R denote the dot product on R. Let
(𝐶[0, 𝑇],B(𝐶[0, 𝑇]), 𝑤

𝜑
) be the analogue of Wiener space

associated with a probability measure 𝜑 on B(R), where
B(𝐶[0, 𝑇]) denotes the Borel class of 𝐶[0, 𝑇] [6–8]. Let 𝐹 :

𝐶[0, 𝑇] → C be integrable and 𝑋
𝜏
be a random vector

on 𝐶[0, 𝑇] assuming that the value space of 𝑋
𝜏
is a normed

space equipped with the Borel 𝜎-algebra. Then we have the
conditional expectation 𝐸[𝐹 | 𝑋

𝜏
] of 𝐹 given 𝑋

𝜏
from a

well-known probability theory. Furthermore there exists a
𝑃
𝑋
𝜏

-integrable complex valued function 𝜓 on the value space
of 𝑋

𝜏
such that 𝐸[𝐹 | 𝑋

𝜏
](𝑥) = (𝜓 ∘ 𝑋

𝜏
)(𝑥) for 𝑤

𝜑
a.e.

𝑥 ∈ 𝐶[0, 𝑇], where 𝑃
𝑋
𝜏

is the probability distribution of 𝑋
𝜏
.

The function𝜓 is called the conditional𝑤
𝜑
-integral of𝐹 given

𝑋
𝜏
and it is also denoted by 𝐸[𝐹 | 𝑋

𝜏
].

For V in 𝐿
2
[0, 𝑇] and 𝑥 in 𝐶[0, 𝑇] let (V, 𝑥) denote the

Paley-Wiener-Zygmund integral of V according to 𝑥 [6] and
let ⟨⋅, ⋅⟩

2
denote the inner product over 𝐿

2
[0, 𝑇]. Let ℎ ∈

𝐿
2
[0, 𝑇] be of bounded variation with ℎ ̸= 0 a.e. on [0, 𝑇] and

let 𝑎 ∈ 𝐶[0, 𝑇]. Define 𝑋
0
(𝑥) = 𝑥(0) for 𝑥 ∈ 𝐶[0, 𝑇] and

define stochastic processes𝑋,𝑌, 𝑍 : 𝐶[0, 𝑇] × [0, 𝑇] → R by

𝑋(𝑥, 𝑡) = (𝜒
[0,𝑡]

ℎ, 𝑥) , 𝑌 (𝑥, 𝑡) = (𝜒
[0,𝑡]

ℎ, 𝑥) + 𝑎 (𝑡) ,

𝑍 (𝑥, 𝑡) = (𝜒
[0,𝑡]

ℎ, 𝑥) + 𝑋
0
(𝑥) + 𝑎 (𝑡)

(7)

for 𝑥 ∈ 𝐶[0, 𝑇] and for 𝑡 ∈ [0, 𝑇]. Let 𝑏(𝑡) = ∫𝑡

0
(ℎ(𝑢))

2
𝑑𝑢 and

let 0 = 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡

𝑛+1
= 𝑇 be a partition of [0, 𝑇].

For 𝑗 = 1, . . . , 𝑛 + 1 let

𝛼
𝑏

𝑗
(𝑡) =

𝑏 (𝑡
𝑗
) − 𝑏 (𝑡)

𝑏 (𝑡
𝑗
) − 𝑏 (𝑡

𝑗−1
)

, 𝛽
𝑏

𝑗
(𝑡) =

𝑏 (𝑡) − 𝑏 (𝑡
𝑗−1
)

𝑏 (𝑡
𝑗
) − 𝑏 (𝑡

𝑗−1
)

(8)

for 𝑡 ∈ [𝑡
𝑗−1
, 𝑡

𝑗
] and

𝜎
𝑏

𝑗
(𝑠, 𝑡) = 𝛼

𝑏

𝑗
(𝑡) 𝛽

𝑏

𝑗
(𝑠) (𝑏 (𝑡

𝑗
) − 𝑏 (𝑡

𝑗−1
)) (9)

for 𝑠, 𝑡 ∈ [𝑡
𝑗−1
, 𝑡

𝑗
]. Define random vectors 𝑍

𝑛
: 𝐶[0, 𝑇] →

R𝑛+1 and 𝑍
𝑛+1

: 𝐶[0, 𝑇] → R𝑛+2 by

𝑍
𝑛
(𝑥) = (𝑍 (𝑥, 𝑡

0
) , 𝑍 (𝑥, 𝑡

1
) , . . . , 𝑍 (𝑥, 𝑡

𝑛
)) ,

𝑍
𝑛+1

(𝑥) = (𝑍 (𝑥, 𝑡
0
) , 𝑍 (𝑥, 𝑡

1
) , . . . , 𝑍 (𝑥, 𝑡

𝑛
) , 𝑍 (𝑥, 𝑡

𝑛+1
))

(10)

for 𝑥 ∈ 𝐶[0, 𝑇]. For any function 𝑓 on [0, 𝑇] define the
polygonal function 𝑃

𝑏,𝑛+1
(𝑓) of 𝑓 by

𝑃
𝑏,𝑛+1

(𝑓) (𝑡)

=

𝑛+1

∑

𝑗=1

𝜒
(𝑡
𝑗−1

,𝑡
𝑗
]
(𝑡) (𝛼

𝑏

𝑗
(𝑡) 𝑓 (𝑡

𝑗−1
)

+𝛽
𝑏

𝑗
(𝑡) 𝑓 (𝑡

𝑗
)) + 𝜒

{𝑡
0
}
(𝑡) 𝑓 (𝑡

0
)

(11)

for 𝑡 ∈ [0, 𝑇], where 𝜒
(𝑡
𝑗−1

,𝑡
𝑗
]
and 𝜒

{𝑡
0
}
denote the indicator

functions. For ⃗𝜉
𝑛+1

= (𝜉
0
, 𝜉

1
, . . . , 𝜉

𝑛
, 𝜉

𝑛+1
) ∈ R𝑛+2 define
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the polygonal function𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) of ⃗𝜉
𝑛+1

by (11), where𝑓(𝑡
𝑗
)

is replaced by 𝜉
𝑗
, respectively, for 𝑗 = 0, 1, . . . , 𝑛+1. If ⃗𝜉

𝑛
= (𝜉

0
,

𝜉
1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1, 𝑃

𝑏,𝑛
( ⃗𝜉

𝑛
) is interpreted as 𝜒

[0,𝑡
𝑛
]
𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

)

on [0, 𝑇]. For 𝑥 ∈ 𝐶[0, 𝑇] and for 𝑡 ∈ [0, 𝑇] let

𝑍
𝑏,𝑛+1

(𝑥, 𝑡) = 𝑍 (𝑥, 𝑡) − 𝑃
𝑏,𝑛+1

(𝑍 (𝑥, ⋅)) (𝑡) ,

𝐴
𝑡
= 𝑎 (𝑡) − 𝑃

𝑏,𝑛+1
(𝑎) (𝑡)

(12)

and for 𝑡 ∈ [𝑡
𝑗−1
, 𝑡

𝑗
] let

ℎ
𝑗,𝑡
(𝑢) = [𝛼

𝑏

𝑗
(𝑡) 𝜒

[𝑡
𝑗−1

,𝑡]
(𝑢) − 𝛽

𝑏

𝑗
(𝑡) 𝜒

[𝑡,𝑡
𝑗
]
(𝑢)] ℎ (𝑢) (13)

for 𝑢 ∈ [0, 𝑇]. It is not difficult to show that

𝑍
𝑏,𝑛+1

(𝑥, 𝑡) = (ℎ
𝑗,𝑡
, 𝑥) + 𝐴

𝑡
for 𝑡 ∈ [𝑡

𝑗−1
, 𝑡

𝑗
] , (14)

𝑃
𝑏,𝑛+1

(𝑌 (𝑥, ⋅)) = 𝑃
𝑏,𝑛+1

(𝑋 (𝑥, ⋅)) + 𝑃
𝑏,𝑛+1

(𝑎) ,

𝑃
𝑏,𝑛+1

(𝑍 (𝑥, ⋅)) = 𝑃
𝑏,𝑛+1

(𝑌 (𝑥, ⋅)) + 𝑋
0
(𝑥)

for 𝑥 ∈ 𝐶 [0, 𝑇] .
(15)

Now we have the following theorem [11].

Theorem 1. For 𝑡 ∈ [0, 𝑇], 𝑋
0
and 𝑋(⋅, 𝑡) are independent so

that𝑋
0
and 𝑌(⋅, 𝑡) are also independent.

Theorem 2. Let 𝑡
𝑗−1

< 𝑡 < 𝑡
𝑗
for some 𝑗 ∈ {1, . . . , 𝑛 + 1}. Then

𝑍
𝑏,𝑛+1

(⋅, 𝑡) is normally distributed with mean 𝐴
𝑡
and variance

𝜎
𝑏

𝑗
(𝑡, 𝑡).

Proof. By (14) andTheorem 3.4 of [6], 𝑍
𝑏,𝑛+1

(⋅, 𝑡) is normally
distributed with mean 𝐴

𝑡
and variance ‖ℎ

𝑗,𝑡
‖
2

2
. A simple

calculation with an aid of (13) shows that
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑡

󵄩󵄩󵄩󵄩󵄩

2

2
= ((𝑏 (𝑡

𝑗
) − 𝑏 (𝑡))

2

(𝑏 (𝑡) − 𝑏 (𝑡
𝑗−1
))

+ (𝑏 (𝑡) − 𝑏 (𝑡
𝑗−1
))

2

(𝑏 (𝑡
𝑗
) − 𝑏 (𝑡)))

× ((𝑏 (𝑡
𝑗
) − 𝑏 (𝑡

𝑗−1
))

2

)

−1

= 𝜎
𝑏

𝑗
(𝑡, 𝑡)

(16)

which completes the proof.

Remark 3. (1) We can prove Theorem 2 using the Fourier
transform of 𝑍

𝑏,𝑛+1
(⋅, 𝑡), Lemma 2.4 of [11], and Corollaries

2.11, 2.12 of [11], but the proof is tedious.
(2)We can also proveTheorem 2 usingTheorem 2.9 of [9]

andTheorem 2.13 of [11].

Theorem 4. The process {𝑍
𝑏,𝑛+1

(⋅, 𝑡) : 0 ≤ 𝑡 ≤ 𝑇} and𝑍
𝑛+1

are
stochastically independent.

Proof. Note that

𝑍
𝑏,𝑛+1

(𝑥, 𝑡) = 𝑋 (𝑥, 𝑡) − 𝑃
𝑏,𝑛+1

(𝑋 (𝑥, ⋅)) (𝑡) + 𝐴
𝑡
,

𝑍
𝑛+1

(𝑥) = (𝑋 (𝑥, 𝑡
0
) , . . . , 𝑋 (𝑥, 𝑡

𝑛+1
))

+ (𝑎 (𝑡
0
) + 𝑋

0
(𝑥) , . . . , 𝑎 (𝑡

𝑛+1
) + 𝑋

0
(𝑥))

(17)

for 𝑥 ∈ 𝐶[0, 𝑇]. 𝑋(𝑥, 𝑡) − 𝑃
𝑏,𝑛+1

(𝑋(𝑥, ⋅))(𝑡) and 𝑋(𝑥, 𝑡
𝑗
) are

independent by Theorem 2.10 of [9] for 𝑗 = 1, . . . , 𝑛 + 1,
and𝑋(⋅, 𝑡) − 𝑃

𝑏,𝑛+1
(𝑋(⋅, ⋅))(𝑡) and𝑋

0
are also independent by

Theorem 1 which completes the proof of the theorem.

Since 𝑍
𝑏,𝑛+1

(𝑥, 𝑡) = 𝑌(𝑥, 𝑡) − 𝑃
𝑏,𝑛+1

(𝑌(𝑥, ⋅))(𝑡) for 𝑥 ∈

𝐶[0, 𝑇] and 𝑡 ∈ [0, 𝑇], we have the following theorem by
Theorem 16 of [10].

Theorem 5. The processes {𝑍
𝑏,𝑛+1

(⋅, 𝑡) : 𝑡
𝑗−1

≤ 𝑡 ≤ 𝑡
𝑗
}, where

𝑗 = 1, . . . , 𝑛 + 1, are stochastically independent.

For a function 𝐹 : 𝐶[0, 𝑡] → C let 𝐹
𝑍
(𝑥) = 𝐹(𝑍(𝑥, ⋅))

for 𝑥 ∈ 𝐶[0, 𝑇]. Applying the same method as used in the
proof of Theorem 2 in [15] with Problem 4 of [16, page 216],
we have the following theorem fromTheorem 4.

Theorem 6. Let 𝐹 be a complex valued function on 𝐶[0, 𝑇]

and let 𝐹
𝑍
be integrable over 𝐶[0, 𝑇]. Then for a Borel subset 𝐵

of R𝑛+2

∫
𝑍
−1

𝑛+1
(𝐵)

𝐹
𝑍
(𝑥) 𝑑𝑤

𝜑
(𝑥)

= ∫
𝐵

𝐸 [𝐹 (𝑍
𝑏,𝑛+1

(𝑥, ⋅) + 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

))] 𝑑𝑃
𝑍
𝑛+1

( ⃗𝜉
𝑛+1

) ,

(18)

where 𝑃
𝑍
𝑛+1

is the probability distribution of 𝑍
𝑛+1

on (R𝑛+2
,

B(R𝑛+2
)), so that for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [𝐹
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
) = 𝐸 [𝐹 (𝑍

𝑏,𝑛+1
(𝑥, ⋅) + 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
))] ,

(19)

where the expectation is taken over the variable 𝑥.

Using similar method as used in the proof of Theorem 18
of [10], we can prove the following theorem.

Theorem 7. Let 𝐹 be a complex valued function on 𝐶[0, 𝑇]

and let 𝐹
𝑍
be integrable over 𝐶[0, 𝑇]. Let 𝑃

𝑍
𝑛

be the probability
distribution of 𝑍

𝑛
on (R𝑛+1

,B(R𝑛+1
)). Then for 𝑃

𝑍
𝑛

a.e. ⃗𝜉
𝑛
=

(𝜉
0
, . . . , 𝜉

𝑛
) ∈ R𝑛+1

𝐸 [𝐹
𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= [
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))
]

1/2

× ∫
R

𝐸 [𝐹 (𝑍
𝑏,𝑛+1

(𝑥, ⋅) + 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

))]

× exp{−
(𝜉

𝑛+1
− 𝑎 (𝑇) − (𝜉

𝑛
− 𝑎 (𝑡

𝑛
)))

2

2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

}𝑑𝑚
𝐿
(𝜉

𝑛+1
) ,

(20)

where ⃗𝜉
𝑛+1

= (𝜉
0
, . . . , 𝜉

𝑛
, 𝜉

𝑛+1
).
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Remark 8. (1) The conditioning functions 𝑍
𝑛+1

and 𝑍
𝑛

describe the positions of paths at the times 𝑡
0
= 0, 𝑡

1
, . . . ,

𝑡
𝑛
, 𝑡

𝑛+1
= 𝑇 (the present time). 𝑍

𝑛+1
(𝑥) depends on the

present position 𝑍(𝑥, 𝑇) of the path 𝑍(𝑥, ⋅) for 𝑥 ∈ 𝐶[0, 𝑇]

while 𝑍
𝑛
does not. Moreover if 𝑎(0) = 0, ℎ = √𝑏󸀠, and

𝜑 = 𝛿
0
which is the Dirac measure concentrated at 0, then

we can obtain the space 𝐶
𝑎,𝑏
[0, 𝑇] in [12] by Theorem 2.13 of

[11]. Furthermore if𝑍 is replaced by the generalizedBrownian
motion process 𝑥(𝑡) on𝐶

𝑎,𝑏
[0, 𝑇]×[0, 𝑇] and 𝜑 = 𝛿

0
, then we

can also obtainTheorem3.4 of [12] byTheorem 6. If 𝑎 ≡ 0 and
𝜑 = 𝛿

0
, then we can obtain Theorem 3 of [5] by Theorem 6.

If 𝑛 = 0 and 𝜑 = 𝛿
0
, then we can obtain Remark 2.2 of [17]

by Theorem 6. If ℎ = 1 a.e. and 𝑎 ≡ 0, then we can obtain
Theorem 2.9 of [13] and Theorem 2.5 of [14] by Theorems
6 and 7, respectively. Finally if ℎ = 1 a.e., 𝜑 = 𝛿

0
, and

𝑎 ≡ 0, then we can obtain Theorem 2 of [15] by Theorem 6
which is among the first result expressing the conditional
Wiener integrals of functions on𝐶

0
[0, 𝑇] as ordinaryWiener

integrals.
(2) Theorems 6 and 7 are not generalizations of Theorem

2.12 of [9] andTheorems 17 and 18 of [10]. InTheorems 6 and 7
the conditioning functions depend on the initial distribution
𝜑 while the conditioning functions in [9, 10] do not.

3. A Multivariate Normal Distribution

In this section we investigate the joint distribution of
{𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
) : 𝑙 = 1, . . . , 𝑚}, where 𝑡

𝑗−1
< 𝑠

1
< ⋅ ⋅ ⋅ < 𝑠

𝑚
< 𝑡

𝑗

for 𝑗 = 1, . . . , 𝑛 + 1. In fact we prove that the random vector
as above has a multivariate normal distribution which plays a
key role in the next sections.

Now we begin this section with the introduction of the
following lemma.

Lemma 9. Let 𝑡
𝑗−1

= 𝑠
0
< 𝑠

1
< ⋅ ⋅ ⋅ < 𝑠

𝑚
< 𝑡

𝑗
and ℎ

𝑗,𝑠
𝑙

be given
by (13) for 𝑙 = 1, . . . , 𝑚. Then {ℎ

𝑗,𝑠
𝑙

: 𝑙 = 1, . . . , 𝑚} is a linearly
independent set in 𝐿

2
[0, 𝑇].

Proof. For 𝑐
1
, . . . , 𝑐

𝑚
∈ R let

𝑚

∑

𝑙=1

𝑐
𝑙
ℎ
𝑗,𝑠
𝑙

(𝑢) =

𝑚

∑

𝑙=1

𝑐
𝑙
[𝛼

𝑏

𝑗
(𝑠

𝑙
) 𝜒

[𝑡
𝑗−1

,𝑠
𝑙
]
(𝑢)

−𝛽
𝑏

𝑗
(𝑠

𝑙
) 𝜒

[𝑠
𝑙
,𝑡
𝑗
]
(𝑢)] ℎ (𝑢)

= 0

(21)

for a.e. 𝑢 ∈ [0, 𝑇]. For 𝑘 = 1, . . . , 𝑚 take 𝑢
𝑘
∈ (𝑠

𝑘−1
, 𝑠

𝑘
) which

satisfies the above equation and ℎ(𝑢
𝑘
) ̸= 0. Replacing 𝑢 by 𝑢

𝑘

we have the following linear equation system with unknowns
𝑐
1
, . . . , 𝑐

𝑚
:

𝛼
𝑏

𝑗
(𝑠

1
) 𝑐

1
+ 𝛼

𝑏

𝑗
(𝑠

2
) 𝑐

2
+ ⋅ ⋅ ⋅ + 𝛼

𝑏

𝑗
(𝑠

𝑚−2
) 𝑐

𝑚−2

+ 𝛼
𝑏

𝑗
(𝑠

𝑚−1
) 𝑐

𝑚−1
+ 𝛼

𝑏

𝑗
(𝑠

𝑚
) 𝑐

𝑚
= 0,

− 𝛽
𝑏

𝑗
(𝑠

1
) 𝑐

1
+ 𝛼

𝑏

𝑗
(𝑠

2
) 𝑐

2
+ ⋅ ⋅ ⋅ + 𝛼

𝑏

𝑗
(𝑠

𝑚−2
) 𝑐

𝑚−2

+ 𝛼
𝑏

𝑗
(𝑠

𝑚−1
) 𝑐

𝑚−1
+ 𝛼

𝑏

𝑗
(𝑠

𝑚
) 𝑐

𝑚
= 0,

...

− 𝛽
𝑏

𝑗
(𝑠

1
) 𝑐

1
− 𝛽

𝑏

𝑗
(𝑠

2
) 𝑐

2
− ⋅ ⋅ ⋅ − 𝛽

𝑏

𝑗
(𝑠

𝑚−2
) 𝑐

𝑚−2

+ 𝛼
𝑏

𝑗
(𝑠

𝑚−1
) 𝑐

𝑚−1
+ 𝛼

𝑏

𝑗
(𝑠

𝑚
) 𝑐

𝑚
= 0,

− 𝛽
𝑏

𝑗
(𝑠

1
) 𝑐

1
− 𝛽

𝑏

𝑗
(𝑠

2
) 𝑐

2
− ⋅ ⋅ ⋅ − 𝛽

𝑏

𝑗
(𝑠

𝑚−2
) 𝑐

𝑚−2

− 𝛽
𝑏

𝑗
(𝑠

𝑚−1
) 𝑐

𝑚−1
+ 𝛼

𝑏

𝑗
(𝑠

𝑚
) 𝑐

𝑚
= 0.

(22)

The determinant of coefficient matrix of the system is given
by
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
𝑏

𝑗
(𝑠

1
) 𝛼

𝑏

𝑗
(𝑠

2
) ⋅ ⋅ ⋅ 𝛼

𝑏

𝑗
(𝑠

𝑚−2
) 𝛼

𝑏

𝑗
(𝑠

𝑚−1
) 𝛼

𝑏

𝑗
(𝑠

𝑚
)

−𝛽
𝑏

𝑗
(𝑠

1
) 𝛼

𝑏

𝑗
(𝑠

2
) ⋅ ⋅ ⋅ 𝛼

𝑏

𝑗
(𝑠

𝑚−2
) 𝛼

𝑏

𝑗
(𝑠

𝑚−1
) 𝛼

𝑏

𝑗
(𝑠

𝑚
)

...
...

...
...

...
...

−𝛽
𝑏

𝑗
(𝑠

1
) −𝛽

𝑏

𝑗
(𝑠

2
) ⋅ ⋅ ⋅ −𝛽

𝑏

𝑗
(𝑠

𝑚−2
) 𝛼

𝑏

𝑗
(𝑠

𝑚−1
) 𝛼

𝑏

𝑗
(𝑠

𝑚
)

−𝛽
𝑏

𝑗
(𝑠

1
) −𝛽

𝑏

𝑗
(𝑠

2
) ⋅ ⋅ ⋅ −𝛽

𝑏

𝑗
(𝑠

𝑚−2
) −𝛽

𝑏

𝑗
(𝑠

𝑚−1
) 𝛼

𝑏

𝑗
(𝑠

𝑚
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
𝑏

𝑗
(𝑠

1
) 𝛼

𝑏

𝑗
(𝑠

2
) ⋅ ⋅ ⋅ 𝛼

𝑏

𝑗
(𝑠

𝑚−2
) 𝛼

𝑏

𝑗
(𝑠

𝑚−1
) 𝛼

𝑏

𝑗
(𝑠

𝑚
)

−1 0 ⋅ ⋅ ⋅ 0 0 0

−1 −1 ⋅ ⋅ ⋅ 0 0 0

...
...

...
...

...
...

−1 −1 ⋅ ⋅ ⋅ −1 0 0

−1 −1 ⋅ ⋅ ⋅ −1 −1 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (−1)
1+𝑚

𝛼
𝑏

𝑗
(𝑠

𝑚
) (−1)

𝑚−1
= 𝛼

𝑏

𝑗
(𝑠

𝑚
) ̸= 0.

(23)

Now we have 𝑐
1
= 𝑐

2
= ⋅ ⋅ ⋅ = 𝑐

𝑚
= 0 which completes the

proof.

A random variable𝑋
𝜏
on𝐶[0, 𝑡] is said to be degenerated

if there exists a constant 𝑐 satisfying 𝑤
𝜑
(𝑋

𝜏
= 𝑐) = 1 [18].

Lemma 10. Let the assumptions and notations be as given
in Lemma 9. If 𝑐

1
, . . . , 𝑐

𝑚
∈ R and ∑

𝑚

𝑙=1
𝑐
𝑙
𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
) is

degenerated, then 𝑐
𝑙
= 0 for all 𝑙 = 1, . . . , 𝑚.

Proof. By (14) we can take a real constant 𝑐 satisfying

𝑐 =

𝑚

∑

𝑙=1

𝑐
𝑙
𝑍

𝑏,𝑛+1
(𝑥, 𝑠

𝑙
) = (

𝑚

∑

𝑙=1

𝑐
𝑙
ℎ
𝑗,𝑠
𝑙

, 𝑥) +

𝑚

∑

𝑙=1

𝑐
𝑙
𝐴

𝑠
𝑙

(24)

for a.e. 𝑥 ∈ 𝐶[0, 𝑇]. Then we have byTheorem 3.4 of [6] that

0 = ∫
𝐶[0,𝑇]

[(

𝑚

∑

𝑙=1

𝑐
𝑙
ℎ
𝑗,𝑠
𝑙

, 𝑥) +

𝑚

∑

𝑙=1

𝑐
𝑙
𝐴

𝑠
𝑙

− 𝑐]

2

𝑑𝑤
𝜑
(𝑥)

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑙=1

𝑐
𝑙
ℎ
𝑗,𝑠
𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

+ [

𝑚

∑

𝑙=1

𝑐
𝑙
𝐴

𝑠
𝑙

− 𝑐]

2

(25)
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so that ∑𝑚

𝑙=1
𝑐
𝑙
ℎ
𝑗,𝑠
𝑙

= 0 in 𝐿
2
[0, 𝑇]. Now 𝑐

1
= 𝑐

2
= ⋅ ⋅ ⋅ = 𝑐

𝑚
= 0

by Lemma 9 which completes the proof.

Lemma 11. Let the assumptions and notations be as given in
Lemma 9. Then for ⃗𝑠 = (𝑠

1
, . . . , 𝑠

𝑚
) the covariance matrix

Σ
𝑚
( ⃗𝑠) = [𝜎(𝑠

𝑙
, 𝑠

𝑘
)]

𝑚×𝑚
of the random variables 𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
),

𝑙 = 1, . . . , 𝑚, exists and is positive definite. Moreover 𝜎(𝑠
𝑙
, 𝑠

𝑘
)

is given by

𝜎 (𝑠
𝑙
, 𝑠

𝑘
) = ⟨ℎ

𝑗,𝑠
𝑙

, ℎ
𝑗,𝑠
𝑘

⟩
2
= 𝜎

𝑏

𝑗
(min {𝑠

𝑙
, 𝑠

𝑘
} ,max {𝑠

𝑙
, 𝑠

𝑘
})

(26)

and the determinant |Σ
𝑚
( ⃗𝑠)| is positive so that Σ

𝑚
( ⃗𝑠) is

nonsingular and the inverse matrix Σ
−1

𝑚
( ⃗𝑠) of Σ

𝑚
( ⃗𝑠) is also

positive definite.

Proof. ByTheorem 3.4 of [6]

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑠
𝑙

󵄩󵄩󵄩󵄩󵄩

2

2
+ 2∫

𝐶[0,𝑇]

(ℎ
𝑗,𝑠
𝑙

, 𝑥) (ℎ
𝑗,𝑠
𝑘

, 𝑥) 𝑑𝑤
𝜑
(𝑥) +

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑠
𝑘

󵄩󵄩󵄩󵄩󵄩

2

2

= ∫
𝐶[0,𝑇]

(ℎ
𝑗,𝑠
𝑙

+ ℎ
𝑗,𝑠
𝑘

, 𝑥)
2

𝑑𝑤
𝜑
(𝑥)

=
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑠
𝑙

󵄩󵄩󵄩󵄩󵄩

2

2
+ 2⟨ℎ

𝑗,𝑠
𝑙

, ℎ
𝑗,𝑠
𝑘

⟩
2
+
󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑠
𝑘

󵄩󵄩󵄩󵄩󵄩

2

2

(27)

so that the covariance 𝜎(𝑠
𝑙
, 𝑠

𝑘
) of 𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
) and 𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑘
)

is given by 𝜎(𝑠
𝑙
, 𝑠

𝑘
) = ⟨ℎ

𝑗,𝑠
𝑙

, ℎ
𝑗,𝑠
𝑘

⟩
2
. Now we have for 𝑙 ≤ 𝑘

𝜎 (𝑠
𝑙
, 𝑠

𝑘
) = ∫

𝑇

0

[𝛼
𝑏

𝑗
(𝑠

𝑙
) 𝜒

[𝑡
𝑗−1

,𝑠
𝑙
]
(𝑢) − 𝛽

𝑏

𝑗
(𝑠

𝑙
) 𝜒

[𝑠
𝑙
,𝑡
𝑗
]
(𝑢)]

× [𝛼
𝑏

𝑗
(𝑠

𝑘
) 𝜒

[𝑡
𝑗−1

,𝑠
𝑘
]
(𝑢) − 𝛽

𝑏

𝑗
(𝑠

𝑘
) 𝜒

[𝑠
𝑘
,𝑡
𝑗
]
(𝑢)]

× (ℎ (𝑢))
2
𝑑𝑚

𝐿
(𝑢)

= 𝛼
𝑏

𝑗
(𝑠

𝑙
) 𝛼

𝑏

𝑗
(𝑠

𝑘
) (𝑏 (𝑠

𝑙
) − 𝑏 (𝑡

𝑗−1
))

− 𝛽
𝑏

𝑗
(𝑠

𝑙
) 𝛼

𝑏

𝑗
(𝑠

𝑘
) (𝑏 (𝑠

𝑘
) − 𝑏 (𝑠

𝑙
))

+ 𝛽
𝑏

𝑗
(𝑠

𝑙
) 𝛽

𝑏

𝑗
(𝑠

𝑘
) (𝑏 (𝑡

𝑗
) − 𝑏 (𝑠

𝑘
))

=

(𝑏 (𝑡
𝑗
) − 𝑏 (𝑠

𝑘
)) (𝑏 (𝑠

𝑙
) − 𝑏 (𝑡

𝑗−1
))

𝑏 (𝑡
𝑗
) − 𝑏 (𝑡

𝑗−1
)

= 𝜎
𝑏

𝑗
(𝑠

𝑙
, 𝑠

𝑘
)

(28)

which proves (26). We have for ⃗𝑐 = (𝑐
1
, . . . , 𝑐

𝑚
) ∈ R𝑚

⟨Σ
𝑚
( ⃗𝑠) ⃗𝑐, ⃗𝑐⟩

R

=

𝑚

∑

𝑙=1

𝑚

∑

𝑘=1

𝜎 (𝑠
𝑙
, 𝑠

𝑘
) 𝑐

𝑙
𝑐
𝑘

= 𝐸[

[

(

𝑚

∑

𝑙=1

𝑐
𝑙
(𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
) − 𝐴

𝑠
𝑙

))

2

]

]

≥ 0.

(29)

Moreover if ⟨Σ
𝑚
( ⃗𝑠) ⃗𝑐, ⃗𝑐⟩R = 0, then

𝑚

∑

𝑙=1

𝑐
𝑙
𝑍

𝑏,𝑛+1
(𝑥, 𝑠

𝑙
) =

𝑚

∑

𝑙=1

𝑐
𝑙
𝐴

𝑠
𝑙

(30)

for a.e. 𝑥 ∈ 𝐶[0, 𝑇]; that is, ∑𝑚

𝑙=1
𝑐
𝑙
𝑍

𝑏,𝑛+1
(⋅, 𝑠

𝑙
) is degenerated.

Thus the covariance matrix Σ
𝑚
( ⃗𝑠) is positive definite by

Lemma 10. SinceΣ
𝑚
( ⃗𝑠) is symmetric and positive definite, the

eigenvalues 𝜆
1
, . . . , 𝜆

𝑚
of Σ

𝑚
( ⃗𝑠) are real and positive. Since

|Σ
𝑚
( ⃗𝑠)| = 𝜆

1
⋅ ⋅ ⋅ 𝜆

𝑚
, we have |Σ

𝑚
( ⃗𝑠)| > 0 so that Σ

𝑚
( ⃗𝑠) is

invertible. Since

⟨Σ
−1

𝑚
( ⃗𝑠) ⃗𝑐, ⃗𝑐⟩

R
= ⟨ ⃗𝑐, Σ

−1

𝑚
( ⃗𝑠) ⃗𝑐⟩

R

= ⟨Σ
𝑚
( ⃗𝑠) Σ

−1

𝑚
( ⃗𝑠) ⃗𝑐, Σ

−1

𝑚
( ⃗𝑠) ⃗𝑐⟩

R
≥ 0

(31)

and ⟨Σ
−1

𝑚
( ⃗𝑠) ⃗𝑐, ⃗𝑐⟩

R
= 0 implies Σ−1

𝑚
( ⃗𝑠) ⃗𝑐 = 0⃗; that is, ⃗𝑐 = 0⃗,

Σ
−1

𝑚
( ⃗𝑠) is positive definite.

Remark 12. Using the same process as used in the proof of
Theorem 3.4 in [9] we can prove (26).

For simplicity let

Ψ
𝑚
( ⃗𝑠, 𝑢⃗) = [

1

(2𝜋)
𝑚 󵄨󵄨󵄨󵄨Σ𝑚

( ⃗𝑠)
󵄨󵄨󵄨󵄨

]

1/2

× exp {−1
2
⟨Σ

−1

𝑚
( ⃗𝑠) (𝑢⃗ − 𝐴 ( ⃗𝑠)) , 𝑢⃗ − 𝐴 ( ⃗𝑠)⟩

R
}

(32)

for 𝑢⃗ ∈ R𝑚 and ⃗𝑠 = (𝑠
1
, . . . , 𝑠

𝑚
) ∈ R𝑚, where 𝑡

𝑗−1
< 𝑠

1
< ⋅ ⋅ ⋅ <

𝑠
𝑚
< 𝑡

𝑗
and 𝐴( ⃗𝑠) = (𝐴

𝑠
1

, . . . , 𝐴
𝑠
𝑚

). By Lemmas 9, 10, 11, and
Theorem 4 of [1] we have the following theorem which is our
main result in this section.

Theorem 13. Let the assumptions and notations be as given
in Lemma 11. Then for every Borel measurable function 𝑓 :

R𝑚
→ C

∫
C[0,𝑇]

𝑓 (𝑍
𝑏,𝑛+1

(𝑥, 𝑠
1
) , . . . , 𝑍

𝑏,𝑛+1
(𝑥, 𝑠

𝑚
)) 𝑑𝑤

𝜑
(𝑥)

∗

= ∫
R𝑚

𝑓 (𝑢⃗) Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗)

= [
1

(2𝜋)
𝑚
]

1/2

∫
R𝑚

𝑓(√Σ
𝑚
( ⃗𝑠)𝑢⃗ + 𝐴 ( ⃗𝑠))

× exp {−1
2
‖𝑢⃗‖

2

R} 𝑑(𝑚𝐿
)
𝑚

(𝑢⃗) ,

(33)

where √Σ
𝑚
( ⃗𝑠) is the positive definite matrix satisfying

√Σ
𝑚
( ⃗𝑠)

2

= Σ
𝑚
( ⃗𝑠) and ∗

= means that if either side exists, then
both sides exist and they are equal.
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4. Conditional Expectations of Functions on
Time Integrals

In this section we evaluate generalized conditional Wiener
integrals of the function exp{∫𝑇

0
𝑍(𝑥, 𝑡)𝑑𝑚

𝐿
(𝑡)} including a

time integral. To do this we have the following theorem by
Theorems 6 and 13 andTheorem 3.3 of [11].

Theorem 14. Let the assumptions and notations be as given in
Theorem 13 and let𝐻

𝑚
( ⃗𝑠, 𝑥) = 𝑥(𝑠

1
) ⋅ ⋅ ⋅ 𝑥(𝑠

𝑚
) for 𝑥 ∈ 𝐶[0, 𝑇].

Suppose that ∫
R
|𝑢|

𝑚
𝑑𝜑(𝑢) < ∞. Then for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈

R𝑛+2

𝐸 [(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= ∫
R𝑚

(𝑢
1
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
) (𝑠

1
))

⋅ ⋅ ⋅ (𝑢
𝑚
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
) (𝑠

𝑚
))

× Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) ,

(34)

where 𝑢⃗ = (𝑢
1
, . . . , 𝑢

𝑚
).

Example 15. Let the assumptions and notations be as given
inTheorem 14. If𝑚 = 1, then byTheorem 2 we have for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [(𝐻
1
(𝑠

1
, ⋅))

𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
) = 𝐴

𝑠
1

+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
1
) .

(35)

If𝑚 = 2, then

󵄨󵄨󵄨󵄨Σ2
( ⃗𝑠)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜎
𝑏

𝑗
(𝑠

1
, 𝑠

1
) 𝜎

𝑏

𝑗
(𝑠

1
, 𝑠

2
)

𝜎
𝑏

𝑗
(𝑠

1
, 𝑠

2
) 𝜎

𝑏

𝑗
(𝑠

2
, 𝑠

2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

(𝑏 (𝑡
𝑗
) − 𝑏 (𝑠

2
)) (𝑏 (𝑠

2
) − 𝑏 (𝑠

1
)) (𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑗−1
))

𝑏 (𝑡
𝑗
) − 𝑏 (𝑡

𝑗−1
)

,

Σ
−1

2
( ⃗𝑠) =

[
[
[
[
[
[

[

𝑏 (𝑠
2
) − 𝑏 (𝑡

𝑗−1
)

(𝑏 (𝑠
2
) − 𝑏 (𝑠

1
)) (𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑗−1
))

−

𝑏 (𝑠
1
) − 𝑏 (𝑡

𝑗−1
)

(𝑏 (𝑠
2
) − 𝑏 (𝑠

1
)) (𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑗−1
))

−

𝑏 (𝑠
1
) − 𝑏 (𝑡

𝑗−1
)

(𝑏 (𝑠
2
) − 𝑏 (𝑠

1
)) (𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑗−1
))

𝑏 (𝑡
𝑗
) − 𝑏 (𝑠

1
)

(𝑏 (𝑡
𝑗
) − 𝑏 (𝑠

2
)) (𝑏 (𝑠

2
) − 𝑏 (𝑠

1
))

]
]
]
]
]
]

]

.

(36)

Moreover for 𝑃
𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [(𝐻
2
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= ∫
R2
(𝑢

1
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
) (𝑠

1
)) (𝑢

2
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
) (𝑠

2
))

× Ψ
2
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
2

(𝑢⃗)

= 𝜎
𝑏

𝑗
(𝑠

1
, 𝑠

2
) + (𝐴

𝑠
1

+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
1
))

× (𝐴
𝑠
2

+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
2
))

(37)

which is a generalization of (2) in Theorem 23 of [10].

ByTheorem 7 we have the following theorem.

Theorem 16. Let the assumptions and notations be as given in
Theorem 14 and let 𝑗 ∈ {1, . . . , 𝑛 − 1}. Then for 𝑃

𝑍
𝑛

a.e. ⃗𝜉
𝑛
=

(𝜉
0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1

𝐸 [(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= ∫
R𝑚

(𝑢
1
+ 𝑃

𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

1
)) ⋅ ⋅ ⋅ (𝑢

𝑚
+ 𝑃

𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

𝑚
))

× Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) .

(38)

Example 17. Let the assumptions and notations be as given in
Theorem 16. If𝑚 = 1, then byTheorem 16 we have for𝑃

𝑍
𝑛

a.e.
⃗𝜉
𝑛
∈ R𝑛+1

𝐸 [(𝐻
1
(𝑠

1
, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
) = 𝐴

𝑠
1

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

1
) . (39)

If𝑚 = 2, then we have for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1

𝐸 [(𝐻
2
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= 𝜎
𝑏

𝑗
(𝑠

1
, 𝑠

2
) + (𝐴

𝑠
1

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

1
))

× (𝐴
𝑠
2

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

2
))

(40)

which is a generalization of (2) in Theorem 24 of [10].

Theorem 18. Let the assumptions and notations be as given in
Theorem 14 and let 𝑡

𝑛
< 𝑠

1
< ⋅ ⋅ ⋅ < 𝑠

𝑚
< 𝑡

𝑛+1
= 𝑇. For 𝜉

𝑛
∈ R

and 𝑢⃗ = (𝑢
1
, . . . , 𝑢

𝑚
) ∈ R𝑚 let

𝑃
⃗𝑠,𝑢⃗,𝜉
𝑛

(𝑧) = (𝑢
1
+ 𝜉

𝑛
+
𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) +

𝑏 (𝑠
1
) − 𝑏 (𝑡

𝑛
)

√𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

𝑧)
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⋅ ⋅ ⋅(𝑢
𝑚
+ 𝜉

𝑛
+
𝑏 (𝑠

𝑚
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) +

𝑏 (𝑠
𝑚
) − 𝑏 (𝑡

𝑛
)

√𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

𝑧)

=

𝑚

∑

𝑙=0

𝑎
𝑙
( ⃗𝑠, 𝑢⃗, 𝜉

𝑛
) 𝑧

𝑙

(41)

for 𝑧 ∈ R, where ⃗𝑠 = (𝑠
1
, . . . , 𝑠

𝑚
). Then for 𝑃

𝑍
𝑛

a.e. ⃗𝜉
𝑛
= (𝜉

0
, 𝜉

1
,

. . . , 𝜉
𝑛
) ∈ R𝑛+1

𝐸 [(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

=

[𝑚/2]

∑

𝑙=0

(2𝑙)!

2𝑙𝑙!
∫
R𝑚

𝑎
2𝑙
( ⃗𝑠, 𝑢⃗, 𝜉

𝑛
)

× Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) ,

(42)

where [𝑚/2] denotes the greatest integer less than or equal to
𝑚/2.

Proof. For ⃗𝜉
𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1 let ⃗𝜉

𝑛+1
= (𝜉

0
, 𝜉

1
, . . . ,

𝜉
𝑛
, 𝜉

𝑛+1
), where 𝜉

𝑛+1
∈ R. By Theorems 7 and 14 we have for

𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1

𝐸[(𝐻
𝑚
( ⃗𝑠, ⋅))
𝑍
| 𝑍
𝑛
] ( ⃗𝜉
𝑛
)

= [
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

]

1/2

×∫

R𝑚
Ψ
𝑚
( ⃗𝑠, 𝑢⃗)

×∫

R

(𝑢
1
+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
1
))

⋅ ⋅ ⋅ (𝑢
𝑚
+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
𝑚
))

× exp{−
(𝜉
𝑛+1

− 𝑎 (𝑇) − (𝜉
𝑛
− 𝑎 (𝑡

𝑛
)))
2

2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

}𝑑𝑚
𝐿
(𝜉
𝑛+1

) 𝑑 (𝑚
𝐿
)
𝑚

(𝑢⃗)

= [
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

]

1/2

×∫

R𝑚
Ψ
𝑚
( ⃗𝑠, 𝑢⃗)

×∫

R

(𝑢
1
+ 𝜉
𝑛
+

𝑏 (𝑠
1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑢 + 𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) )

⋅ ⋅ ⋅ (𝑢
𝑚
+ 𝜉
𝑛
+

𝑏 (𝑠
𝑚
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑢 + 𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) )

× exp{−
𝑢
2

2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

} 𝑑𝑚
𝐿
(𝑢) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) .

(43)

Let 𝑧 = 𝑢/√𝑏(𝑇) − 𝑏(𝑡
𝑛
). Then by the change of variable

theorem
𝐸 [(𝐻

𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= (
1

2𝜋
)

1/2

∫
R𝑚

Ψ
𝑚
( ⃗𝑠, 𝑢⃗)

× ∫
R

𝑃
⃗𝑠,𝑢⃗,𝜉
𝑛

(𝑧) exp{−𝑧
2

2
}𝑑𝑚

𝐿
(𝑧) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗)

=

[𝑚/2]

∑

𝑙=0

(
1

2𝜋
)

1/2

∫
R𝑚

Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑎

2𝑙
( ⃗𝑠, 𝑢⃗, 𝜉

𝑛
)

× ∫
R

𝑧
2𝑙 exp{−𝑧

2

2
}𝑑𝑚

𝐿
(𝑧) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗)

=

[𝑚/2]

∑

𝑙=0

(2𝑙)!

2𝑙𝑙!
∫
R𝑚

𝑎
2𝑙
( ⃗𝑠, 𝑢⃗, 𝜉

𝑛
) Ψ

𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗)

(44)
which completes the proof.

Example 19. Let the assumptions and notations be as given in
Theorem 18. If𝑚 = 1, then byTheorem 18 we have for𝑃

𝑍
𝑛

a.e.
⃗𝜉
𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1

𝐸 [(𝐻
1
(𝑠

1
, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= [
1

2𝜋𝜎
𝑏

𝑛+1
(𝑠

1
, 𝑠

1
)
]

1/2

× ∫
R

(𝑢
1
+ 𝜉

𝑛
+
𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) )

× exp
{

{

{

−

(𝑢
1
− 𝐴

𝑠
1

)
2

2𝜎
𝑏

𝑛+1
(𝑠

1
, 𝑠

1
)

}

}

}

𝑑𝑚
𝐿
(𝑢

1
)

= 𝑎 (𝑠
1
) − 𝑎 (𝑡

𝑛
) + 𝜉

𝑛
.

(45)

If𝑚 = 2, then we have for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1

𝐸 [(𝐻
2
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

=

1

∑

𝑙=0

(2𝑙)!

2𝑙𝑙!
∫
R2
𝑎
2𝑙
( ⃗𝑠, 𝑢⃗, 𝜉

𝑛
) Ψ

2
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
2

(𝑢⃗)

= ∫
R2
(𝑢

1
+ 𝜉

𝑛
+
𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

× (𝑢
2
+ 𝜉

𝑛
+
𝑏 (𝑠

2
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

× (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) )Ψ

2
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
2

(𝑢⃗)

+
(𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)) (𝑏 (𝑠

2
) − 𝑏 (𝑡

𝑛
))

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
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= 𝜎
𝑏

𝑛+1
(𝑠

1
, 𝑠

2
) + 𝐴

𝑠
1

𝐴
𝑠
2

+ 𝐴
𝑠
1

× (𝜉
𝑛
+
𝑏 (𝑠

2
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

+ 𝐴
𝑠
2

(𝜉
𝑛
+
𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

+ (𝜉
𝑛
+
𝑏 (𝑠

2
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

× (𝜉
𝑛
+
𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

+
(𝑏 (𝑠

1
) − 𝑏 (𝑡

𝑛
)) (𝑏 (𝑠

2
) − 𝑏 (𝑡

𝑛
))

𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

= 𝜉
2

𝑛
+ 𝜉

𝑛
(𝐴

𝑠
1

+ 𝐴
𝑠
2

+ (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
))

× (𝛽
𝑏

𝑛+1
(𝑠

1
) + 𝛽

𝑏

𝑛+1
(𝑠

2
)))

+ (𝐴
𝑠
1

+ 𝛽
𝑏

𝑛+1
(𝑠

1
) (𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

× (𝐴
𝑠
2

+ 𝛽
𝑏

𝑛+1
(𝑠

2
) (𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

+ 𝛽
𝑏

𝑛+1
(𝑠

1
) 𝛽

𝑏

𝑛+1
(𝑠

2
) (𝑏 (𝑇) − 𝑏 (𝑡

𝑛
))

+ 𝜎
𝑏

𝑛+1
(𝑠

1
, 𝑠

2
)

(46)

which is a generalization of (5) in Theorem 24 of [10].

Theorem 20. Let the notations be as given in Theorem 14
and let 𝐻(𝑥) = exp{∫𝑇

0
𝑥(𝑡)𝑑𝑚

𝐿
(𝑡)} for a.e. 𝑥 ∈ 𝐶[0, 𝑇].

Suppose that ∫
R
exp{𝑇|𝑢|}𝑑𝜑(𝑢) < ∞ and 𝐸[exp{| ∫𝑡

𝑗

𝑡
𝑗−1

𝑋(⋅,

𝑡)𝑑𝑚
𝐿
(𝑡)|}] < ∞ for 𝑗 = 1, . . . , 𝑛 + 1. Then for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈

R𝑛+2
𝐸[exp{| ∫𝑡

𝑗

𝑡
𝑗−1

𝑍(⋅, 𝑡)𝑑𝑚
𝐿
(𝑡)|} | 𝑍

𝑛+1
]( ⃗𝜉

𝑛+1
) exists and

𝐸 [𝐻
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

=

𝑛+1

∏

𝑗=1

[1 +

∞

∑

𝑚=1

∫
Δ
𝑚,𝑗

𝐸 [(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
) 𝑑(𝑚

𝐿
)
𝑚

( ⃗𝑠)],

(47)

where Δ
𝑚,𝑗

= {(𝑠
1
, . . . , 𝑠

𝑚
) : 𝑡

𝑗−1
< 𝑠

1
< ⋅ ⋅ ⋅ < 𝑠

𝑚
< 𝑡

𝑗
} and

𝐸[(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
] is as given in Theorem 14. Moreover if

𝐸[exp{| ∫𝑡
𝑗

𝑡
𝑗−1

𝑍(⋅, 𝑡)𝑑𝑚
𝐿
(𝑡)|} | 𝑍

𝑛+1
](0⃗) exists for 𝑗 = 1, . . . , 𝑛 +

1, then 𝐸[𝐻
𝑍
| 𝑍

𝑛+1
]( ⃗𝜉

𝑛+1
) can be represented by

𝐸 [𝐻
𝑍
| 𝑍
𝑛+1

] ( ⃗𝜉
𝑛+1

)

= exp{∫

𝑇

0

𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) 𝑑𝑚
𝐿
(𝑡)}

×

𝑛+1

∏

𝑗=1

[1 +

∞

∑

𝑚=1

∫

Δ
𝑚,𝑗

∫

R𝑚
𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑚
Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) 𝑑(𝑚
𝐿
)
𝑚

( ⃗𝑠)] .

(48)

Proof. By Theorem 2.1 and Lemma 2.1 of [6] we have for 𝑗 =
1, . . . , 𝑛 + 1

𝐸[exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑍 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}]

≤ ∫
R

exp {𝑇 |𝑢|} 𝑑𝜑 (𝑢) 𝐸 [exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑋 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}]

× exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑎 (𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} < ∞

(49)

so that 𝐸[exp{| ∫𝑡
𝑗

𝑡
𝑗−1

𝑍(⋅, 𝑡)𝑑𝑚
𝐿
(𝑡)|} | 𝑍

𝑛+1
]( ⃗𝜉

𝑛+1
) exists and

𝐸[exp{∫
𝑇

0

𝑍 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)}]

≤ 𝐸[

[

exp
{

{

{

𝑛+1

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑍 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}

}

}

]

]

< ∞

(50)

which implies the existence of 𝐸[𝐻
𝑍
| 𝑍

𝑛+1
]. By the mono-

tone convergence theorem we have

∞

∑

𝑚=0

1

𝑚!
𝑇
𝑚
∫
R
|𝑢|

𝑚
𝑑𝜑 (𝑢)

= ∫
R

exp {𝑇 |𝑢|} 𝑑𝜑 (𝑢) < ∞

(51)

so that we have ∫
R
|𝑢|

𝑚
𝑑𝜑(𝑢) < ∞ for each positive integer

𝑚. Furthermore for 𝑃
𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2 we have by
Theorem 6

∞

∑

𝑚=0

1

𝑚!
∫
𝐶[0,𝑇]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑍
𝑏,𝑛+1

(𝑥, 𝑡)

+𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) ) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

𝑑𝑤
𝜑
(𝑥)

= ∫
𝐶[0,𝑇]

exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

(𝑍
𝑏,𝑛+1

(𝑥, 𝑡)

+𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) )𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}𝑑𝑤
𝜑
(𝑥)

= 𝐸[exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑍 (𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} | 𝑍
𝑛+1

] ( ⃗𝜉
𝑛+1

) < ∞.

(52)
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Now byTheorems 5, 6, 14, the Fubini’s theorem, and the dom-
inated convergence theoremwe have for𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [𝐻
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= ∫

𝐶[0,𝑇]

exp{∫

𝑇

0

(𝑍
𝑏,𝑛+1 (𝑥, 𝑡)

+𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) ) 𝑑𝑚𝐿 (𝑡) } 𝑑𝑤𝜑 (𝑥)

=

𝑛+1

∏

𝑗=1

[∫

𝐶[0,𝑇]

exp{∫

𝑡
𝑗

𝑡
𝑗−1

(𝑍
𝑏,𝑛+1 (𝑥, 𝑡)

+𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) ) 𝑑𝑚𝐿 (𝑡) } 𝑑𝑤
𝜑 (𝑥) ]

=

𝑛+1

∏

𝑗=1

[1 +

∞

∑

𝑚=1

∫

Δ
𝑚,𝑗

𝐸[(𝐻
𝑚 ( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
) 𝑑(𝑚

𝐿
)
𝑚
( ⃗𝑠)]

(53)

which proves the first equality of the theorem. Furthermore

𝐸 [𝐻
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= exp{∫
𝑇

0

𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) 𝑑𝑚
𝐿
(𝑡)}

× [

[

𝑛+1

∏

𝑗=1

∫
𝐶[0,𝑇]

exp{∫
𝑡
𝑗

𝑡
𝑗−1

𝑍
𝑏,𝑛+1

(𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)} 𝑑𝑤

𝜑
(𝑥)]

]

.

(54)

Since (52) holds for ⃗𝜉
𝑛+1

= 0⃗, we have by Theorem 13 and the
dominated convergence theorem

∫
𝐶[0,𝑇]

exp{∫
𝑡
𝑗

𝑡
𝑗−1

𝑍
𝑏,𝑛+1

(𝑥, 𝑡) 𝑑𝑚
𝐿
(𝑡)} 𝑑𝑤

𝜑
(𝑥)

= 1 +

∞

∑

𝑚=1

∫
Δ
𝑚,𝑗

∫
𝐶[0,𝑇]

𝑚

∏

𝑙=1

𝑍
𝑏,𝑛+1

(𝑥, 𝑠
𝑙
) 𝑑𝑤

𝜑
(𝑥) 𝑑(𝑚

𝐿
)
𝑚

( ⃗𝑠)

= 1 +

∞

∑

𝑚=1

∫
Δ
𝑚,𝑗

∫
R𝑚

𝑢
1
⋅ ⋅ ⋅ 𝑢

𝑚
Ψ
𝑚
( ⃗𝑠, 𝑢⃗) 𝑑(𝑚

𝐿
)
𝑚

(𝑢⃗) 𝑑(𝑚
𝐿
)
𝑚

( ⃗𝑠)

(55)

which proves the second equality of the theorem.

Theorem21. Let the notations and the first part of the assump-
tions in Theorem 20 be given. Then for 𝑃

𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1

𝐸[𝐻
𝑍
| 𝑍

𝑛
]( ⃗𝜉

𝑛
) is given by the first equality in Theorem 20

replacing 𝐸[(𝐻
𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛+1
]( ⃗𝜉

𝑛+1
) by 𝐸[(𝐻

𝑚
( ⃗𝑠, ⋅))

𝑍
|

𝑍
𝑛
]( ⃗𝜉

𝑛
), where the 𝐸[(𝐻

𝑚
( ⃗𝑠, ⋅))

𝑍
| 𝑍

𝑛
]( ⃗𝜉

𝑛
)s are as given

in Theorems 16 and 18. Moreover if the second part of
the assumptions in Theorem 20 holds, then 𝐸[𝐻

𝑍
| 𝑍

𝑛
]( ⃗𝜉

𝑛
)

is given by the second equality in Theorem 20 replacing
exp{∫𝑇

0
𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

)(𝑡)𝑑𝑚
𝐿
(𝑡)} by

exp{∫
𝑡
𝑛

0

𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑡) 𝑑𝑚

𝐿
(𝑡)

+
1

2
(𝑏 (𝑇) − 𝑏 (𝑡

𝑛
)) (𝐵 (𝑇) − 𝐵 (𝑡

𝑛
))

2

+ (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) (𝐵 (𝑇) − 𝐵 (𝑡

𝑛
)) + 𝜉

𝑛
(𝑇 − 𝑡

𝑛
) } ,

(56)

where (𝑑/𝑑𝑡)𝐵(𝑡) = 𝛽𝑏

𝑛+1
(𝑡) = (𝑏(𝑡)−𝑏(𝑡

𝑛
))/(𝑏(𝑇)−𝑏(𝑡

𝑛
)) and

⃗𝜉
𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
).

Proof. Thefirst part of the theorem immediately follows from
Theorems 7, 16, 18, and 20. Suppose that the second part of the
assumptions in Theorem 20 holds. For ⃗𝜉

𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈

R𝑛+1 let ⃗𝜉
𝑛+1

= (𝜉
0
, 𝜉

1
, . . . , 𝜉

𝑛
, 𝜉

𝑛+1
), where 𝜉

𝑛+1
∈ R. Then we

have

[
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))
]

1/2

× ∫
R

exp{∫
𝑇

0

𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑡) 𝑑𝑚
𝐿
(𝑡)}

× exp {−(𝜉
𝑛+1

− 𝑎 (𝑇) − (𝜉
𝑛
− 𝑎 (𝑡

𝑛
)))

2

×(2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)))

−1

} 𝑑𝑚
𝐿
(𝜉

𝑛+1
)

= [
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))
]

1/2

× ∫
R

exp{∫
𝑡
𝑛

0

𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑡) 𝑑𝑚

𝐿
(𝑡)

+ ∫

𝑇

𝑡
𝑛

(𝛽
𝑛+1

(𝑡) (𝜉
𝑛+1

− 𝜉
𝑛
) + 𝜉

𝑛
) 𝑑𝑚

𝐿
(𝑡)

− ((𝜉
𝑛+1

− 𝑎 (𝑇) − (𝜉
𝑛
− 𝑎 (𝑡

𝑛
)))

2

×(2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)))

−1

) } 𝑑𝑚
𝐿
(𝜉

𝑛+1
)

= [
1

2𝜋 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))
]

1/2

× exp{∫
𝑡
𝑛

0

𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑡) 𝑑𝑚

𝐿
(𝑡) + (𝑇 − 𝑡

𝑛
) 𝜉

𝑛
}

× ∫
R

exp{ (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
) + 𝑢)

× ∫

𝑇

𝑡
𝑛

𝛽
𝑏

𝑛+1
(𝑡) 𝑑𝑚

𝐿
(𝑡)

−
𝑢
2

2 (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))
} 𝑑𝑚

𝐿
(𝑢)
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= exp{∫
𝑡
𝑛

0

𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑡) 𝑑𝑚

𝐿
(𝑡) + 𝜉

𝑛
(𝑇 − 𝑡

𝑛
)

+ (𝑎 (𝑇) − 𝑎 (𝑡
𝑛
)) (𝐵 (𝑇) − 𝐵 (𝑡

𝑛
))

+
1

2
(𝐵 (𝑇) − 𝐵 (𝑡

𝑛
))

2

(𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))} .

(57)

Now the second part of the theorem follows fromTheorems 7
and 20.

Example 22. (1) Let ℎ ≡ 1. Then 𝑋(𝑥, 𝑡) = 𝑥(𝑡) − 𝑥(0) so that
for 𝑗 = 1, . . . , 𝑛 + 1

𝐸[exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑋(⋅, 𝑡) 𝑑𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

}]

≤ 𝐸[exp{𝑇 sup
0≤𝑡≤𝑇

|𝑥 (𝑡) − 𝑥 (0)|}]

(58)

which is finite by Theorem 1.4 of [19]. Hence 𝐸[𝐻
𝑍
| 𝑍

𝑛+1
]

and𝐸[𝐻
𝑍
| 𝑍

𝑛
] are given byTheorems 20 and 21, respectively,

with 𝑏(𝑡) = 𝑡 and (𝑑/𝑑𝑡)𝐵(𝑡) = (𝑡 − 𝑡
𝑛
)/(𝑇 − 𝑡

𝑛
) for 𝑡 ∈ [0, 𝑇].

(2) Let ℎ(𝑢) = 𝑇 − 𝑢 for 𝑢 ∈ [0, 𝑇] and suppose that
∫
R
exp{𝑀|𝑢|}𝑑𝜑(𝑢) < ∞, where𝑀 = max{𝑇, 2𝑇2

}. Then for
𝑗 = 1, . . . , 𝑛 + 1 and 𝑥 ∈ 𝐶[0, 𝑇] we have by the integration
parts formula

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑋(𝑥, 𝑡)𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

[ (𝑇 − 𝑡) 𝑥 (𝑡) − 𝑇𝑥 (0)

+∫

𝑡

0

𝑥 (𝑠) 𝑑𝑚
𝐿
(𝑠)] 𝑑𝑚

𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡
𝑗

𝑡
𝑗−1

[𝑇 sup
0≤𝑠≤𝑇

|𝑥 (𝑠) − 𝑥 (0)|

+ 2𝑡 sup
0≤𝑠≤𝑇

|𝑥 (𝑠) − 𝑥 (0)|

+2𝑡 |𝑥 (0)| ] 𝑑𝑚
𝐿
(𝑡)

≤ 2𝑇
2 sup
0≤𝑠≤𝑇

|𝑥 (𝑠) − 𝑥 (0)| + 𝑇
2
|𝑥 (0)|

(59)

so that by Hölder’s inequality

∫
𝐶[0,𝑇]

exp{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
𝑗

𝑡
𝑗−1

𝑋(𝑥, 𝑡)𝑚
𝐿
(𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

} 𝑑𝑤
𝜑
(𝑥)

≤ [∫
R

exp {2𝑇2
|𝑢|} 𝑑𝜑 (𝑢)]

1/2

× [∫
𝐶[0,𝑇]

exp{4𝑇2 sup
0≤𝑠≤𝑇

|𝑥 (𝑠) − 𝑥 (0)|} 𝑑𝑤
𝜑
(𝑥)]

1/2

(60)

which is finite byTheorem 1.4 of [19]. Now 𝐸[𝐻
𝑍
| 𝑍

𝑛+1
] and

𝐸[𝐻
𝑍
| 𝑍

𝑛
] are given by Theorems 20 and 21, respectively,

with 𝑏(𝑡) = (1/3)[𝑇3
−(𝑇 − 𝑡)

3
] and (𝑑/𝑑𝑡)𝐵(𝑡) = 1−((𝑇 − 𝑡)/

(𝑇 − 𝑡
𝑛
))

3 for 𝑡 ∈ [0, 𝑇].

5. Evaluation Formulas for Other Functions

In this section, using the simple formulas in Section 2,
we derive evaluation formulas for generalized conditional
Wiener integrals of various functions which are of interest
in Feynman integration theories themselves and quantum
mechanics.

Since 𝑍
𝑏,𝑛+1

(𝑥, 𝑡) = 𝑌(𝑥, 𝑡) − 𝑃
𝑏,𝑛+1

(𝑌(𝑥, ⋅))(𝑡) for 𝑥 ∈

𝐶[0, 𝑇] and 𝑡 ∈ [0, 𝑇] we have the following theorems from
Theorem 3.2 of [11] andTheorems 21, 22, 23, 24, 25, and 26 of
[10].

Theorem 23. Let 𝑚 ∈ N and 𝐹
𝑚
(𝑥) = ∫

𝑇

0
(𝑥(𝑡))

𝑚
𝑑𝑚

𝐿
(𝑡) for

𝑥 ∈ 𝐶[0, 𝑇]. Suppose that ∫
R
|𝑢|

𝑚
𝑑𝜑(𝑢) < ∞. Then for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [(𝐹
𝑚
)
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

=

𝑛+1

∑

𝑗=1

[𝑚/2]

∑

𝑙=0

𝑚!

2𝑙𝑙! (𝑚 − 2𝑙)!
∫

𝑡
𝑗

𝑡
𝑗−1

(𝐴
𝑡
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
) (𝑡))

𝑚−2𝑙

× (𝜎
𝑏

𝑗
(𝑡, 𝑡))

𝑙

𝑑𝑚
𝐿
(𝑡) ,

(61)

where [𝑚/2] denotes the greatest integer less than or equal to
𝑚/2.

Theorem 24. Let the assumptions be as given in Theorem 23
and for ⃗𝜉

𝑛
= (𝜉

0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1 let

Ξ ( ⃗𝜉
𝑛
) =

𝑛

∑

𝑗=1

[𝑚/2]

∑

𝑙=0

𝑚!

2𝑙𝑙! (𝑚 − 2𝑙)!
∫

𝑡
𝑗

𝑡
𝑗−1

(𝐴
𝑡
+ 𝑃

𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑡))

𝑚−2𝑙

× (𝜎
𝑏

𝑗
(𝑡, 𝑡))

𝑙

𝑑𝑚
𝐿
(𝑡) .

(62)

Then for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1

𝐸 [(𝐹
𝑚
)
𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= Ξ ( ⃗𝜉
𝑛
)

+ 𝑚!

[𝑚/2]

∑

𝑙=0

𝑚−2𝑙

∑

𝑘=0

𝑘

∑

𝑝=0

[𝑝/2]

∑

𝑞=0

(𝜉
𝑘−𝑝

𝑛
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
))

𝑝−2𝑞

× (𝑏 (𝑇) − 𝑏 (𝑡
𝑛
))

𝑞

)

× (2
𝑙+𝑞
𝑙!𝑞! (𝑘 − 𝑝)! (𝑝 − 2𝑞)!

× (𝑚 − 2𝑙 − 𝑘)!)
−1

× ∫

𝑇

𝑡
𝑛

(𝜎
𝑏

𝑛+1
(𝑡, 𝑡))

𝑙

(𝛽
𝑏

𝑛+1
(𝑡))

𝑝

𝐴
𝑚−2𝑙−𝑘

𝑡
𝑑𝑚

𝐿
(𝑡) .

(63)
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Theorem 25. Let 0 < 𝑠
1
< 𝑠

2
≤ 𝑇 and let 𝑠

1
∈ [𝑡

𝑙−1
− 𝑡

𝑙
], 𝑠

2
∈

[𝑡
𝑗−1

− 𝑡
𝑗
] with 𝑙 ̸= 𝑗. For 𝑥 ∈ 𝐶[0, 𝑇] let𝐺(𝑥) = 𝑥(𝑠

1
)𝑥(𝑠

2
) and

suppose that ∫
R
𝑢
2
𝑑𝜑(𝑢) < ∞. Then for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2

𝐸 [𝐺
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= (𝐴
𝑠
1

+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
1
)) (𝐴

𝑠
2

+ 𝑃
𝑏,𝑛+1

( ⃗𝜉
𝑛+1

) (𝑠
2
)) .

(64)

Theorem 26. Let the assumptions be as given in Theorem 25.

(1) If 𝑙 ≤ 𝑛, 𝑗 ≤ 𝑛, and 𝑙 ̸= 𝑗, then for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1

𝐸 [𝐺
𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= (𝐴
𝑠
1

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

1
)) (𝐴

𝑠
2

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

2
)) .

(65)

(2) If 𝑙 ≤ 𝑛 and 𝑗 = 𝑛 + 1, then for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
=

(𝜉
0
, 𝜉

1
, . . . , 𝜉

𝑛
) ∈ R𝑛+1

𝐸 [𝐺
𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= (𝐴
𝑠
2

+ 𝜉
𝑛
+ 𝛽

𝑏

𝑛+1
(𝑠

2
) (𝑎 (𝑇) − 𝑎 (𝑡

𝑛
)))

× (𝐴
𝑠
1

+ 𝑃
𝑏,𝑛
( ⃗𝜉

𝑛
) (𝑠

1
)) .

(66)

For 𝑗 = 1, . . . , 𝑛 + 1, let 𝑔
𝑗
= (1/√𝑏(𝑡𝑗) − 𝑏(𝑡𝑗−1))𝜒(𝑡

𝑗−1
,𝑡
𝑗
]
ℎ,

let 𝑉 be the subspace of 𝐿
2
[0, 𝑇] generated by {𝑔

1
, . . . , 𝑔

𝑛+1
},

let 𝑉⊥ be the orthogonal complement of 𝑉 and let P⊥
:

𝐿
2
[0, 𝑇] → 𝑉

⊥ be the orthogonal projection. Let
M(𝐿

2
[0, 𝑇]) be the class of all complex valuedBorelmeasures

of bounded variation over 𝐿
2
[0, 𝑇] and let S

𝑤
𝜑

be the space
of all functions 𝐹 which for 𝜎 ∈ M(𝐿

2
[0, 𝑇]) have the form

𝐹 (𝑥) = ∫
𝐿
2
[0,𝑇]

exp {𝑖 (V, 𝑥)} 𝑑𝜎 (V) (67)

for𝑤
𝜑
a.e. 𝑥 ∈ 𝐶[0, 𝑇]. Note thatS

𝑤
𝜑

is a Banach algebra [6].

Theorem 27. Let 𝑎 be absolutely continuous on [0, 𝑇]. Let 𝐹 ∈

S
𝑤
𝜑

and 𝜎 ∈ M(𝐿
2
[0, 𝑇]) be related by (67). Then for 𝑃

𝑍
𝑛+1

a.e. ⃗𝜉
𝑛+1

∈ R𝑛+2, 𝐸[𝐹
𝑍
| 𝑍

𝑛+1
]( ⃗𝜉

𝑛+1
) is given by

𝐸 [𝐹
𝑍
| 𝑍

𝑛+1
] ( ⃗𝜉

𝑛+1
)

= ∫
𝐿
2
[0,𝑇]

exp {𝑖 (V, 𝐴
𝑡
+ 𝑃

𝑏,𝑛+1
( ⃗𝜉

𝑛+1
))}

× exp {−1
2

󵄩󵄩󵄩󵄩󵄩
P

⊥
(Vℎ)

󵄩󵄩󵄩󵄩󵄩

2

2
} 𝑑𝜎 (V) .

(68)

Theorem 28. Let the assumptions be as given in Theorem 27
and for ⃗𝜉

𝑛
∈ R𝑛+1 let

𝐷(V, ⃗𝜉
𝑛
) = exp {𝑖 (V, 𝐴

𝑡
+ 𝑃

𝑏,𝑛
( ⃗𝜉

𝑛
)) −

1

2

󵄩󵄩󵄩󵄩󵄩
P

⊥
(Vℎ)

󵄩󵄩󵄩󵄩󵄩

2

2
} .

(69)

Then for 𝑃
𝑍
𝑛

a.e. ⃗𝜉
𝑛
∈ R𝑛+1, 𝐸[𝐹

𝑍
| 𝑍

𝑛
]( ⃗𝜉

𝑛
) is given by

𝐸 [𝐹
𝑍
| 𝑍

𝑛
] ( ⃗𝜉

𝑛
)

= ∫
𝐿
2
[0,𝑇]

𝐷(V, ⃗𝜉
𝑛
) exp

{{

{{

{

𝑖
⟨Vℎ, 𝑔

𝑛+1
⟩
2
(𝑎 (𝑇) − 𝑎 (𝑡

𝑛
))

√𝑏 (𝑇) − 𝑏 (𝑡
𝑛
)

−
1

2
⟨Vℎ, 𝑔

𝑛+1
⟩
2

2

}}

}}

}

𝑑𝜎 (V) .

(70)

Remark 29. Suppose that ∫
R
𝑢
2
𝑑𝜑(𝑢) < ∞, if necessary, in

each lemma, theorem, and example of this paper. Then by
Lemma 2.5 of [11] both 𝐸[𝑋

0
] and Var[𝑋

0
] exist. Let𝑚

𝑍
(𝑡) =

𝑎(𝑡) + 𝐸[𝑋
0
] and 𝑏

𝑍
(𝑡) = 𝑏(𝑡) + Var[𝑋

0
] for 𝑡 ∈ [0, 𝑇]. Since

for 𝑡
1
, 𝑡

2
∈ [0, 𝑇]

𝑚
𝑍
(𝑡

2
) − 𝑚

𝑍
(𝑡

1
) = 𝑎 (𝑡

2
) − 𝑎 (𝑡

1
) ,

𝑏
𝑍
(𝑡

2
) − 𝑏

𝑍
(𝑡

1
) = 𝑏 (𝑡

2
) − 𝑏 (𝑡

1
) ,

(71)

𝑎 and 𝑏 can be replaced by 𝑚
𝑍
and 𝑏

𝑍
, respectively, in each

result of this paper.
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