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Based on the exponential dichotomy of linear dynamic equations on time scales, we obtain some sufficient conditions for the
existence and global exponential stability of almost periodic solutions for a class of Duffing equations with time-varying delays on
time scales. We also present numerical examples to show the feasibility of obtained results. The results of this paper are completely
new even when the time scale T = R or Z and are complementary to the previously known results.

1. Introduction

As we know Duffing equations describe the motion of a
mechanical system in a twin-well potential field. Due to
their promising potential applications in areas of physics,
mechanics, and engineering technique fields, various kinds
of dynamic behaviors of Duffing equations have been studied
by many authors (see [1–4]). Among them, the existence of
almost periodic solutions is an important topic. For example,
authors of [5] investigated the following Duffing equation:

𝑥

󸀠󸀠

(𝑡) − 𝑥 (𝑡) + 𝑥

𝑚

(𝑡 − 𝜏) = 𝑝 (𝑡) , 𝑚 > 1, (1)

where 𝑝(𝑡) is an almost periodic function on R, 𝑚 > 1 is an
integer, and 𝜏 > 0 is a constant. Under the assumption that

(𝑆)

sup
𝑡∈𝑅

󵄨
󵄨
󵄨
󵄨

𝑝 (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ (

1

𝑚

)

1/(𝑚−1)

(1 −

1

𝑚

) , (2)

by using the exponential dichotomy and some mathemati-
cal analysis technique; they obtained some criteria for the
existence of almost periodic solutions for (1); in [6], authors
investigated the following Duffing equation:

𝑥

󸀠󸀠

(𝑡) + 𝑐𝑥

󸀠

(𝑡) − 𝑎𝑥 (𝑡) + 𝑏𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) = 𝑝 (𝑡) , 𝑚 > 1.

(3)

By using differential inequalities and some mathematical
analysis technique, they obtained some criteria for the exis-
tence of almost periodic solutions for (3) without assuming
condition (𝑆). After that, authors of [7] considered the exis-
tence of almost periodic solutions for the following Duffing
equation:

𝑥

󸀠󸀠

(𝑡) + 𝑐𝑥

󸀠

(𝑡) − 𝑎𝑥 (𝑡) + 𝑏𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) = 𝑝 (𝑡) , 𝑚 > 1.

(4)

Taking

𝑦 = 𝑥

󸀠
+ 𝜉𝑥 − 𝑄

1
(𝑡) ,

𝑄
2
(𝑡) = 𝑝 (𝑡) + (𝜉 − 𝑐)𝑄

1
(𝑡) − 𝑄

󸀠

1
(𝑡) ,

(5)

(4) is transformed into the following system:

𝑥

󸀠

(𝑡) = −𝜉𝑥 (𝑡) + 𝑦 (𝑡) + 𝑄
1
(𝑡) ,

𝑦

󸀠

(𝑡) = − (𝑐 − 𝜉) 𝑦 (𝑡) + (𝑎 − 𝜉 (𝜉 − 𝑐)) 𝑥 (𝑡)

− 𝑏𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) + 𝑄
2
(𝑡) .

(6)

Then, considering the coefficients in (4) are usually
time-varying, authors of [8] gave conditions to guarantee
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the existence of almost periodic solutions of the following
equation:

𝑥

󸀠

(𝑡) = −𝛿
1
(𝑡) 𝑥 (𝑡) + 𝑦 (𝑡) + 𝑄

1
(𝑡) ,

𝑦

󸀠

(𝑡) = 𝛿
2
(𝑡) 𝑦 (𝑡) + [𝛼 (𝑡) − 𝛿

2

2
(𝑡)] 𝑥 (𝑡)

− 𝛽 (𝑡) 𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) + 𝑄
2
(𝑡) .

(7)

However, there have been few results about the discrete
analogue of the above systems. In fact, both continuous and
discrete systems are very important in implementation and
applications. But it is troublesome to study the dynamics for
continuous and discrete systems, respectively. Therefore, it is
significant to study that on time scales which can unify the
continuous and discrete situations.

Motivated by the above, in this paper, we study the almost
periodic solutions of the following Duffing equation on time
scale T :

(𝑥

Δ
)

Δ

(𝑡) + 𝑐 (𝑡) 𝑥

Δ

(𝑡) − 𝑎 (𝑡) 𝑥 (𝑡) + 𝑏 (𝑡) 𝑥

𝑚

(𝑡 − 𝜏 (𝑡))

= 𝑝 (𝑡) ,

(8)

where 𝑡 ∈ T , 𝑡 − 𝜏(𝑡) ∈ T , T is an almost periodic time scale,
and𝑚 > 1 is a constant.

Remark 1. If T = R, 𝑐(𝑡) ≡ 0 and 𝑏(𝑡) ≡ 𝑏, then (8) reduces to
(3). If T = R, 𝑐(𝑡) ≡ 𝑐, 𝑎(𝑡) ≡ 𝑎, and 𝑏(𝑡) ≡ 𝑏, then (8) reduces
to (4), which can be transformed to (7). Hence, (3), (4), and
(7) are all special cases of (8).

Let 𝛿
1
(𝑡) be a continuous function with continuous Δ-

derivatives on T . Set

𝑦 (𝑡) = 𝑥

Δ

(𝑡) + 𝛿
1
(𝑡) 𝑥 (𝑡) ; (9)

then we transform (8) into the following system:

𝑥

Δ

(𝑡) = −𝛿
1
(𝑡) 𝑥 (𝑡) + 𝑦 (𝑡) ,

𝑦

Δ

(𝑡) = −𝛿
2
(𝑡) 𝑦 (𝑡) + 𝛽 (𝑡) 𝑥 (𝑡) − 𝑏 (𝑡) 𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) + 𝑝 (𝑡) ,

(10)

where 𝛿
2
(𝑡) = 𝑐(𝑡) − 𝛿

1
(𝜎(𝑡)), 𝛽(𝑡) = 𝑎(𝑡) + 𝛿Δ

1
(𝑡) + 𝛿

1
(𝑡)𝛿
2
(𝑡).

To the best of our knowledge, up to now, there are no
results available on the existence and global exponential
stability of almost periodic solution for Duffing equations
on time scales. Our main aim of this paper is to study
the existence of almost periodic solutions for (10) with
the exponential dichotomy of linear dynamic equations on
time scales. Moreover, we also study the global exponential
stability of almost periodic solutions for (10), which was not
considered in [5–8]. Our results of this paper are new and
complementary to the previously known results.

For convenience, we denote [𝑎, 𝑏]T = {𝑡 | 𝑡 ∈ [𝑎, 𝑏] ∩

T}. For an almost periodic function 𝑓 : T → R, denote

𝑓

+
= sup

𝑡∈T |𝑓(𝑡)|, 𝑓
−

= inf
𝑡∈T |𝑓(𝑡)|. Set X = {𝜑 =

(𝜑
1
(𝑡), 𝜑
2
(𝑡))

𝑇
) | 𝜑

𝑖
(𝑡) ∈ 𝐶(T ,R); 𝜑

𝑖
is an almost peri-

odic function on T , 𝑖 = 1, 2}, with the norm ‖𝜑‖ =

max{sup
𝑡∈T |𝜑1(𝑡)|, sup𝑡∈T |𝜑2(𝑡)|}; then X is a Banach space.

The initial condition of (10) is

𝑥 (𝑠) = 𝜑
1
(𝑠) , 𝑦 (𝑠) = 𝜑

2
(𝑠) , 𝑠 ∈ [−𝜏

+
, 0]

T
, (11)

where 𝜑
𝑖
∈ 𝐶([−𝜏

+
, 0]T ,R).

Throughout this paper, we assume that the following
condition holds:

(𝐻
1
) 𝛽(𝑡), 𝑏(𝑡), 𝑝(𝑡) ∈ 𝐶(T ,R), 𝛿

1
(𝑡), 𝛿
2
(𝑡) ∈ 𝐶(T ,R+)

with −𝛿
1
, −𝛿
2
∈ R+ are all almost periodic functions,

where R+ denotes the set of positively regressive
functions from T to R, and 𝑡 − 𝜏(𝑡) ∈ 𝐶(T , T ∩R+) is
almost periodic, where 𝜏(𝑡) ∈ 𝐶(T ,R+).

This paper is organized as follows. In Section 2, we
introduce some notations and definitions and state some
preliminary results which are needed in later sections. In
Section 3, we establish some sufficient conditions for the
existence of almost periodic solutions of (10) and prove
that these conditions also guarantee the global exponential
stability of almost periodic solutions of (10). In Section 4,
we give examples to illustrate the feasibility of our results
obtained in previous sections. We draw a conclusion in
Section 5.

2. Preliminaries

In this section, we introduce some definitions and state some
preliminary results.

Definition 2 (see [9]). Let T be a nonempty closed subset
(time scale) ofR. The forward and backward jump operators
𝜎, 𝜌 : T → T and the graininess 𝜇 : T → R

+
are defined,

respectively, by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

𝜇 (𝑡) = 𝜎 (𝑡) − 𝑡.

(12)

Lemma 3 (see [9]). Assume that 𝑝, 𝑞 : T → R are two
regressive functions; then

(i) 𝑒
0
(𝑡, 𝑠) ≡ 1 and 𝑒

𝑝
(𝑡, 𝑡) ≡ 1;

(ii) 𝑒
𝑝
(𝜎(𝑡), 𝑠) = (1 + 𝜇(𝑡)𝑝(𝑡))𝑒

𝑝
(𝑡, 𝑠);

(iii) 𝑒
𝑝
(𝑡, 𝑠) = 1/𝑒

𝑝
(𝑠, 𝑡) = 𝑒

⊖𝑝
(𝑠, 𝑡);

(iv) 𝑒
𝑝
(𝑡, 𝑠)𝑒
𝑝
(𝑠, 𝑟) = 𝑒

𝑝
(𝑡, 𝑟);

(v) 𝑒
𝑝
(𝑡, 𝑠)

Δ
= (𝑝)(𝑡)𝑒

𝑝
(𝑡, 𝑠).

Lemma 4 (see [9]). Let 𝑓, 𝑔 be Δ-differentiable functions on
T ; then

(i) (]
1
𝑓 + ]
2
𝑔)

Δ
= ]
1
𝑓

Δ
+ ]
2
𝑔

Δ, for any constants ]
1
, ]
2
;

(ii) (𝑓𝑔)Δ(𝑡) = 𝑓

Δ
(𝑡)𝑔(𝑡) + 𝑓(𝜎(𝑡))𝑔

Δ
(𝑡) = 𝑓(𝑡)𝑔

Δ
(𝑡) +

𝑓

Δ
(𝑡)𝑔(𝜎(𝑡));

(iii) if 𝑓Δ ≥ 0, then 𝑓 is nondecreasing.
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Lemma 5 (see [9]). Assume that 𝑝(𝑡) ≥ 0 for 𝑡 ≥ 𝑠; then
𝑒
𝑝
(𝑡, 𝑠) ≥ 1.

Definition 6 (see [9]). A function 𝑓 : T → R is called
regressive if 1 + 𝜇(𝑡)𝑓(𝑡) ̸= 0 for all 𝑡 ∈ T . The set of all
regressive functions 𝑓 : T → R will be denoted by R. A
function𝑓 : T → R is positively regressive if 1+𝜇(𝑡)𝑓(𝑡) > 0
for all 𝑡 ∈ T . The set of all positively regressive functions
𝑓 : T → R will be denoted byR+.

Lemma 7 (see [9]). Suppose that 𝑝 ∈ R+; then

(i) 𝑒
𝑝
(𝑡, 𝑠) > 0, for all 𝑡, 𝑠 ∈ T ;

(ii) if 𝑝(𝑡) ≤ 𝑞(𝑡) for all 𝑡 ≥ 𝑠, 𝑡, 𝑠 ∈ T , then 𝑒
𝑝
(𝑡, 𝑠) ≤

𝑒
𝑞
(𝑡, 𝑠) for all 𝑡 ≥ 𝑠.

Lemma 8 (see [9]). If 𝑝 ∈ R and 𝑎, 𝑏, 𝑐 ∈ T , then

[𝑒
𝑝
(𝑐, ⋅)]

Δ

= −𝑝[𝑒
𝑝
(𝑐, ⋅)]

𝜎

,

∫

𝑏

𝑎

𝑝 (𝑡) 𝑒
𝑝
(𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒

𝑝
(𝑐, 𝑎) − 𝑒

𝑝
(𝑐, 𝑏) .

(13)

Definition 9 (see [10]). A time scale T is called an almost
periodic time scale if

Π := {𝜏 ∈ R : 𝑡 ± 𝜏 ∈ T , ∀𝑡 ∈ T} ̸= {0} . (14)

Definition 10 (see [10]). Let T be an almost periodic time
scale. A function 𝑓 : T → R𝑛 is said to be almost periodic
on T , if, for any 𝜀 > 0, the set

𝐸 (𝜀, 𝑓) = {𝜏 ∈ Π :

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

< 𝜀, ∀𝑡 ∈ T} (15)

is relatively dense in T ; that is, for any 𝜀 > 0, there exists
a constant 𝑙(𝜀) > 0 such that each interval of length 𝑙(𝜀)

contains at least one 𝜏 ∈ 𝐸(𝜀, 𝑓) such that

󵄨
󵄨
󵄨
󵄨

𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨

< 𝜀, ∀𝑡 ∈ T . (16)

The set 𝐸(𝜀, 𝑓) is called the 𝜀-translation set of 𝑓(𝑡), 𝜏 is
called the 𝜀-translation number of 𝑓(𝑡), and 𝑙(𝜀) is called the
inclusion of 𝐸(𝜀, 𝑓).

Lemma 11 (see [10]). If 𝑓 ∈ 𝐶(T ,R𝑛) is an almost periodic
function, then 𝑓 is bounded on T .

Lemma 12 (see [10]). If 𝑓, 𝑔 ∈ 𝐶(T ,R𝑛) are almost periodic
functions, then 𝑓 + 𝑔, 𝑓𝑔 are also almost periodic.

Lemma 13 (see [10]). If 𝑓 ∈ 𝐶(T ,R𝑛) is almost periodic and
𝐹(⋅) is uniformly continuous on the value field of 𝑓, then 𝐹 ∘ 𝑓
is almost periodic.

Definition 14 (see [11]). Let 𝑥 ∈ R𝑛 and𝐴(𝑡) be a 𝑛×𝑛matrix-
valued function on T ; the linear system

𝑥

Δ

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) , 𝑡 ∈ T (17)

is said to admit an exponential dichotomy on T if there
exist positive constants 𝑘

𝑖
, 𝛼
𝑖
, 𝑖 = 1, 2, projection 𝑃 and the

fundamental solution matrix𝑋(𝑡) of (17) satisfying
󵄨
󵄨
󵄨
󵄨
󵄨

𝑋 (𝑡) 𝑃𝑋

−1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑘
1
𝑒
⊖𝛼
1
(𝑡, 𝑠) , 𝑠, 𝑡 ∈ T , 𝑡 ≥ 𝑠,

󵄨
󵄨
󵄨
󵄨
󵄨

𝑋 (𝑡) (𝐼 − 𝑃)𝑋

−1

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑘
2
𝑒
⊖𝛼
2
(𝑠, 𝑡) , 𝑠, 𝑡 ∈ T , 𝑡 ≤ 𝑠,

(18)

where | ⋅ | is a matrix norm on T ; that is, if 𝐴 = (𝑎
𝑖𝑗
)

𝑛×𝑚
, then

we can take |𝐴| = (∑𝑛
𝑖=1

∑

𝑚

𝑗=1
|𝑎
𝑖𝑗
|

2
)

1/2.

Lemma 15 (see [10]). If (17) admits an exponential dichotomy,
then the following almost periodic system

𝑥

Δ

(𝑡) = 𝐴 (𝑡) 𝑥 (𝑡) + 𝑔 (𝑡) , 𝑡 ∈ T (19)

has an almost periodic solution as follows:

𝑥 (𝑡) = ∫

𝑡

−∞

𝑋 (𝑡) 𝑃𝑋

−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠

− ∫

+∞

𝑡

𝑋(𝑡) (𝐼 − 𝑃)𝑋

−1

(𝜎 (𝑠)) 𝑔 (𝑠) Δ𝑠,

(20)

where𝑋(𝑡) is the fundamental solution matrix of (17).

Lemma 16 (see [11]). If 𝐴(𝑡) is a uniformly bounded 𝑟𝑑-
continuous 𝑛 × 𝑛 matrix-valued function on T and there is a
𝛿 > 0 such that

󵄨
󵄨
󵄨
󵄨

𝑎
𝑖𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

− ∑

𝑗 ̸= 𝑖

󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

−

1

2

𝜇 (𝑡)(

𝑛

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨

𝑎
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

)

2

− 𝛿

2
𝜇 (𝑡) ≥ 2𝛿,

𝑡 ∈ T , 𝑖 = 1, 2, . . . , 𝑛,

(21)

then (17) admits an exponential dichotomy on T .

Definition 17. Let 𝑧
∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡))

𝑇 be an almost
periodic solution of (10) with initial value 𝜑

∗
(𝑠) =

(𝜑
∗1
(𝑠), 𝜑
∗2
(𝑠))

𝑇. If there exist positive constants 𝜆 with −𝜆 ∈
R+ and 𝑀 > 1 such that for an arbitrary solution 𝑧(𝑡) =

(𝑥(𝑡), 𝑦(𝑡))

𝑇 of (8) with initial value 𝜑(𝑠) = (𝜑
1
(𝑠), 𝜑
2
(𝑠))

𝑇

satisfies
󵄨
󵄨
󵄨
󵄨

𝑧 (𝑡) − 𝑧
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜑
∗

󵄩
󵄩
󵄩
󵄩

𝑒
−𝜆
(𝑡, 𝑡
0
) ,

𝑡, 𝑡
0
∈ [−𝜏

+
,∞)

T
, 𝑡 ≥ 𝑡

0
,

(22)

where |𝑧(𝑡)|
1
= max{|𝑥(𝑡) − 𝑥

∗
(𝑡)|, |𝑦(𝑡) − 𝑦

∗
(𝑡)|}, ‖𝜑 −

𝜑
∗
‖ = max{|𝜑

1
− 𝜑
∗1
|

0
, |𝜑
2
− 𝜑
∗2
|

0
}}, and |𝜑

𝑖
− 𝜑
∗𝑖
|

0
=

sup
𝑠∈[−𝜏

+
,0]T

|𝜑
1
(𝑠)−𝜑

∗1
(𝑠)|, 𝑖 = 1, 2. Then the solution 𝑧

∗
(𝑡) is

said to be globally exponentially stable.

3. Main Results

In this section,wewill state andprove the existence and global
exponential stability of almost periodic solutions of (10).

Let 𝜑0(𝑡) = (0, 𝜑

0

2
(𝑡))

𝑇, where 𝜑

0

2
(𝑡) = ∫

𝑡

−∞
𝑒
−𝛿
2

(𝑡,

𝜎(𝑠))𝑝(𝑠)Δ𝑠. Then ‖𝜑0‖ ≤ 𝐿, where 𝐿 = 𝑝

+
/𝛿

−

2
. We have the

following theorem.
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Theorem 18. Let (𝐻
1
) hold. Suppose further that

(𝐻
2
) there exists a positive constant 𝛿 such that

𝛿
𝑖
(𝑡) −

1

2

𝜇 (𝑡) 𝛿

2

𝑖
(𝑡) − 𝛿

2
𝜇 (𝑡) ≥ 2𝛿, 𝑡 ∈ T , 𝑖 = 1, 2; (23)

(𝐻
3
) the following inequalities hold:

𝜃 = max{ 1

𝛿

−

1

,

𝛽

+
+ 𝑏

+

𝛿

−

2

} < 1,

𝛾 = max{ 1

𝛿

−

1

,

𝛽

+
+ 𝑚𝑏

+
(2𝐿/ (1 − 𝜃))

𝑚−1

𝛿

−

2

} < 1,

𝐿

1 − 𝜃

< 1.

(24)

Then (10) has a unique almost periodic solution in X
0
= {𝜑 ∈

X | ‖𝜑 − 𝜑

0
‖ ≤ 𝜃𝐿/(1 − 𝜃)}.

Proof. For any given 𝜑 ∈ X, we consider the following almost
periodic system:

𝑥

Δ

(𝑡) = −𝛿
1
(𝑡) 𝑥 (𝑡) + 𝜑

2
(𝑡) ,

𝑦

Δ

(𝑡) = −𝛿
2
(𝑡) 𝑦 (𝑡) + 𝛽 (𝑡) 𝜑

1
(𝑡)

− 𝑏 (𝑡) 𝜑

𝑚

1
(𝑡 − 𝜏 (𝑡)) + 𝑝 (𝑡) .

(25)

Since (𝐻
2
) holds, it follows from Lemma 16 that the linear

system

𝑥

Δ

(𝑡) = − 𝛿
1
(𝑡) 𝑥 (𝑡) ,

𝑦

Δ

(𝑡) = − 𝛿
2
(𝑡) 𝑦 (𝑡)

(26)

admits an exponential dichotomy on T . Thus, by Lemma 15,
we obtain that (25) has an almost periodic solution, which is
expressed as follows:

𝑥

𝜑

(𝑡) = ∫

𝑡

−∞

𝑒
−𝛿
1
(𝑡, 𝜎 (𝑠)) 𝜑

2
(𝑠) Δ𝑠,

𝑦

𝜑

(𝑡) = ∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠))

× (𝛽 (𝑠) 𝜑
1
(𝑠) − 𝑏 (𝑠) 𝜑

𝑚

1
(𝑠 − 𝜏 (𝑠)) + 𝑝 (𝑠)) Δ𝑠.

(27)

For every 𝜑 ∈ X
0
, we have ‖𝜑‖ ≤ ‖𝜑 − 𝜑

0
‖ + ‖𝜑

0
‖ ≤

(𝜃𝐿/(1−𝜃))+𝐿 = 𝐿/(1−𝜃) < 1. Define the following nonlinear
operator:

Φ : X
0
󳨀→ X

0
, 𝜑 = (𝜑

1
, 𝜑
2
)

𝑇

󳨀→ 𝑧

𝜑
= (𝑥

𝜑
, 𝑦

𝜑
)

𝑇

.

(28)

We will show thatΦ is a contraction.

At first, we show that for any 𝜑 ∈ X
0
, we have Φ𝜑 ∈ X

0
.

Note that
󵄩
󵄩
󵄩
󵄩
󵄩

Φ𝜑 − 𝜑

0󵄩󵄩
󵄩
󵄩
󵄩

= max{sup
𝑡∈T

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝛿
1
(𝑡, 𝜎 (𝑠)) 𝜑

2
(𝑠) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

sup
𝑡∈T

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠)) × [𝛽 (𝑠) 𝜑

1
(𝑠) − 𝑏 (𝑠) 𝜑

𝑚

1

× (𝑠 − 𝜏 (𝑠)) ] Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

≤ max{sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
1
(𝑡, 𝜎 (𝑠)) Δ𝑠

󵄩
󵄩
󵄩
󵄩

𝜑

󵄩
󵄩
󵄩
󵄩

,

sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠)) Δ𝑠 × (𝛽

+ 󵄩
󵄩
󵄩
󵄩

𝜑

󵄩
󵄩
󵄩
󵄩

+ 𝑏

+󵄩
󵄩
󵄩
󵄩

𝜑

󵄩
󵄩
󵄩
󵄩

𝑚

) }

≤ max{ 1

𝛿

−

1

,

𝛽

+
+ 𝑏

+

𝛿

−

2

}

󵄩
󵄩
󵄩
󵄩

𝜑

󵄩
󵄩
󵄩
󵄩

= 𝜃

󵄩
󵄩
󵄩
󵄩

𝜑

󵄩
󵄩
󵄩
󵄩

≤

𝜃𝐿

1 − 𝜃

;

(29)

that is, Φ𝜑 ∈ X
0
. So the mapping Φ is a self-mapping from

X
0
toX
0
. Next, we prove that the mappingΦ is a contraction

mapping ofX
0
. In fact, for any 𝜑 = (𝜑

1
, 𝜑
2
)

𝑇, 𝜓 = (𝜓
1
, 𝜓
2
)

𝑇
∈

X
0
, we can get

󵄩
󵄩
󵄩
󵄩

Φ𝜑 − Φ𝜓

󵄩
󵄩
󵄩
󵄩𝐵

= max
1≤𝑖≤2

{sup
𝑡∈T

󵄨
󵄨
󵄨
󵄨

Φ𝜑
𝑖
(𝑡) − Φ𝜓

𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨

}

≤ max{sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
1
(𝑡, 𝜎 (𝑠))

󵄨
󵄨
󵄨
󵄨

𝜑
2
(𝑠) − 𝜓

2
(𝑠)

󵄨
󵄨
󵄨
󵄨

Δ𝑠,

sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠))

×

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) (𝜑
1
(𝑠) − 𝜓

1
(𝑠)) − 𝑏 (𝑠)

× (𝜑

𝑚

1
(𝑠 − 𝜏 (𝑠))

−𝜓

𝑚

1
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠}

≤ max{ 1

𝛿

−

1

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

,

sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠))

×

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) (𝜑
1
(𝑠) − 𝜓

1
(𝑠))

− 𝑏 (𝑠)𝑚 (𝜓
1
(𝑠 − 𝜏 (𝑠)) + ℎ (𝑠)

× (𝜑
1
(𝑠 − 𝜏 (𝑠))

−𝜓
1
(𝑠 − 𝜏(𝑠))))

𝑚−1

× (𝜑
1
(𝑠 − 𝜏 (𝑠)) − 𝜓

1
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠}
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= max{ 1

𝛿

−

1

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

,

sup
𝑡∈T

∫

𝑡

−∞

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠))

×

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) (𝜑
1
(𝑠) − 𝜓

1
(𝑠))

− 𝑏 (𝑠)𝑚 ((1 − ℎ (𝑠)) 𝜓
1
(𝑠 − 𝜏 (𝑠))

+ ℎ(𝑠)𝜑
1
(𝑠 − 𝜏 (𝑠)))

𝑚−1

× (𝜑
1
(𝑠 − 𝜏 (𝑠))

−𝜓
1
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠}

≤ max{ 1

𝛿

−

1

,

𝛽

+
+ 𝑚𝑏

+
(2𝐿/ (1 − 𝜃))

𝑚−1

𝛿

−

2

}

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

= 𝛾

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜓

󵄩
󵄩
󵄩
󵄩

,

(30)

where 0 ≤ ℎ(𝑠) ≤ 1. Noticing that 𝛾 < 1, it is clear that the
mappingΦ is a contractionmapping ofX

0
. By the fixed point

theorem of Banach space, Φ has a unique fixed point in X
0
.

That is, (10) has a unique almost periodic solution inX
0
. This

completes the proof of Theorem 18.

Theorem 19. Let (𝐻
1
)–(𝐻
3
) hold. Then the almost periodic

solution of (10) is globally exponentially stable.

Proof. By Theorem 18, (10) has an almost periodic solution
𝑧
∗
(𝑡) = (𝑥

∗
(𝑡), 𝑦
∗
(𝑡))

𝑇
∈ X
0
with the initial value 𝜑

∗
(𝑠) =

(𝜑
∗1
(𝑠), 𝜑
∗2
(𝑠))

𝑇. Suppose that 𝑧(𝑡) = (𝑥(𝑡), 𝑦(𝑡))

𝑇 is an
arbitrary solution of (10) with the initial value 𝜑(𝑠) =

(𝜑
1
(𝑠), 𝜑
2
(𝑠))

𝑇. Denote 𝑤(𝑡) = (𝑢(𝑡), V(𝑡))𝑇, where 𝑢(𝑡) =

𝑥(𝑡) − 𝑥
∗
(𝑡), V(𝑡) = 𝑦(𝑡) − 𝑦

∗
(𝑡). Then it follows from (10)

that

𝑢

Δ

(𝑡) = −𝛿
1
(𝑡) 𝑢 (𝑡) + V (𝑡) ,

VΔ (𝑡) = −𝛿
2
(𝑡) V (𝑡) + 𝛽 (𝑡) 𝑢 (𝑡)

− 𝑏 (𝑡) (𝑥

𝑚

(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑚

∗
(𝑡 − 𝜏 (𝑡))) .

(31)

The initial condition of (31) is

𝜙
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) − 𝜑

∗𝑖
(𝑠) , 𝑠 ∈ [−𝜏

+
, 0]

T
, 𝑖 = 1, 2.

(32)

Multiply both sides of the first equation of (31) by 𝑒
−𝛿
1

(𝑡, 𝜎(𝑠))

and the second equation by 𝑒
−𝛿
2

(𝑡, 𝜎(𝑠)), respectively. Then

integrating on [𝑡
0
, 𝑡]T , where 𝑡0 ∈ [−𝜏

+
, 0]T , we get

𝑢 (𝑡) = 𝜙
1
(𝑡
0
) 𝑒
−𝛿
1

(𝑡, 𝑡
0
) + ∫

𝑡

𝑡
0

𝑒
−𝛿
1
(𝑡, 𝜎 (𝑠)) V (𝑠) Δ𝑠,

V (𝑡) = 𝜙
2
(𝑡
0
) 𝑒
−𝛿
2

(𝑡, 𝑡
0
)

+ ∫

𝑡

𝑡
0

𝑒
−𝛿
2
(𝑡, 𝜎 (𝑠))

× (𝛽 (𝑠) 𝑢 (𝑠) − 𝑏 (𝑠) (𝑥

𝑚

(𝑠 − 𝜏 (𝑠))

−𝑥

𝑚

∗
(𝑠 − 𝜏 (𝑠)))) Δ𝑠.

(33)

For positive a constant 𝛼 with −𝛼 ∈ R+, we have
𝑒
⊖𝛼
(𝑡, 𝑡
0
) > 1, where 𝑡 ∈ [−𝜃, 𝑡

0
]T . Take𝑀 > 1/(1 − 𝛾); then

it is obvious that𝑀 > 1 and

󵄨
󵄨
󵄨
󵄨

𝑧 (𝑡) − 𝑧
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨1
=

󵄨
󵄨
󵄨
󵄨

𝜙 (𝑡)

󵄨
󵄨
󵄨
󵄨1
≤

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

∀𝑡 ∈ [−𝜏

+
, 𝑡
0
]

T
.

(34)

We claim that

󵄨
󵄨
󵄨
󵄨

𝑧 (𝑡) − 𝑧
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

, ∀𝑡 ∈ (𝑡
0
, +∞)

T
.

(35)

To prove this claim, we show that for any constant 𝑝 > 1, the
following inequality holds:

󵄨
󵄨
󵄨
󵄨

𝑧 (𝑡) − 𝑧
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨1
< 𝑝𝑀𝑒

⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

, ∀𝑡 ∈ (𝑡
0
, +∞)

T
,

(36)

which implies that

|𝑢 (𝑡)| =

󵄨
󵄨
󵄨
󵄨

𝑥 (𝑡) − 𝑥
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨

< 𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

∀𝑡 ∈ (𝑡
0
, +∞)

T
,

(37)

|V (𝑡)| = 󵄨󵄨󵄨
󵄨

𝑦 (𝑡) − 𝑦
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨

< 𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

∀𝑡 ∈ (𝑡
0
, +∞)

T
.

(38)

By way of contradiction, assume that (36) does not hold. We
will have the following three cases.

Case 1. Inequality (38) is true and (37) is not true. Then there
exist 𝑡

1
∈ (𝑡
0
, +∞)T and Θ ≥ 1 such that

󵄨
󵄨
󵄨
󵄨

𝑢 (𝑡
1
)

󵄨
󵄨
󵄨
󵄨

= Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

|𝑢 (𝑡)| < Θ𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

, 𝑡 ∈ (𝑡
0
, 𝑡
1
)

T
.

(39)
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Note that, in view of (33), we have

󵄨
󵄨
󵄨
󵄨

𝑢 (𝑡
1
)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜙
1
(𝑡
0
) 𝑒
−𝛿
1

(𝑡
1
, 𝑡
0
) + ∫

𝑡
1

𝑡
0

𝑒
−𝛿
1

(𝑡
1
, 𝜎 (𝑠)) V (𝑠) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝛿
−

1

(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
1

𝑡
0

𝑒
−𝛿
−

1

(𝑡
1
, 𝜎 (𝑠)) Θ𝑝𝑀𝑒

⊖𝛼
(𝑠, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

Δ𝑠

≤ 𝑒
−𝛿
−

1

(𝑡
1
, 𝑡
0
) 𝑒
⊖(−𝛼)

(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
1

𝑡
0

𝑒
−𝛿
−

1

(𝑡
1
, 𝜎 (𝑠)) 𝑒

⊖𝛼
(𝑠, 𝑡
1
) Δ𝑠

≤ 𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
1

𝑡
0

𝑒
−𝛿
−

1

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠

= 𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+

1

−𝛿

−

1

Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
1

𝑡
0

𝛿

−

1
𝑒
−𝛿
1

(𝑡
1
, 𝜎 (𝑠)) Δ𝑠

= Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× (

1

Θ𝑝𝑀

−

1

𝛿

−

1

(𝑒
−𝛿
−

1

(𝑡
1
, 𝑡
0
) − 1))

< Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

(

1

Θ𝑀

+

1

𝛿

−

1

)

< Θ𝑝𝑀𝑒
⊖𝛼
(𝑡
1
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

.

(40)

In the above proof we use the inequality 𝑒
−𝛿
−

1

(𝑡
1
, 𝑡
0
) < 1. Thus

we get a contradiction.

Case 2. Inequality (37) is true and (38) is not true.Then there
exist 𝑡

2
∈ (𝑡
0
, +∞)T and Θ

1
≥ 1 such that

󵄨
󵄨
󵄨
󵄨

V (𝑡
2
)

󵄨
󵄨
󵄨
󵄨

= Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

|V (𝑡)| < Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

, 𝑡 ∈ (𝑡
0
, 𝑡
2
)

T
.

(41)

Note that, in view of (33), we have
󵄨
󵄨
󵄨
󵄨

V (𝑡
2
)

󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜙
2
(𝑡
0
) 𝑒
−𝛿
2

(𝑡
2
, 𝑡
0
) + ∫

𝑡
2

𝑡
0

𝑒
−𝛿
2

(𝑡
2
, 𝜎 (𝑠))

× (𝛽 (𝑠) 𝑢 (𝑠) − 𝑏 (𝑠)

× (𝑥

𝑚

(𝑠 − 𝜏 (𝑠))

−𝑥

𝑚

∗
(𝑠 − 𝜏 (𝑠)))) Δ𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠))

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) 𝑢 (𝑠) − 𝑏 (𝑠)

× (𝑥

𝑚

(𝑠 − 𝜏 (𝑠))

−𝑥

𝑚

∗
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠

= 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠))

×

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) 𝑢 (𝑠) − 𝑏 (𝑠)𝑚 (𝑥
∗
(𝑠 − 𝜏 (𝑠)) + 𝜁 (𝑠)

× (𝑥 (𝑠 − 𝜏 (𝑠))

−𝑥
∗
(𝑠 − 𝜏(𝑠))))

𝑚−1

× (𝑥 (𝑠 − 𝜏 (𝑠)) − 𝑥
∗
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠

= 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠))

×

󵄨
󵄨
󵄨
󵄨

𝛽 (𝑠) 𝑢 (𝑠) − 𝑏 (𝑠)𝑚 ((1 − 𝜁 (𝑠)) 𝑥
∗
(𝑠 − 𝜏 (𝑠))

+𝜁(𝑠)𝑥(𝑠 − 𝜏(𝑠)))

𝑚−1

× (𝑥 (𝑠 − 𝜏 (𝑠)) − 𝑥
∗
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

Δ𝑠

≤ 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠)) [𝛽

+

|𝑢 (𝑠)| + 𝑚𝑏

+

×

󵄨
󵄨
󵄨
󵄨

((1 − 𝜁 (𝑠)) 𝑥
∗
(𝑠 − 𝜏 (𝑠))

+ 𝜁(𝑠)𝑥(𝑠 − 𝜏(𝑠)))

𝑚−1

× (𝑥 (𝑠 − 𝜏 (𝑠))

−𝑥
∗
(𝑠 − 𝜏 (𝑠)))

󵄨
󵄨
󵄨
󵄨

] Δ𝑠

≤ 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠))

× [𝛽

+

|𝑢 (𝑠)| + 𝑚𝑏

+
(

2𝐿

1 − 𝜃

)

𝑚−1

|𝑢 (𝑠 − 𝜏 (𝑠))|] Δ𝑠

≤ 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+ 𝛽

+
Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠)) Δ𝑠

+ 𝑚𝑏

+
(

2𝐿

1 − 𝜃

)

𝑚−1

Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
2

𝑡
0

𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠)) 𝑒

⊖𝛼
(𝑠 − 𝜏 (𝑠) , 𝑡

2
) Δ𝑠
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≤ 𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
) 𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

+

1

−𝛿

−

2

𝛽

+
Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× ∫

𝑡
2

𝑡
0

(−𝛿

−

2
) 𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠)) Δ𝑠

+

1

−𝛿

−

2

𝑚𝑏

+
(

2𝐿

1 − 𝜃

)

𝑚−1

Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

×

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

exp {−𝛼𝜏−} ∫
𝑡
2

𝑡
0

(−𝛿

−

2
) 𝑒
−𝛿
−

2

(𝑡
2
, 𝜎 (𝑠)) Δ𝑠

≤ 𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

−

1

𝛿

−

2

𝛽

+
Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

×

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

(𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
) − 1)

−

1

𝛿

−

2

𝑚𝑏

+
(

2𝐿

1 − 𝜃

)

𝑚−1

Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

×

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

exp {−𝛼𝜏−} (𝑒
−𝛿
−

2

(𝑡
2
, 𝑡
0
) − 1)

≤ Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× (

1

Θ
1
𝑝𝑀

+

𝛽

+
+ 𝑚𝑏

+
(2𝐿/ (1 − 𝜃))

𝑚−1

𝛿

−

2

)

< Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

× (

1

Θ
1
𝑀

+

𝛽

+
+ 𝑚𝑏

+
(2𝐿/ (1 − 𝜃))

𝑚−1

𝛿

−

2

)

< Θ
1
𝑝𝑀𝑒
⊖𝛼
(𝑡
2
, 𝑡
0
)

󵄩
󵄩
󵄩
󵄩

𝜙

󵄩
󵄩
󵄩
󵄩

,

(42)

where 0 ≤ 𝜁(𝑠) ≤ 1. We also get a contradiction.

Case 3. Inequalities (37) and (38) are both untrue. By Case
1 and Case 2, we can obtain a contradiction. Therefore, (36)
holds. Let 𝑝 → 1; then (35) holds. We can take −𝜆 = ⊖𝛼;
then 𝜆 > 0 and −𝜆 ∈ R+. Hence, we have that

󵄨
󵄨
󵄨
󵄨

𝑧 (𝑡) − 𝑧
∗
(𝑡)

󵄨
󵄨
󵄨
󵄨1
≤ 𝑀

󵄩
󵄩
󵄩
󵄩

𝜑 − 𝜑
∗

󵄩
󵄩
󵄩
󵄩

𝑒
−𝜆
(𝑡, 𝑡
0
) ,

𝑡 ∈ [−𝜏

+
,∞)

T
, 𝑡 ≥ 𝑡

0
,

(43)

which implies that the periodic solution 𝑧
∗
(𝑡) of (10) is

globally exponentially stable. This completes the proof of
Theorem 19.

Remark 20. It is easy to see that when T = R, Theorem 18
extends the results obtained in [5–8]. Moreover, when T = R,
𝑐(𝑡) ≡ 0, 𝑎(𝑡) ≡ 𝑎, and 𝑏(𝑡) ≡ 𝑏, Theorem 18 improves the
results obtained in [6].

4. Numerical Examples

In this section, we present numerical examples to illustrate
the feasibility of our results obtained in Section 3.

Example 1. Consider the delayDuffing equation on an almost
periodic time scale T :

(𝑥

Δ
)

Δ

(𝑡) + (3.1 + 0.01 sin√2𝑡) 𝑥Δ (𝑡) + (2 + 0.01 cos 𝑡) 𝑥 (𝑡)

+ (0.03 + 0.02 cos√2𝑡) 𝑥3 (𝑡 − cos√2𝑡)

= 0.03 − 0.01 sin√3𝑡.
(44)

It is easy to see that 𝑐(𝑡) = 3.1 + 0.01 sin√2𝑡, 𝑎(𝑡) =

−2 − 0.01 cos 𝑡, 𝑏(𝑡) = 0.03 + 0.02 cos√2𝑡, 𝑝(𝑡) = 0.03 −

0.01 sin√3𝑡, 𝜏(𝑡) = cos√2𝑡, and𝑚 = 3. If we set 𝛿
1
(𝑡) = 1.6+

0.01 sin 𝑡, then we have 𝛿
2
(𝑡) = 1.5+0.01 sin 𝑡−0.01 sin(𝜎(𝑡)),

𝛽(𝑡) = −2 − 0.01 cos 𝑡 + 0.01(sin 𝑡)Δ + (1.6 + 0.01 sin 𝑡)(1.5 +
0.01 sin 𝑡 − 0.01 sin(𝜎(𝑡))). If T = R, then 𝜇(𝑡) = 0, and if
T = Z, then 𝜇(𝑡) = 1. We can verify for the above two cases;
𝜃 ≈ 0.43 < 1, 𝛾 ≈ 0.4 < 1, 𝐿/(1 − 𝜃) ≈ 0.081 < 1. That
is, all conditions of Theorem 18 are satisfied. Hence, (44) has
an almost periodic solution, which is globally exponentially
stable.

Example 2. Consider the delay Duffing equation on R:

𝑥

󸀠󸀠

(𝑡) + (2 + 0.01 cos√3𝑡) 𝑥󸀠 (𝑡) + (1 + 0.01 sin 𝑡) 𝑥 (𝑡)

+ (0.04 + 0.03 cos√2𝑡) 𝑥2 (𝑡 − sin√3𝑡)

= 0.05 − 0.03 cos√2𝑡.
(45)

It is easy to see that 𝑐(𝑡) = 2 + 0.02 cos√3𝑡, 𝑎(𝑡) =

−2 − 0.01 sin 𝑡, 𝑏(𝑡) = 0.04 + 0.03 cos√2𝑡, 𝑝(𝑡) = 0.05 −

0.03 cos√2𝑡, 𝜏(𝑡) = sin√3𝑡, 𝑚 = 2, 𝜎(𝑡) = 𝑡, and 𝜇(𝑡) = 0. If
we set 𝛿

1
(𝑡) = 1+0.02 cos√3𝑡, then we have 𝛿

2
(𝑡) = 1, 𝛽(𝑡) =

0.04 cos√3𝑡 − 0.01 sin 𝑡. Hence, we have that 𝜃 ≈ 0.57 < 1,
𝛾 ≈ 0.39 < 1, and 𝐿/(1 − 𝜃) ≈ 0.261 < 1, which imply
that all conditions ofTheorem 18 are satisfied.Hence, (45) has
an almost periodic solution, which is globally exponentially
stable.

5. Conclusion

Using the exponential dichotomyof linear dynamic equations
on time scales and the time scale calculus theory, some
sufficient conditions are derived to guarantee the existence
and exponential stability of almost periodic solutions for a
class of Duffing equation on time scales. To the best of our
knowledge, the results presented here have not appeared in
the related literature. Besides, the results obtained in this
paper possess feasibility. Moreover, the method in this paper
may be applied to some other differential equations on time
scales.
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