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By using inequalities, fixed point theorems, and lower and upper solution method, the existence and uniqueness of a class of
fractional initial value problems, 𝐷𝑞

0+
𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝐷

𝑞−1

0+
𝑥(𝑡)), 𝑡 ∈ (0, 𝑇), 𝑥(0) = 0, 𝐷

𝑞−1

0+
𝑥(0) = 𝑥

0
, are discussed, where

𝑓 ∈ 𝐶([0, 𝑇] × R2,R), 𝐷
𝑞

0+
𝑥(𝑡) is the standard Riemann-Liouville fractional derivative, 1 < 𝑞 < 2. Some mistakes in the literature

are pointed out and some new inequalities and existence and uniqueness results are obtained.

1. Introduction

Once the models of fractional differential equation for the
actual problem have been established, people immediately
faced the problem of how to solve these models. In many
cases, it is very difficult to obtain the exact solution of the
fractional differential equation. So it requires researchers to
find as many characteristics of the solution of the problem
as possible. For example, does the equation have a solution?
If there is one solution, is the solution unique? How can we
compare the size of the solution? We noted that although
there were many works with respect to fractional differential
equations, which were shown in [1–10] and the references
therein, the basic theory of the problem is still not perfect.

Al-Bassam [11] (1965) first considered the following
Cauchy-type initial value problem (IVP):

𝐷
𝛼

𝑎+
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , (0 < 𝛼 ≤ 1) ,

𝐼
1−𝛼

𝑎+
𝑦(𝑡)

󵄨󵄨󵄨󵄨󵄨𝑡=𝑎
= 𝑏1, 𝑏1 ∈ R,

(1)

in the space of continuous functions 𝐶[𝑎, 𝑏] provided that
𝑓(𝑡, 𝑦) is real-valued, continuous, and Lipschitzian in a
domain 𝐺 ⊂ R × R such that sup

(𝑡,𝑦)∈𝐺
|𝑓(𝑡, 𝑦)| = 𝑏0 < ∞.

Applying the operator 𝐼
𝛼

𝑎+
he reduced problem (1) to the

Volterra nonlinear integral equation:

𝑦 (𝑡) =
𝑏1(𝑡 − 𝑎)

𝛼−1

Γ (𝛼)
+

1

Γ (𝛼)
∫

𝑡

𝑎

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

(𝑡 − 𝑠)
1−𝛼

, (𝑡 > 𝑎) .

(2)

By the use of the method of successive approximation he
established the existence of the continuous solution of (2).
He probably first indicated that the method of contracting
mapping can be applied to prove the uniqueness of the
solution of (2) and gave such a formal proof. However, from
(2) one has lim𝑡→𝑎+𝑦(𝑡) = ∞, so in space 𝐶[𝑎, 𝑏], the
Cauchy-type problem (1) cannot be reduced to the integral
equation (2) except that 𝑏1 = 0.

Delbosco andRodino [6] (1996) considered the nonlinear
fractional differential equation

𝐷
𝛼

0+
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 0 ≤ 𝑡 ≤ 1. (3)

Using Schauder’s fixed point theorem to the integral operator
in (2) with 𝑎 = 𝑏1 = 0, they proved that the equation
considered has at least one continuous solution 𝑦 ∈ 𝐶[0, 𝛿]

for a suitable 0 ≤ 𝛿 ≤ 1 provided that 𝑡𝜎𝑓(𝑡, 𝑦) is continuous
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on [0, 1] × R for some 𝜎(0 ≤ 𝜎 < 𝛼 < 1). Applying the
contractivemappingmethod, they showed that if additionally

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑧)
󵄨󵄨󵄨󵄨 ≤

𝑀

𝑡𝜎

󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 ,

(4)

then (3) has a unique solution 𝑦(𝑡) ∈ 𝐶[0, 1]. Clearly, the
solution satisfies 𝑦(0) = 0. They also proved that if 𝑓(𝑡, 𝑦) =

𝑓(𝑦) is such that 𝑓(0) = 0 and the Lipschitz condition holds,
then the weighted Cauchy-type IVP

𝐷
𝛼

0+
𝑦 (𝑡) = 𝑓 (𝑦 (𝑡)) , lim

𝑡→0
𝑡
1−𝛼

𝑦 (𝑡) = 𝑐,

(0 < 𝛼 < 1, 𝑐 ∈ R)

(5)

has a unique solution 𝑦(𝑡) such that 𝑡1−𝛼𝑦(𝑡) ∈ 𝐶[0, ℎ] for any
ℎ > 0.

In [12] (2008), Lakshmikantham and Vatsala considered
the IVP for fractional differential equations given by

𝐷
𝛼

0+
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑦 (0) = 𝑦0. (6)

The basic theory for the IVP of fractional differential equa-
tions was discussed by employing the classical approach.The
theory of inequalities, local existence, extremal solutions,
comparison result, and global existence of solutions was
considered. The idea of this paper is very interesting.

In [13] (2009), Zhang considered the existence and
uniqueness of the solution of the following IVP for fractional
differential equation:

𝐷
𝛼

0+
𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) , 0 ≤ 𝑡 ≤ 𝑇,

𝑡
1−𝛼

𝑦(𝑡)
󵄨󵄨󵄨󵄨󵄨𝑡=0

= 𝑦0,

(7)

using the method of upper and lower solutions and its
associated monotone iterative technique. However, the paper
did not explain why the pointwise convergence can be used
instead of the convergence with norm in the space𝐶1−𝛼[0, 𝑇].

We refer the readers to monographs [8, 10] for other
arguments about the fractional IVP. We noted that on one
hand there are some confusions about the initial value of the
solution in some of the above works. On the other hand there
is no contribution about the basic theory for the following
fractional differential equation IVP:

𝐷
𝑞

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝑞−1

0+
𝑥 (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

𝑥 (0) = 0, 𝐷
𝑞−1

0+
𝑥 (0) = 𝑥0,

(8)

where 𝑓 ∈ 𝐶([0, 𝑇] × R2,R), 𝐷
𝑞

0+
𝑥(𝑡) is the standard

Riemann-Liouville fractional derivative, 1 < 𝑞 < 2.
This problem is very important in many models of physics
phenomena [7, 9, 10, 14–16], so it isworth studying the parallel
theory to the known theory of ordinary differential equations.

The rest of the paper is organized as follows. In
Section 2, some related basic lemmas and definitions are
given. Section 3 contains the uniqueness result by means
of contracting mapping. The existence of the minimal and
maximal solutions is given in Section 4 using lower and upper
solution method.

2. Preliminaries

Lemma 1 (see [3, 8]). For 𝑦 ∈ 𝐶
𝑛−1

(0, 𝑇) ∩ 𝐿
1
[0, 𝑇], the

fractional differential equation

𝐷
𝛼

0+
𝑦 (𝑡) = 0 (9)

has a unique solution

𝑦 (𝑡) =

𝑛−1

∑

𝑘=0

[𝐷
𝛼−𝑘−1

0+
𝑦 (𝑡)]
𝑡=0

Γ (𝛼 − 𝑘)
𝑡
𝛼−𝑘−1

. (10)

Lemma 2 (see [10]). The following relation holds

𝐼
𝛼

0+
𝐼
𝛽

0+
𝜑 = 𝐼
𝛼+𝛽

0+
𝜑, (11)

in the case of

(1) 𝛽 ≥ 0, 𝛼 + 𝛽 ≥ 0, 𝜑(𝑡) ∈ 𝐿
1
(0, 𝑇);

(2) 𝛽 ≤ 0, 𝛼 ≥ 0, 𝜑(𝑡) ∈ 𝐼
−𝛽

0+
(𝐿
1
(0, 𝑇));

(3) 𝛼 ≤ 0, 𝛼 + 𝛽 ≤ 0, 𝜑(𝑡) ∈ 𝐼
−𝛼−𝛽

0+
(𝐿
1
(0, 𝑇)).

Lemma 3 (see [9]). Supposing that 𝑛 ∈ 𝑁, 0 < 𝛼 ∈ R, then

(1)

𝑑
𝑛

𝑑𝑡𝑛
(𝐷
𝛼

𝑎+
𝑓 (𝑡)) = 𝐷

𝑛+𝛼

𝑎+
𝑓 (𝑡) ; (12)

(2)

𝐷
𝛼

𝑎+
(
𝑑
𝑛
𝑓 (𝑡)

𝑑𝑡𝑛
) = 𝐷

𝑛+𝛼

𝑎+
𝑓 (𝑡) −

𝑛−1

∑

𝑗=0

𝑓
(𝑗)

(𝑎) (𝑡 − 𝑎)
𝑗−𝛼−𝑛

Γ (1 + 𝑗 − 𝛼 − 𝑛)
. (13)

Lemma 4 (see [17]). Suppose that 𝐸 is an ordered Banach
space, 𝑥0, 𝑦0 ∈ 𝐸, 𝑥0 ≤ 𝑦0, 𝐷 = [𝑥0, 𝑦0], 𝐴 : 𝐷 → 𝐸 is an
increasing completely continuous operator, and𝑥0 ≤ 𝐴𝑥0, 𝑦0 ≥

𝐴𝑦0. Then the operator 𝐴 has a minimal fixed point 𝑥∗ and a
maximal fixed point 𝑦∗. If one lets

𝑥𝑛 = 𝐴𝑥𝑛−1, 𝑦𝑛 = 𝐴𝑦𝑛−1, 𝑛 = 1, 2, 3, . . . , (14)

then

𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋅ ⋅ ⋅ ≤ 𝑥𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑦𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝑦2 ≤ 𝑦1 ≤ 𝑦0,

𝑥𝑛 󳨀→ 𝑥
∗
, 𝑦𝑛 󳨀→ 𝑦

∗
.

(15)

By the use of the continuity of 𝑓 and Lemma 1, the IVP
(8) is equivalent to the following Volterra integral equation
[8]:

𝑥 (𝑡) =
𝑥0

Γ (𝑞)
𝑡
𝑞−1

+
1

Γ (𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝑞−1

0+
𝑥 (𝑠)) 𝑑𝑠,

0 ≤ 𝑡 ≤ 𝑇.

(16)
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Define the space

𝐶
𝑞
[0, 𝑇] := {𝑥 | 𝑥 ∈ 𝐶 [0, 𝑇] , 𝐷

𝑞−1

0+
𝑥 ∈ 𝐶 [0, 𝑇]} . (17)

For 𝑥 ∈ 𝐶
𝑞
[0, 𝑇], define an operator 𝐴 : 𝐶

𝑞
[0, 𝑇] → 𝐶[0, 𝑇]

by

(𝐴𝑥) (𝑡) =
𝑥0

Γ (𝑞)
𝑡
𝑞−1

+
1

Γ (𝑞)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝐷
𝑞−1

0+
𝑥 (𝑠)) 𝑑𝑠.

(18)

Then the fixed point of 𝐴 solves IVP (8) and vice versa.

Definition 5. A function V(𝑡) ∈ 𝐶
𝑞
[0, 𝑇] is called a lower

solution of problem (8), if it satisfies

𝐷
𝑞

0+
V (𝑡) ≤ 𝑓 (𝑡, V (𝑡) , 𝐷𝑞−1

0+
V (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

V (0) = 0, 𝐷
𝑞−1

0+
V (0) ≤ 𝑥0.

(19)

Definition 6. A function 𝑤(𝑡) ∈ 𝐶
𝑞
[0, 𝑇] is called an upper

solution of problem (8), if it satisfies

𝐷
𝑞

0+
𝑤 (𝑡) ≥ 𝑓 (𝑡, 𝑤 (𝑡) , 𝐷

𝑞−1

0+
𝑤 (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

𝑤 (0) = 0, 𝐷
𝑞−1

0+
𝑤 (0) ≥ 𝑥0.

(20)

If one of the above inequalities is strict, then we call it as
a strict lower (upper) solution.

Remark 7. Clearly, if functions V, 𝑤 are lower and upper
solutions (or strict) of IVP (8), then there are V ≤ 𝐴V, 𝑤 ≥ 𝐴𝑤

(or the inequality is strict).

3. The Uniqueness of the Solution

Many methods can be applied to study the existence of
solution. However, generally speaking, it is nothing more
than two ways. One is based on the method of the approx-
imate solution of exact solution to prove the existence of the
solution, namely, classical successive approximation method.
A. Cauchy, R. Lipschitz, G. Peano, and so forth used this
method to solve the existence of some special types of
differential equations. In 1893, C. Picard applied this method
to study the general nonlinear differential equation and
established the existence and uniqueness of solutions, named
the Cauchy-PicardTheorem.This method itself also contains
a structural method to obtain the exact solution and thus
provides away for the approximate solution. Anothermethod
is transforming the solution into the fixed point of some
maps. Although the method cannot give the approximate
solution, it is the abstraction and generalization of the former
method and is simple to use. In this section, we will establish
the uniqueness of the solution for fractional IVP (8) by the
use of the second method.

Theorem 8. Assume that 𝑓 : [0, 𝑇] × R2 → R is continuous
and Lipschitzian with respect to the second and the third

variables; that is to say, there exist constants 𝐿1, 𝐿2 > 0 such
that for all 𝑥1, 𝑦1, 𝑥2, 𝑦2 ∈ R, 𝑡 ∈ [0, 𝑇]

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)
󵄨󵄨󵄨󵄨 ≤ 𝐿1

󵄨󵄨󵄨󵄨𝑥1 − 𝑥2
󵄨󵄨󵄨󵄨 + 𝐿2

󵄨󵄨󵄨󵄨𝑦1 − 𝑦2
󵄨󵄨󵄨󵄨 .

(21)

Then the fractional IVP (8) has a unique solution 𝑢 ∈ 𝐶[0, 𝑇].

Proof. For 𝜑 ∈ 𝐶
𝑞
[0, 𝑇], the norm is defined as

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 = max
𝑡∈[0,𝑇]

𝑒
−𝛽𝑡 󵄨󵄨󵄨󵄨𝜑 (𝑡)

󵄨󵄨󵄨󵄨 + max
𝑡∈[0,𝑇]

𝑒
−𝛽𝑡 󵄨󵄨󵄨󵄨󵄨

𝐷
𝑞−1

0+
𝜑 (𝑡)

󵄨󵄨󵄨󵄨󵄨
, (22)

where 𝛽 is a positive constant such that

(𝐿1 + 𝐿2) (∫
𝑇

0
(𝑇 − 𝑠)

2𝑞−2
𝑑𝑠)

1/2

Γ (𝑞) (2𝛽)
1/2

< 1. (23)

Then (𝐶
𝑞
[0, 𝑇], ‖ ⋅ ‖) is a Banach space.

Clearly, the operator 𝐴 defined by (18) maps 𝐶𝑞[0, 𝑇] to
𝐶
𝑞
[0, 𝑇].
Now we prove that operator 𝐴 is a compressed map on

(𝐶
𝑞
[0, 𝑇], ‖ ⋅ ‖). Let 𝑦, 𝑧 ∈ 𝐶

𝑞
[0, 𝑇]; then, for 𝑡 ∈ [0, 𝑇],

(𝐴𝑦) (𝑡) − (𝐴𝑧) (𝑡)

=
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

[𝑓 (𝑠, 𝑦 (𝑠) , 𝐷
𝑞−1

0+
𝑦 (𝑠))

−𝑓 (𝑠, 𝑧 (𝑠) , 𝐷
𝑞−1

0+
𝑧 (𝑠))] 𝑑𝑠.

(24)

Taking into account that the function 𝑓 is Lipschitzian,
by the use of the Cauchy-Schwartz inequality, we have

𝑒
−𝛽𝑡 󵄨󵄨󵄨󵄨(𝐴𝑦 − 𝐴𝑧) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝑒
−𝛽𝑡 1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑒
𝛽𝑠
𝑒
−𝛽𝑠

× {𝐿1
󵄨󵄨󵄨󵄨𝑦 (𝑠) − 𝑧 (𝑠)

󵄨󵄨󵄨󵄨

+𝐿2

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑞−1

0+
𝑦 (𝑠) − 𝐷

𝑞−1

0+
𝑧 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} 𝑑𝑠

≤
(𝐿1 + 𝐿2) 𝑒

−𝛽𝑡

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑒
𝛽𝑠 󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩 𝑑𝑠

=
(𝐿1 + 𝐿2) 𝑒

−𝛽𝑡 󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑒
𝛽𝑠
𝑑𝑠

≤
(𝐿1 + 𝐿2) 𝑒

−𝛽𝑡 󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩

Γ (𝑞)
(∫

𝑡

0

(𝑡 − 𝑠)
2𝑞−2

𝑑𝑠)

1/2

× (∫

𝑡

0

𝑒
2𝛽𝑠

𝑑𝑠)

1/2
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≤
(𝐿1 + 𝐿2) 𝑒

−𝛽𝑡 󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩

Γ (𝑞)
(∫

𝑡

0

(𝑡 − 𝑠)
2𝑞−2

𝑑𝑠)

1/2

×
𝑒
𝛽𝑡

(2𝛽)
1/2

≤

(𝐿1 + 𝐿2) (∫
𝑇

0
(𝑇 − 𝑠)

2𝑞−2
𝑑𝑠)

1/2

Γ (𝑞) (2𝛽)
1/2

󵄩󵄩󵄩󵄩𝑦 − 𝑧
󵄩󵄩󵄩󵄩 .

(25)

According to the definition of 𝛽, we know that 𝐴 :

𝐶
𝑞
[0, 𝑇] → 𝐶

𝑞
[0, 𝑇] is a compressed map. Banach fixed

point theorem shows that there exists a unique 𝑦 ∈ 𝐶
𝑞
[0, 𝑇]

such that 𝐴𝑦 = 𝑦; equivalently, IVP (8) has a unique solution
𝑦 ∈ 𝐶[0, 𝑇].

Remark 9. Similar to paper [6], we can permit function
𝑓(𝑡, 𝑥, 𝑦) to have some singularity on 𝑡.

Remark 10. The study about the following problem is mean-
ingful:

𝐷
𝑞

0+
𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐷

𝑝

0+
𝑥 (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

𝑥 (0) = 0, 𝐷
𝑞−1

0+
𝑥 (0) = 𝑥0,

(26)

where 𝑓 ∈ 𝐶([0, 𝑇] × R2,R), 𝐷
𝑞

0+
𝑥(𝑡) is the standard

Riemann-Liouville fractional derivative, 1 < 𝑝 < 𝑞 < 2.

4. Some Inequalities and the Existence of
the Solution

Firstly, let us discuss the result about the strict inequalities for
fractional IVP.

Theorem 11. Assume that the functions V, 𝑤 ∈ 𝐶
𝑞
[0, 𝑇] are

lower and upper solutions of problem (8) and at least one of
them is strict. For every 𝑡 ∈ [0, 𝑇], 𝑓(𝑡, 𝑥, 𝑦) is nondecreasing
about 𝑥, 𝑦. Then

𝐷
𝑞−1

0+
V (𝑡) < 𝐷

𝑞−1

0+
𝑤 (𝑡) , 0 < 𝑡 ≤ 𝑇; (27)

V (𝑡) < 𝑤 (𝑡) , 0 < 𝑡 ≤ 𝑇. (28)

Furthermore, the fractional IVP (8) has a minimal solution 𝑥
∗

and a maximal solution 𝑦
∗ such that

𝑥
∗
= lim
𝑛→∞

𝐴
𝑛V, 𝑦

∗
= lim
𝑛→∞

𝐴
𝑛
𝑤. (29)

Proof. Without loss of generality, suppose that 𝐷𝑞−1
0+

𝑤(0) >

𝑥0. Let 𝑦(𝑡) = 𝐷
𝑞−1

0+
V(𝑡). By the use of Lemma 3 and the

definition of lower solution V, one has

𝑦
󸀠
(𝑡) ≤ 𝑓 (𝑡, V (𝑡) , 𝑦 (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

𝑦 (0) ≤ 𝑥0.

(30)

Integration from 0 to 𝑡 yields

𝑦 (𝑡) ≤ 𝑥0 + ∫

𝑡

0

𝑓 (𝑠, V (𝑠) , 𝑦 (𝑠)) 𝑑𝑠. (31)

Similarly, let 𝑧(𝑡) = 𝐷
𝑞−1

0+
𝑤(𝑡); we get

𝑧 (𝑡) ≥ 𝑥0 + ∫

𝑡

0

𝑓 (𝑠, 𝑤 (𝑠) , 𝑧 (𝑠)) 𝑑𝑠. (32)

Suppose for contradiction that conclusion (27) is not true.
Combining the fact that𝐷𝑞−1

0+
V,𝐷𝑞−1
0+

𝑤 is continuous on [0, 𝑇]

and 𝑦(0) = 𝐷
𝑞−1

0+
V(0) ≤ 𝑥0 < 𝐷

𝑞−1

0+
𝑤(0) = 𝑧(0), there exists

𝑡1 ∈ (0, 𝑇] such that

𝑦 (𝑡1) = 𝑧 (𝑡1) , 𝑦 (𝑡) < 𝑧 (𝑡) , 0 ≤ 𝑡 < 𝑡1. (33)

Taking into account that𝐷𝑞−1
0+

(𝑤(𝑡) − V(𝑡)) := ℎ(𝑡) > 0 for
0 < 𝑡 < 𝑡1 and𝑤(0)−V(0) = 0, by the use of the monotonicity
of integral operator 𝐼𝑞−1

0+
, one has

V (𝑡) ≤ 𝑤 (𝑡) , 0 ≤ 𝑡 ≤ 𝑡1. (34)

With inequalities (33) and (34),𝑓 is nondecreasing and above
arguments give

𝑧 (𝑡1) ≥ 𝑥0 + ∫

𝑡
1

0

𝑓 (𝑠, 𝑤 (𝑠) , 𝑧 (𝑠)) 𝑑𝑠

> 𝑥0 + ∫

𝑡
1

0

𝑓 (𝑠, V (𝑠) , 𝑦 (𝑠)) 𝑑𝑠 ≥ 𝑦 (𝑡1) ,

(35)

which is a contradiction to (33). Thus, conclusion (27) holds.
Furthermore, combining V(0) = 𝑤(0) = 0 and the
monotonicity of integral 𝐼𝑞−1

0+
yields that (28) also holds.

A standard proof can show that 𝐴 : 𝐶
𝑞
[0, 𝑇] → 𝐶

𝑞
[0, 𝑇]

is an increasing completely continuous operator. Setting𝐷 :=

[V, 𝑤], by the use of Lemma 4, the existence of 𝑥
∗
, 𝑦
∗ is

obtained. The proof is complete.

The following conclusion is about the nonstrict inequali-
ties.

Theorem 12. Assume that the functions V, 𝑤 ∈ 𝐶
𝑞
[0, 𝑇] are

lower and upper solutions of problem (8). If there exist two real
numbers 𝐿1, 𝐿2 > 0 such that, for 𝑡 ∈ [0, 𝑇], 𝑥1 ≥ 𝑥2, 𝑦1 ≥ 𝑦2,
there holds

0 ≤ 𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)

≤
𝐿1

𝑡𝑞 + 𝑡𝑞−1
(𝑥1 − 𝑥2) +

𝐿2

Γ (𝑞) + Γ (𝑞 + 1) 𝑡
(𝑦1 − 𝑦2) ,

(36)

then 𝐿1 + 𝐿2 ≤ Γ(𝑞 + 1) implies

V (𝑡) ≤ 𝑤 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇. (37)

Furthermore, the fractional IVP (8) has a minimal solution 𝑥
∗

and a maximal solution 𝑦
∗ such that

𝑥
∗
= lim
𝑛→∞

𝐴
𝑛V, 𝑦

∗
= lim
𝑛→∞

𝐴
𝑛
𝑤. (38)
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Proof. Given 𝜖 > 0, let 𝑤𝜖(𝑡) = 𝑤(𝑡) + 𝜖(𝑡
𝑞
+ 𝑡
𝑞−1

). Then, for
0 ≤ 𝑡 ≤ 𝑇,

𝐷
𝑞−1

0+
𝑤𝜖 (𝑡) = 𝐷

𝑞−1

0+
𝑤 (𝑡) + Γ (𝑞 + 1) 𝜖𝑡 + Γ (𝑞) 𝜖, (39)

and specially,

𝐷
𝑞−1

0+
𝑤𝜖 (0) = 𝐷

𝑞−1

0+
𝑤 (0) + Γ (𝑞) 𝜖,

𝑤𝜖 (0) = 𝑤 (0) , 𝑤𝜖 (𝑡) > 𝑤 (𝑡) , for 0 < 𝑡 ≤ 𝑇.

(40)

From (39) and condition (36), combining the fact that

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 = 𝑡
𝑞
∫

1

0

(1 − 𝜎)
𝑞−1

𝑑𝜎 =
Γ (𝑞)

Γ (𝑞 + 1)
𝑡
𝑞 (41)

with the condition 𝐿1 + 𝐿2 < Γ(𝑞 + 1), one has

𝐷
𝑞

0+
𝑤𝜖 (𝑡) = 𝑤 (𝑡) + 𝜖 (𝑡

𝑞
+ 𝑡
𝑞−1

)

≥ 𝑓 (𝑡, 𝑤 (𝑡) , 𝐷
𝑞−1

0+
𝑤 (𝑡)) + Γ (𝑞 + 1) 𝜖

≥ 𝑓 (𝑡, 𝑤𝜖 (𝑡) , 𝐷
𝑞−1

0+
𝑤𝜖 (𝑡)) + Γ (𝑞 + 1) 𝜖

−
𝐿1 (𝑤𝜖 (𝑡) − 𝑤 (𝑡))

𝑡𝑞 + 𝑡𝑞−1

−

𝐿2 (𝐷
𝑞−1

0+
𝑤𝜖 (𝑡) − 𝐷

𝑞−1

0+
𝑤 (𝑡))

Γ (𝑞) + Γ (𝑞 + 1) 𝑡

≥ 𝑓 (𝑡, 𝑤𝜖 (𝑡) , 𝐷
𝑞−1

0+
𝑤𝜖 (𝑡)) .

(42)

This inequality combined with 𝑤𝜖(0) = 0, 𝐷
𝑞−1

0+
𝑤𝜖(0) =

𝐷
𝑞−1

0+
𝑤(0) + Γ(𝑞)𝜖 > 𝑥0 shows that 𝑤𝜖(𝑡) is a strict upper

solution of problem (8).
For 𝑤𝜖(𝑡), V(𝑡), by the use of Theorem 11, we get V(𝑡) <

𝑤𝜖(𝑡), 0 < 𝑡 ≤ 𝑇. As 𝜖 > 0 is arbitrary, (37) holds.
The rest of the proof is just similar to Theorem 11.

Remark 13. If we instead use condition (36) with the condi-
tion that there exists real number 𝐿1, 𝐿2 > 0 such that, for
𝑡 ∈ [0, 𝑇], 𝑥1 ≥ 𝑥2, 𝑦1 ≥ 𝑦2,

0 ≤ 𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)

≤ 𝐿1 (𝑥1 − 𝑥2) + 𝐿2 (𝑦1 − 𝑦2) ,

(43)

thenTheorem 12 still holds as long as the condition

𝐿1Γ (𝑞)

Γ (2𝑞)
[
𝑇
𝑞

2
+ 𝑇
𝑞−1

] +
𝐿2Γ (𝑞)

Γ (𝑞 + 1)
[

𝑞𝑇

𝑞 + 1
+ 1] ≤ 1 (44)

is used instead of the condition Γ(𝑞 + 1) ≥ 𝐿1 + 𝐿2.
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